SIEMENS

SIMOREG DC Master

Operating Instructions

6RA70 Series

Microprocessor-Based Converters from 6kW to 1900kW for Variable-Speed DC Drives

These Operating Insructions are available in the following languages:

Language	German	French	Spanish	Italian
Order No.	$6 R X 1700-0 A D 00$	$6 R X 1700-0 A D 77$	$6 R X 1700-0 A D 78$	6RX1700-0AD72

Converter software version:

As these Operating Instructions went to print, SIMOREG DC Master converters were being delivered from the factory with software version 2.0 installed.
These Operating Instructions also apply to other software versions.
Earlier software versions: Some parameters described in this document might not be stored in the software (i.e. the corresponding functionality is not available on the converter) or some parameters will have a restricted setting range. If this is the case, however, appropriate reference to this status will be made in the Parameter List.

Later software versions: Additional parameters might be available on the SIMOREG DC Master (i.e. extra functions might be available which are not described in these Operating Instructions) or some parameters might have an extended setting range. In this case, leave the relevant parameters at their factory setting, or do not set any parameter values which are not described in these Instructions !
The software version of the SIMOREG DC Master can be read in parameters r060 and r065.

The latest software version is available at the following Internet site:
http://www4.ad.siemens.de/view/cs/en/8467834

The reproduction, transmission or use of this document or contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

We have checked that the contents of this publication agree with the hardware and software described herein. Nonetheless, differences might exist and therefore we cannot guarantee that they are completely identical. The information given in this publication is reviewed at regular intervals and any corrections that might be necessary are made in the subsequent printings. Suggestions for improvement are welcome at all times.

0 Contents

Page

1 Safety information

2 Type spectrum

2.1 Converter order number code 2-4
2.2 Rating plate 2-5
2.3 Packaging label 2-5
2.4 Ordering information for options using codes 2-6

3 Description
3.1 Applications 3-1
3.2 Design 3-1
3.2.1 Special features of devices with 460V rated connection voltage 3-2
3.2.2 Installation of SIMOREG devices in cabinets in accordance with UL508C standards 3-2
3.3 Mode of operation 3-2
3.4 Technical data 3-3
3.4.1 Load types 3-3
3.4.1.1 Load cycles for 1Q applications 3-4
3.4.1.2 Load cycles for 4Q applications 3-5
3.4.2 Converters 3AC 400V, 30A to 125A, 1Q 3-7
3.4.3 Converters 3AC 400V, 210A to 600A, 1Q 3-8
3.4.4 Converters 3AC 400V, 850A to 2000A, 1Q 3-9
3.4.5 Converters 3AC 460V, 30A to 125A, 1Q 3-10
3.4.6 Converters 3AC 460V, 210A to 600A, 1Q 3-11
3.4.7 Converters 3AC 460V, 850A to 1200A, 1Q 3-12
3.4.8 Converters 3AC 575V, 60A to 600A, 1Q 3-13
3.4.9 Converters 3AC 575V, 800A to 2200A, 1Q 3-14
3.4.10 Converters 3AC 690V, 720A to 2000A, 1Q 3-15
3.4.11 Converters 3AC 830V, 900A to 1900A, 1Q 3-16
3.4.12 Converters 3AC 400V, 15A to 125A, 4Q 3-17
3.4.13 Converters 3AC 400V, 210A to 600A, 4Q 3-18
3.4.14 Converters 3AC 400V, 850A to 2000A, 4Q 3-19
3.4.15 Converters 3AC 460V, 30A to 125A, 4Q 3-20
3.4.16 Converters 3AC 460V, 210A to 600A, 4Q 3-21
3.4.17 Converters 3AC 460V, 850A to 1200A, 4Q 3-22
3.4.18 Converters 3AC 575V, 60A to 600A, 4Q 3-23
3.4.19 Converters 3AC 575V, 850A to 2200A, 4Q 3-24
Page
3.4.20 Converters 3AC 690V, 760A to 2000A, 4Q 3-25
3.4.21 Converters 3AC 830V, 950A to 1900A, 4Q 3-26
3.5 Applicable standards 3-28
3.6 Certification 3-29
3.7 Abbreviations 3-29
4 Shipment, unpacking
4.1 Remove the transportation protection for devices with 1500A to 2200A rated DC 4-1
5 Installation
5.1 Dimension diagrams for standard devices 5-3
5.1.1 Converters: 3AC 400V and 460V, 30A, 1Q 5-3
5.1.2 Converters: 3AC 400V and 575V, 60A to 280A, 1Q 5-4
5.1.3 Converters: 3AC 400V and 575V, 400A, 1Q 5-5
5.1.4 Converters: 3AC 400V and 575V, 600A, 1Q 5-6
5.1.5 Converters: 3AC 400V, 575 V and 690V, 720 A to $850 \mathrm{~A}, 1 \mathrm{Q}$ 5-7
5.1.6 Converters: 3AC 400V, $460 \mathrm{~V}, 575 \mathrm{~V}, 690 \mathrm{~V}$ and 830V, 900A to 1200A, 1Q 5-8
5.1.7 Converters: 3AC 400V, 575V, 690V and 830V, 1500A to 2200A, 1Q 5-9
5.1.8 Converters: 3AC 400V and 460V, 15A to 30A, 4Q 5-10
5.1.9 Converters: 3AC 400V and 575V, 60A to 280A, 4Q 5-11
5.1.10 Converters: 3AC 400V and 575V, 400A to 600A, 4Q 5-12
5.1.11 Converters: 3AC 400V, 575 V and 690V, 760A to 850A, 4Q 5-13
5.1.12 Converters: 3AC 400V, 460V, 575V, 690V and 830V, 950A to 1200A, 4Q 5-14
5.1.13 Converters: 3AC 400V, 575V, 690V and 830V, 1500A to 2200A, 4Q 5-15
5.2 Dimension diagrams of the devices with additional cable connections on the top of the device 5-16
5.2.1 Converters: 3AC 460V, 60A to 125A, 1Q 5-16
5.2.2 Converters: 3AC 460V, 210A to 280A, 1Q 5-17
5.2.3 Converters: 3AC 460V, 450A to 600A, 1Q 5-18
5.2.4 Converters: 3AC 460V, 850A, 1Q 5-19
5.2.5 Converters: 3AC 460V, 60A to 125A, 4Q 5-20
5.2.6 Converters: 3AC 460V, 210A to 280A, 4Q 5-21
5.2.7 Converters: 3AC 460V, 450A to 600A, 4Q 5-22
5.2.8 Converters: 3AC 460V, 850A, 4Q 5-23
5.3 Mounting options 5-24
5.3.1 Terminal expansion board CUD2 5-24
5.3.2 Optional supplementary boards 5-25
5.3.2.1 Local bus adapter (LBA) for mounting optional supplementary boards 5-25
5.3.2.2 Mounting of optional supplementary boards 5-25
6 Connections
6.1 Installation instructions for proper EMC installation of drives 6-2
6.1.1 Fundamental principles of EMC 6-2
6.1.1.1 What is EMC 6-2
6.1.1.2 Noise radiation and noise immunity 6-2
6.1.1.3 Limit values 6-2
6.1.1.4 SIMOREG converters in industrial applications 6-3
6.1.1.5 Non-grounded supply systems 6-3
6.1.1.6 EMC planning 6-3
6.1.2 Proper EMC installation of drives (installation instructions) 6-4
6.1.2.1 General 6-4
6.1.2.2 Rules for proper EMC installation 6-4
6.1.2.3 Converter component arrangement 6-13
6.1.2.4 List of the recommended radio interference suppression filters 6-14
6.1.3 Information on line-side harmonics generated by converters in a fully-controlled three-phase bridge circuit configuration 6-15
6.2 Block diagrams with recommended connection 6-17
6.2.1 Converters: 15A to 125A 6-17
6.2.2 Converters: 210A to 280A 6-18
6.2.3 Converters: 400A to 2200A with a 3-phase fan 6-19
6.2.4 Converters: 450A to 850A with a 1-phase fan 6-20
6.3 Parallel connection of converters 6-21
6.3.1 Circuit diagram showing parallel connection of SIMOREG converters 6-21
6.3.2 Parameterization of SIMOREG converters for parallel connection 6-22
6.3.2.1 Standard operating mode 6-22
6.3.2.2 Operating mode "N+1 mode" (redundancy mode) 6-23
6.4 Power connections 6-25
6.4.1 Converters: 30A, 1Q 6-25
6.4.2 Converters: 60A, 1Q 6-26
6.4.3 Converters: 90A to 280A, 1Q 6-27
6.4.4 Converters: 400A to 600A, 1Q 6-28
6.4.5 Converters: 720A, 1Q 6-29
6.4.6 Converters: 800 to 850A, 1Q 6-30
6.4.7 Converters: 900A to 950A, 1Q 6-31
6.4.8 Converters: 1000 to 1200A, 1Q 6-32
6.4.9 Converters: 1500 to 2200A, 1Q 6-33
6.4.10 Converters: 15 to 30A, 4Q 6-35
6.4.11 Converters: 60A, 4Q 6-36
6.4.12 Converters: 90A to 210A, 4Q 6-37
6.4.13 Converters: 280A, 4Q 6-38
Page
6.4.14 Converters: 400A, 4Q 6-39
6.4.15 Converters: 450A to 600A, 4Q 6-40
6.4.16 Converters: 760A, 4Q 6-41
6.4.17 Converters: 850A, 4Q 6-42
6.4.18 Converters: 950A to 1000A, 4Q 6-43
6.4.19 Converters: 1100 to 1200A, 4Q 6-44
6.4.20 Converters: 1500 to 2200A, 4Q 6-45
6.5 Field supply 6-47
6.6 Fuses and commutating reactors 6-50
6.6.1 Commutating reactors 6-50
6.6.2 Fuses 6-50
6.6.2.1 Recommended fuses for field circuit 6-50
6.6.2.2 Fuses for armature circuit 6-50
6.6.2.2.1 Converters 1Q: 400V, 575V, 690V and 830V 6-50
6.6.2.2.2 Converters 1Q: 460V 6-51
6.6.2.2.3 Converters 4Q: 400V, 575V, 690V and 830V 6-52
6.6.2.2.4 Converters 4Q: 460V 6-53
6.6.2.3 F1 and F2 fuses in the power interface 6-53
6.7 Terminal arrangement 6-54
6.8 Terminal assignments 6-57
7 Start-up
7.1 General safety information 7-1
7.2 Operator control panels 7-3
7.2.1 Simple operator control panel (PMU) 7-3
7.2.2 User-friendly operator control panel (OP1S) 7-4
7.3 Parameterization procedure 7-6
7.3.1 Parameter types 7-6
7.3.2 Parameteratization on simple operator control panel 7-6
7.4 Reset to default value and adjust offset 7-8
$7.5 \quad$ Start-up procedure 7-9
7.6 Manual optimization (if necessary) 7-18
7.6.1 Manual setting of armature resistance R_{A} (P110) and armature inductance $\mathrm{L}_{\mathrm{A}}(\mathrm{P} 111)$ 7-18
7.6.2 Manual setting of field resistance $R_{F}(P 112)$ 7-19
7.7 Starting up optional supplementary boards 7-20
7.7.1 Procedure for starting up technology boards (T100, T300, T400) 7-20
7.7.2 Sequence of operations for starting up PROFIBUS boards (CBP2) 7-22
7.7.2.1 Mechanisms for processing parameters via the PROFIBUS 7-24
7.7.2.2 Diagnostic tools 7-25
7.7.3 Sequence of operations for starting up CAN bus boards (CBC) 7-29
7.7.3.1 Description of CBC with CAN Layer 2 7-30
7.7.3.2 Description of CBC with CANopen 7-34
7.7.3.2.1 Introduction to CANopen 7-34
7.7.3.2.2 Functionality of CBC with CANopen 7-35
7.7.3.2.3 Requirements for operating the CBC with CANopen 7-36
7.7.3.3 Diagnostic tools 7-36
7.7.4 Procedure for starting up SIMOLINK boards (SLB) 7-40
7.7.5 Procedure for staring up expansion boards (EB1 and EB2) 7-44
7.7.6 Procedure for starting up the pulse encoder board (SBP) 7-45
7.7.7 Sequence of operations for starting up DeviceNet boards (CBD) 7-46
7.7.7.1 Diagnostic tools 7-52
7.7.8 Sequence of operations for starting up the serial I/O board (SCB1) 7-54
7.7.8.1 Diagnostic tools 7-56
7.7.9 Structure of request/response telegrams 7-57
7.7.10 Transmission of double-word connectors for technology and communication modules 7-60
8 Function diagrams
$9 \quad$ Function descriptions
9.1 General explanations of terms and functionality 9-1
9.2 Computation cycles, time delay 9-6
9.3 Switch-on, shutdown, enabling 9-7
9.3.1 OFF2 (voltage disconnection) - control word 1, bit 1 9-7
9.3.2 OFF3 (Fast stop) - control word 1, bit 2 9-7
9.3.3 Switch-on / shutdown (ON / OFF) terminal 37-control word 1, bit 0 9-8
9.3.4 Operating enable (enable) terminal 38 - control word 1, bit 3 9-11
9.4 Ramp-function generator 9-11
9.4.1 Definitions 9-12
9.4.2 Operating principle of ramp-function generator 9-12
9.4.3 Control signals for ramp-function generator 9-13
9.4.4 Ramp-function generator settings 1, 2 and 3 9-13
9.4.5 Ramp-up integrator 9-14
9.4.6 Ramp-function generator tracking 9-14
9.4.7 Limitation after ramp-function generator 9-15
9.4.8 Velocity signal dv/dt (K0191) 9-15
$9.5 \quad$ Inching 9-15
$9.6 \quad$ Crawling 9-16
$9.7 \quad$ Fixed setpoint 9-16
$9.8 \quad$ Safety shutdown (E-Stop) 9-17
9.9 Activation command for holding or operating brake (low active) 9-18
9.10 Switch on auxiliaries 9-21
Page
9.11 Switch over parameter sets 9-21
9.12 Speed controller 9-22
9.13 Serial interfaces 9-23
9.13.1 Serial interfaces with USS ${ }^{\circledR}$ protocol 9-24
9.13.2 Serial interfaces with peer-to-peer protocol 9-27
9.14 Thermal overload protection of DC motor (12t monitoring of motor) 9-31
9.15 Dynamic overload capability of power section 9-34
9.15.1 Overview of functions 9-34
9.15.2 Configuring for dynamic overload capability 9-35
9.15.3 Characteristics for determining the dynamic overload capability for intermittent overload operation 9-37
9.16 Speed-dependent current limitation 9-68
9.16.1 Setting the speed-dependent current limitation for motors with commutation transition 9-69
9.16.2 Setting of speed-dependent current limitation for motors without commutation transition 9-70
9.17 Automatic restart 9-71
9.18 Field reversal 9-71
9.18.1 Direction of rotation reversal using field reversal 9-72
9.18.2 Braking with field reversal 9-73
9.19 Status description of some bits of status word ZSW1 9-75
10 Faults / Alarms
$10.1 \quad$ Fault messages 10-1
10.1.1 General information about faults 10-1
10.1.2 List of fault messages 10-2
10.1.2.1 Supply faults 10-2
10.1.2.2 Interface error 10-5
10.1.2.3 External faults 10-7
10.1.2.4 Fault messages from motor sensors 10-8
10.1.2.5 Drive faults 10-8
10.1.2.6 External faults 10-9
10.1.2.7 Drive faults 10-9
10.1.2.8 Start-up faults 10-12
10.1.2.9 External faults 10-17
10.1.2.10 Start-up faults 10-17
10.1.2.11 Hardware faults 10-19
10.1.2.12 Internal faults 10-20
10.1.2.13 Communication errors with supplementary boards 10-22
10.1.2.14 Faults messages from supplementary boards 10-23
10.2 Alarms 10-24

11 Parameter list

12 List of connectors and binectors
12.1 Connector list 12-1
12.2 Binector list 12-27
13 Maintenance
13.1 Procedure for updating software (upgrading to a new software version) 13-2
13.2 Replacement of components 13-3
13.2.1 Replacement of fan 13-3
13.2.2 Replacement of PCBs 13-7
13.2.3 Replacement of thyristor modules on converters up to 1200A 13-8
13.2.4 Replacement of fuses and thyristor assemblies on converters of 1500A and above 13-9
14 Servicing
14.1 Technical Support 14-1
14.1.1 Time zone Europe and Africa 14-1
14.1.2 Time zone America 14-1
14.1.3 Time zone Asia / Australia 14-1
14.2 Spare parts 14-2
14.3 Repairs 14-2
14.4 On-site servicing 14-2
15 DriveMonitor
15.1 Scope of delivery 15-1
15.2 Installing the software 15-1
15.3 Connecting the SIMOREG to the PC 15-1
15.4 Setting up an online link to the SIMOREG 15-2
$15.5 \quad$ Further information 15-2
16 Environmental compatibility
17 Applications
18 Appendix
18.1 Additional documentation 18-1
Sheet for customer feedback 18-3

1 Safety information

WARNING

Hazardous voltages and rotating parts (fans) are present in this electrical equipment during operation. Non-observance of the safety instructions can result in death, severe personal injury or substantial property damage.

Only qualified personnel should work on or around the equipment after first becoming thoroughly familiar with all warning and safety notices and maintenance procedures contained herein. The successful and safe operation of this equipment is dependent on proper handling, installation, operation and maintenance.

Definitions:

- QUALIFIED PERSONNEL

For the purpose of this Instruction Manual and product labels, a "Qualified person" is someone who is familiar with the installation, construction and operation of the equipment and the hazards involved. He or she must have the following qualifications:

1. Trained and authorized to energize, de-energize, clear, ground and tag circuits and equipment in accordance with established safety procedures.
2. Trained in the proper care and use of protective equipment in accordance with established safety procedures.
3. Trained in rendering first aid.

- \triangle DANGER

indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

- \triangle WARNing
indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

- © CAUTION

used with the safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.

- CAUTION

used without the safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in property damage.

- NOTICE

NOTICE used without the safety alert symbol indicates a potentially situation which, if not avoided, may result in an undesireable result or state.

NOTE

These operating instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met in connection with installation, operation or maintenance.

Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the local Siemens Sales Office.

The contents of these operating instructions shall not become part or modify any prior or existing agreement, commitment or relationship. The Sales Contract contains the entire obligations of Siemens. The warranty contained in the contract between the parties is the sole warranty of Siemens. Any statements contained herein do not create new warranties or modify the existing warranty.

DANGER

Converters contain hazardous electrical voltages, Death, severe bodily injury or significant material damage can occur if the safety measures are not followed.

1. Only qualified personnel, who are knowledgeable about the converters and the provided information, can install, start up, operate, troubleshoot or repair the converters.
2. The converters must be installed in accordance with all relevant safety regulations (e.g. DIN VDE) as well as all other national or local regulations. Operational safety and reliability must be ensured by correct grounding, cable dimensioning and appropriate short-circuit protection.
3. All panels and doors must be kept closed during normal operation.
4. Before carrying out visual checks and maintenance work, ensure that the AC power supply is disconnected and locked out. Before the AC supply is disconnected, both converters and motors have hazardous voltage levels. Even when the converter contactor is open, hazardous voltages are still present.
5. When making measurements with the power supply switched on, electrical connections must not be touched under any circumstances. Remove all jewelry from wrists and fingers. Ensure that the test equipment is in good conditions and operationally safe.
6. When working on units which are switched on, stand on an insulating surface, i.e. ensure that you are not grounded.
7. Carefully follow the relevant instructions and observe all danger, warning and cautionary instructions.
8. This does not represent a full listing of all the measures necessary for safe operation of the equipment. If you require other information or if certain problems occur which are not handled in enough detail in the information provided in the Instruction Manual, please contact your local Siemens office.

CAUTION

Electrostatically sensitive devices

The converter contains electrostatically sensitive devices. These can easily be destroyed if they are not handled correctly. If, however, it is absolutely essential for you to work on electronic modules, please pay careful attention to the following instructions:

- Electronic modules (PCBs) should not be touched unless work has to be carried out on them.
- Before touching a PCB, the person carrying out the work must himself be electrostatically discharged. The simplest way of doing this is to touch an electrically conductive earthed object, e.g. socket outlet earth contact.
- PCBs must not be allowed to come into contact with electrically insulating materials - plastic foil, insulating table tops or clothing made of synthetic fibers -
- PCBs may only be set down or stored on electrically conducting surfaces.
- When carrying out soldering jobs on PCBs, make sure that the soldering tip has been earthed.
- PCBs and electronic components should generally be packed in electrically conducting containers (such as metallized-plastic boxes or metal cans) before being stored or shipped.
- If the use of non-conducting packing containers cannot be avoided, PCBs must be wrapped in a conducting material before being put in them. Examples of such materials include electrically conducting foam rubber or household aluminium foil.

For easy reference, the protective measures necessary when dealing with sensitive electronic components are illustrated in the sketches below.

$\mathrm{a}=$ Conductive flooring	$\mathrm{d}=$ Anti-static overall
$\mathrm{b}=$ Anti-static table	$e=$ Anti-static chain
$c=$ Anti-static footwear	$f=$ Earthing connections of cabinets

Seated workstation
Standing workstation
Standing/seated workstation

\triangle

WARNING

Hazardous voltages and rotating parts (fans) are present in this electrical equipment during operation.

Non-observance of the safety instructions can result in death, severe personal injury or substantial property damage.

Only qualified personnel should work on or around the equipment after first becoming thoroughly familiar with all warning and safety notices and maintenance procedures contained herein.

The successful and safe operation of this equipment is dependent on proper handling, installation, operation and maintenance.

2 Type spectrum

60A converters

Converter orde	Type designation
6RA7013-6DV62-0	D420 / 15 Mreq - GeG6V62
6RA7018-6DV62-0	D420 / 30 Mreq - GeG6V62
6RA7025-6DV62-0	D420 / 60 Mreq - GeG6V62
6RA7028-6DV62-0	D420 / 90 Mreq - GeG6V62
6RA7031-6DV62-0	D420 / 125 Mreq - GeG6V62
6RA7075-6DV62-0	D420 / 210 Mreq-GeGF6V62
6RA7078-6DV62-0	D420 / 280 Mreq-GeGF6V62
6RA7081-6DV62-0	D420 / 400 Mreq-GeGF6V62
6RA7085-6DV62-0	D420 / 600 Mreq-GeGF6V62
6RA7087-6DV62-0	D420 / 850 Mreq - GeGF6V62
6RA7091-6DV62-0	D420 / 1200 Mreq - GeGF6V62
6RA7093-4DV62-0	D420 / 1600 Mreq - GeGF4V62
6RA7095-4DV62-0	D420 / 2000 Mreq-GeGF4V62
6RA7018-6FV62-0	D480 / 30 Mreq - GeG6V62
6RA7025-6FV62-0	D480 / 60 Mreq - GeG6V62
6RA7028-6FV62-0	D480 / 90 Mreq - GeG6V62
6RA7031-6FV62-0	D480 / 125 Mreq - GeG6V62
6RA7075-6FV62-0	D480 / 210 Mreq-GeGF6V62
6RA7078-6FV62-0	D480 / 280 Mreq-GeGF6V62
6RA7082-6FV62-0	D480 / 450 Mreq-GeGF6V62
6RA7085-6FV62-0	D480 / 600 Mreq - GeGF6V62
6RA7087-6FV62-0	D480 / 850 Mreq-GeGF6V62
6RA7091-6FV62-0	D480 / 1200 Mreq - GeGF6V62
6RA7025-6GV62-0	D600 / 60 Mreq - GeG6V62
6RA7031-6GV62-0	D600 / 125 Mreq - GeG6V62
6RA7075-6GV62-0	D600 / 210 Mreq-GeGF6V62
6RA7081-6GV62-0	D600 / 400 Mreq-GeGF6V62
6RA7085-6GV62-0	D600 / 600 Mreq - GeGF6V62
6RA7087-6GV62-0	D600 / 850 Mreq-GeGF6V62
6RA7090-6GV62-0	D600 / 1100 Mreq - GeGF6V62
6RA7093-4GV62-0	D600 / 1600 Mreq - GeGF4V62
6RA7095-4GV62-0	D600 / 2000 Mreq - GeGF4V62
6RA7096-4GV62-0	D600 / 2200 Mreq - GeGF4V62
6RA7086-6KV62-0	D725 / 760 Mreq-GeGF6V62
6RA7090-6KV62-0	D725 / 1000 Mreq - GeGF6V62
6RA7093-4KV62-0	D725 / 1500 Mreq - GeGF4V62
6RA7095-4KV62-0	D725 / 2000 Mreq - GeGF4V62
6RA7088-6LV62-0	D875 / 950 Mreq - GeGF6V62
6RA7093-4LV62-0	D875 /1500 Mreq - GeGF4V62
6RA7095-4LV62-0	$\frac{\mathrm{D} 875}{\mathrm{~J}} \mathrm{~L}_{\square}^{1900 \text { Mreq - GeGF4V62 }}$
	Rated DC current

2.1 Converter order number code

2.2 Rating plate

∞	M ®																											
S	DC - CONVERTER																											
\|													\|															
Order No. / Type	$\text { 1P 6RA70 . . - - } 0$ 2) 3)																											
\|																												
Serial No.	s Q6..........																											
ARMATURE																												
Input	$3 \mathrm{AC} \ldots \mathrm{V} \quad \ldots \mathrm{A} \quad 50 / 60 \mathrm{~Hz}$																											
$\begin{array}{\|l} \hline \begin{array}{l} \text { Suitable for } \\ \text { than . . . kA } \end{array} \\ \hline \end{array}$	use on a circuit capable of delivering not more ms symmetrical amperes , $\ldots . \mathrm{V}$ maximum.																											
Output (DC-Rating)	DC...V V ...A																											
Output (US-Rating)	DC...V $\quad . . . A$																											
FIELD SUPPLY																												
Input	2AC...V $\quad .$. A $50 / 60 \mathrm{~Hz}$																											
Output	DC...V \ldots...A																											
Prod. State 5) Cooling	$\text { c (UL) US } \begin{gathered} \text { Pow.conv.Ea. } \\ \text { satu } \\ \text { LISTED } \end{gathered} \text { 6) } \quad \underset{\text { EN } 60146}{(\epsilon}$																											
Made in Austria																												

1) Bar code for order number (MLFB)
2) A -Z is affixed after the MLFB for options
3) Code for options (order-specific)
4) Bar code, serial number (orderspecific)
5) Product version
6) Space for other symbol
e.g.

2.3 Packaging label

1) Space for other symbol
e.g.:
2) A-Z is affixed to the MLFB for options, followed by the code for the relevant option (order-specific)

2.4 Ordering information for options using codes

SIMOREG converter order no. with suffix Z and
codes (several codes together) and/or plaintext (if required)

Options	Codes	Order No.
Technology software in the basic converter ("Free function blocks")	S00	6RX1700-0AS00
Module terminal expansion (CUD2)	K00	6RX1700-0AK00
SIMOVIS PC - PMU (RS232) connecting cable, 3m SU1 RS232 - RS485 ilnterface converter, including mounting accessories, main connection: 1CA 115V / 230V		6SX7005-0AB00 6SX7005-0AA00
User-friendly operator control panel (OP1S) AOP1 adapter for mounting OP1A in cubicle door, including 5 m connecting cable PMU-OP1S connecting cable, 3m PMU-OP1S connecting cable, 5 m		6SE7090-0XX84-2FK0 6SX7010-0AA00 6SX7010-0AB03 6SX7010-0AB05
LBA Local bus adapter for the electronics box LBA is always needed to install supplementary boards (see Section 5.3.2)	K11	6SE7090-0XX84-4HA0
ADB Adapter board ADB is always needed to install CBC, CBP, EB1, EB2, SBP and SLB boards	K01, K02 5)	6SE7090-0XX84-0KA0
SBP Pulse encoder evaluation board 1) 2) 3) (miniature-format board; ADB required)	$\begin{aligned} & \text { C14, C15 } \\ & \text { C16, C17 } \end{aligned}$	6SX7010-0FA00
EB1 Terminal expansion board 3) (miniature-format board; ADB required)	$\begin{aligned} & \text { G64, G65 } \\ & \text { G66, G67 } \end{aligned}$	6SE7090-0XX84-0KB0
EB2 Terminal expansion board 3) (miniature-format board; ADB required)	$\begin{aligned} & \text { G74, G75 } \\ & \text { G76, G77 } \end{aligned}$	6SE7090-0XX84-0KC0
SLB SIMOLINK board 1) 3) (miniature-format board; ADB required)	$\begin{aligned} & \text { G44, G45 } \\ & \text { G46, G47 } \end{aligned}$	6SX7010-0FJ00
CBP2 Communications board with interface for SINEC- L2- DP, (PROFIBUS) 1) 3) (miniature-format board; ADB required)	$\begin{aligned} & \text { G94, G95 } \\ & \text { G96, G97 } \end{aligned}$	6SX7010-0FF05
CBC Communications board with interface for CAN protocol 1) 3) (miniature-format board; ADB required)	$\begin{aligned} & \text { G24, G25 } \\ & \text { G26, G27 } \end{aligned}$	6SX7010-0FG00
CBD Communications board with interface for DeviceNet protocol 1) 3) (miniature-format board; ADB required)	$\begin{aligned} & \text { G54, G55 } \\ & \text { G56, G57 } \end{aligned}$	6SX7010-0FK00
SCB1 Serial Communication Board 1 (Master for SCI1 and SCl2 with FO link) ${ }^{3)}$ 4)		6SE7090-0XX84-0BC0
SCI1 Serial Communication Interface 1 (terminal expansion with FO link to SCB1) for attachment to DIN EN 50022 rail 4)		6SE7090-0XX84-3EA0

Options	Codes	Order No.
SCI2Serial Communication Interface 2 (terminal expansion with FO link to SCB1) for attachment to DIN EN 50022 rail 4) T100 module incl. hardware operating instructions without software module) 3) Hardware operating instructions for T100 MS100 "Universal Drive" software module for T100 (EPROM) without manual Manual for MS100 "Universal Drive" software module German English French Spanish Italian T300 technology board with 2 connecting leads, SC58 and SC60, terminal block SE300 and hardware operating instructions 3) T400 technology board (incl. short description) 3) T400 hardware and configuring manual Operating instructions for SIMOREG DC Master Operating instructions in German Operating instructions in Italian Operating instructions in English Operating instructions in French Operating instructions in Spanish Operating Instructions and SIMOVIS in all the above languages available on CD-ROM No description 6SE7090-0XX84	6SE7090-0XX87-0BB0	

1) This boards can be ordered under two different numbers, i.e.

- under the order number of the board without accessories (such as connectors and Short Guide)
- as a retrofit kit: Board with connectors and Short Guide

Board	Order number of board (w/o accessories)	Order number of retrofit kit
ADB	6SE7090-0XX84-0KA0	6SE7010-0KA00
SBP	6SE7090-0XX84-0FA0	6SE7010-0FA00
EB1	6SE7090-0XX84-0KB0	6SE7010-0KB00
EB2	6SE7090-0XX84-0KC0	6SE7010-0KC00
SLB	6SE7090-0XX84-0FJ0	6SE7010-0FJ00
CBP2	6SE7090-0XX84-0FF5	6SE7010-0FF05
CBC	6SE7090-0XX84-0FG0	6SE7010-0FG00
CBD	6SE7090-0XX84-0FK0	6SE7010-0FK00

The retrofit kit must be ordered to install boards in the SMOREG converter so that the correct connectors for system cabling and the Short Guide are also available.

The LBA local bus adapter and ADB adapter board must be ordered as additional components for installing supplementary boards in the SIMOREG converter. These adapters are available under separate order numbers.
2) A pulse encoder evaluation circuit is a standard component of the basic SIMOREG converter. The SBP need therefore be ordered only in configurations requiring evaluation of a second pulse encoder.
3) An LBA local bus adapter is required to install this board in a SIMOREG converter. The adapter is available under a separate order number.
4) Supplied packed separately, including 10 m fiber-optic cable.
5) The last figure in the order code identifies the module location or slot of the electronic box (see Section 5.3.2):

1. . . Board location 2

2 . . . Board location 3
4 . . . Slot D
5 . . . Slot E
6 . . . Slot F
7 . . . Slot G

3 Description

3.1 Applications

Series 6RA70 SIMOREG DC MASTER converters are fully digital, compact units for three-phase supply which supply the armature and field of variable-speed DC drives with rated armature currents of between 15A and 2200A. The compact converters can be connected in parallel to supply currents of up to 12000A. The field circuit can be supplied with currents of up to 85 A (current levels depend on the armature rated current).

3.2 Design

Series 6RA70 SIMOREG DC MASTER converters are characterized by their compact, spacesaving construction. Their compact design makes them particularly easy to service and maintain since individual components are readily accessible. The electronics box contains the basic electronic circuitry as well as any supplementary boards.

All SIMOREG DC MASTER units are equipped with a PMU simple operator panel mounted in the converter door. The panel consists of a five-digit, seven-segment display, three LEDs as status indicators and three parameterization keys. The PMU also features connector X300 with a USS interface in accordance with the RS232 or RS485 standard.
The panel provides all the facilities for making adjustments or settings and displaying measured values required to start up the converter.

The OP1S optional converter operator panel can be mounted either in the converter door or externally, e.g. in the cubicle door. For this purpose, it can be connected up by means of a 5 m long cable. Cables of up to 200 m in length can be used if a separate 5 V supply is available. The OP1S is connected to the SIMOREG via connector X300. The OP1S can be installed as an economic alternative to control cubicle measuring instruments which display physical measured quantities. The OP1S features an LCD with 4×16 characters for displaying parameter names in plaintext. German, English, French, Spanish and Italian can be selected as the display languages. The OP1S can store parameter sets for easy downloading to other devices.
The converter can also be parameterized on a standard PC with appropriate software connected to the serial interface on the basic unit. This PC interface is used during start-up, for maintenance during shutdown and for diagnosis in operation. Furthermore, converter software upgrades can be loaded via this interface for storage in a Flash memory.
On single-quadrant converters, the armature is supplied via a fully controlled three-phase bridge B6C and, on four-quadrant devices, via two fully controlled three-phase bridges in circulating-current-free, inverse-parallel connection (B6)A(B6)C.
The field is supplied via a single-phase, branch-pair half-controlled 2-pulse bridge connection B2HZ.
The frequencies of the armature and field supply voltages may be different (in a range from 45 to 65 Hz). Operation in the extended frequency range between 23 Hz and 110 Hz is available on request. The armature circuit supply phase sequence is insignificant.
For converters with 15A to 850A (1200A at 400V supply voltage) rated DC current, the power section for armature and field is constructed of isolated thyristor modules. The heat sink is thus electrically isolated. On devices with a higher rated DC current, the power section for the armature circuit is constructed of disk thyristors and heat sinks (thyristor assemblies) at voltage potential. The housing and terminal covers on power connections provide protection against accidental contact for operators working in the vicinity. All connecting terminals are accessible from the front.

The power section cooling system is monitored by means of temperature sensors.

3.2.1 Special features of devices with 460V rated connection voltage

- This device series is available with rated direct currents of 30A to 1200A.
- Devices with rated direct currents of 450 A to 1200 A are equipped with a 1-phase fan.
- On devices with rated direct currents of 60A to 850A, the power terminals are located on the underside and on the top of the device.

3.2.2 Installation of SIMOREG devices in cabinets in accordance with UL 508 C standards

- When the drive is provided in a panel (enclosure), the panel is ventilated and designated "Type 1".
- The minimum size panel (enclosure) to be used with the drive is 600 mm length, 600 mm width, 2200 mm hight.

3.3 Mode of operation

All open-loop and closed-loop drive control and communication functions are performed by two powerful microprocessors. Drive control functions are implemented in the software as program modules which can be "wired up" by parameters.
The rated DC currents (continuous DC currents), load class I, specified on the rated plate can be exceeded by 180%, the permissible overload during being dependent on individual converters. The microprocessor calculates the current $\mathrm{I}^{2} \mathrm{t}$ value of the power section cyclically to ensure that the thyristors are not damaged in overload operation.

A selection table for overload operation can be found in Section 9 "Description of functions".
Converters self-adapt to the frequency of the available supply voltage in the range from 45 to 65 Hz (armature and field are independent).
Operation in the extended frequency range between 23 Hz and 110 Hz is available on request.

3.4 Technical data

3.4.1 Load types

To adapt the SIMOREG DC Master to the load profile of the working machine as efficiently as possible, you can dimension it using the load cycle.

The setting on the SIMOREG DC Master is made in parameter P067.

Load class	Load for converter	Load cycle
$\begin{aligned} & \text { DC I } \\ & \text { (P067=1) } \end{aligned}$	I_{DC} I continuous ($\mathrm{l}_{\text {dN }}$)	
$\begin{aligned} & \text { DC II } \\ & \text { (P067=2) } \end{aligned}$	$\mathrm{I}_{\mathrm{DC}}{ }^{\text {If }}$ for 15 min and $1.5 \times \mathrm{l}_{\mathrm{DC}}{ }^{\text {If }}$ for 60 s	
$\begin{aligned} & \text { DC III } \\ & \text { (P067=3) } \end{aligned}$	I_{DC} III for 15 min and $1.5 \times \mathrm{l}_{\mathrm{DC}}$ III for 120 s	
$\begin{aligned} & \text { DC IV } \\ & (\text { P067=4) } \end{aligned}$	I DCIV for 15 min and $2 \times \mathrm{l}$ DCIV for 10 s	
US rating (P067=5)	IUS for 15 min and 1.5 x IUS for 60 s Note: In this setting, an ambient or coolant temperature of $45^{\circ} \mathrm{C}$ is permissible for all device types.	

NOTICE

If you set a value of > 1 in P067, you must ensure that the "Dynamic overload capability of power module" is enabled, i.e. a value of >0 must be set in parameter P075.
The SIMOREG DC Master does not monitor for compliance with the criteria of the load class set in parameter P067. If permitted by the power module, the unit can operate for overload periods in excess of those defined by the load class. The actual permissible overload period for the installed power module is always longer than the overload period defined for the load class. The SIMOREG DC Master does monitor the actual permissible overload period for the power module. See Section 9.15.

3.4.1.1 Load cycles for 1Q applications

Recommended SIMOREG DC Master	Load cycles									
	Tu	DC I continuous	DC II		DC III		DC IV		US rating$\mathrm{Tu}=45^{\circ} \mathrm{C}$	
			$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	$\begin{aligned} & 60 \mathrm{sec} \\ & 150 \% \end{aligned}$	$\begin{aligned} & 15 \min \\ & 100 \% \end{aligned}$	$\begin{gathered} 120 \mathrm{sec} \\ 150 \% \end{gathered}$	$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	$\begin{aligned} & 10 \mathrm{sec} \\ & 200 \% \end{aligned}$	$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	$\begin{aligned} & \text { 60sec } \\ & 150 \% \end{aligned}$
	${ }^{\circ} \mathrm{C}$	A	A	A	A	A	A	A	A	A
400V, 1Q										
6RA7018-6DS22	45	30	24,9	37,4	24,2	36,3	22,4	44,8	24,9	37,4
6RA7025-6DS22	45	60	51,4	77,1	50,2	75,3	46,4	92,8	51,4	77,1
6RA7028-6DS22	45	90	74,4	111,6	72,8	109,2	65,4	130,8	74,4	111,6
6RA7031-6DS22	45	125	106,1	159,2	103,4	155,1	96,3	192,6	106,1	159,2
6RA7075-6DS22	40	210	164,9	247,4	161,4	242,1	136,5	273,0	157,5	236,3
6RA7078-6DS22	40	280	226,8	340,2	219,3	329,0	201,0	402,0	215,8	323,7
6RA7081-6DS22	40	400	290,6	435,9	282,6	423,9	244,4	488,8	278,4	417,6
6RA7085-6DS22	40	600	462,6	693,9	446,3	669,5	413,2	826,4	443,4	665,1
6RA7087-6DS22	40	850	652,3	978,5	622,4	933,6	610,1	1220,2	620,2	930,3
6RA7091-6DS22	40	1200	879,9	1319,9	850,8	1276,2	786,6	1573,2	842,6	1263,9
6RA7093-4DS22	40	1600	1255,5	1883,3	1213,1	1819,7	1139,9	2279,8	1190,1	1785,2
6RA7095-4DS22	40	2000	1510,2	2265,3	1456,3	2184,5	1388,8	2777,6	1438,7	2158,1
460V, 1Q										
6RA7018-6FS22	45	30	24,9	37,4	24,2	36,3	22,4	44,8	15,0	22,5
6RA7025-6FS22	45	60	51,4	77,1	50,2	75,3	46,4	92,8	30,0	45,0
6RA7028-6FS22	45	90	74,4	111,6	72,8	109,2	65,4	130,8	60,0	90,0
6RA7031-6FS22	45	125	106,1	159,2	103,4	155,1	96,3	192,6	100,0	150,0
6RA7075-6FS22	40	210	164,9	247,4	161,4	242,1	136,5	273,0	140,0	210,0
6RA7078-6FS22	40	280	226,8	340,2	219,3	329,0	201,0	402,0	210,0	315,0
6RA7082-6FS22	40	450	320,6	480,9	311,2	466,8	274,3	548,6	255,0	382,5
6RA7085-6FS22	40	600	462,6	693,9	446,3	669,5	413,2	826,4	430,0	645,0
6RA7087-6FS22	40	850	652,3	978,5	622,4	933,6	610,1	1220,2	510,0	765,0
6RA7091-6FS22	40	1200	879,9	1319,9	850,8	1276,2	786,6	1573,2	850,0	1275,0
575V, 1Q										
6RA7025-6GS22	45	60	51,4	77,1	50,2	75,3	46,4	92,8	51,4	77,1
6RA7031-6GS22	45	125	106,1	159,2	103,4	155,1	96,3	192,6	106,1	159,2
6RA7075-6GS22	40	210	164,9	247,4	161,4	242,1	136,5	273,0	157,5	236,3
6RA7081-6GS22	40	400	290,6	435,9	282,6	423,9	244,4	488,8	278,4	417,6
6RA7085-6GS22	40	600	462,6	693,9	446,3	669,5	413,2	826,4	443,4	665,1
6RA7087-6GS22	40	800	607,7	911,6	581,5	872,3	559,3	1118,6	578,0	867,0
6RA7090-6GS22	40	1000	735,8	1103,7	713,4	1070,1	648,0	1296,0	700,4	1050,6
6RA7093-4GS22	40	1600	1255,5	1883,3	1213,1	1819,7	1139,9	2279,8	1190,1	1785,2
6RA7095-4GS22	40	2000	1663,0	2494,5	1591,2	2386,8	1568,4	3136,8	1569,5	2354,3
6RA7096-4GS22	40	2200	1779,6	2669,4	1699,9	2549,9	1697,2	3394,4	1678,0	2517,0

RecommendedSIMOREG DC Master	Load cycles									
	Tu		DC II		DC III		DC IV		US rating $\mathrm{Tu}=45^{\circ} \mathrm{C}$	
		continuous	$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	$\begin{aligned} & \text { 60sec } \\ & 150 \% \end{aligned}$	$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	$\begin{gathered} 120 \mathrm{sec} \\ 150 \% \end{gathered}$	$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	10sec 200\%	$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	$\begin{aligned} & \text { 60sec } \\ & 150 \% \end{aligned}$
	${ }^{\circ} \mathrm{C}$	A	A	A	A	A	A	A	A	A
690V, 1Q										
6RA7086-6KS22	40	720	553,1	829,7	527,9	791,9	515,8	1031,6	525,9	788,9
6RA7088-6KS22	40	950	700,1	1050,2	677,1	1015,7	624,4	1248,8	668,1	1002,2
6RA7093-4KS22	40	1500	1156,9	1735,4	1118,2	1677,3	1047,0	2094,0	1101,9	1652,9
6RA7095-4KS22	40	2000	1589,3	2384,0	1522,2	2283,3	1505,5	3011,0	1503,9	2255,9
830V, 1Q										
6RA7088-6LS22	40	900	663,8	995,7	642,0	963,0	592,1	1184,2	633,5	950,3
6RA7093-4LS22	40	1500	1156,9	1735,4	1118,2	1677,3	1047,0	2094,0	1101,9	1652,9
6RA7095-4LS22	40	1900	1485,4	2228,1	1421,6	2132,4	1396,9	2793,8	1414,2	2121,3

3.4.1.2 Load cycles for $4 Q$ applications

RecommendedSIMOREG DC Mas	Load cycles									
	Tu		DC II		DC III		DC IV		US rating $\mathrm{Tu}=45^{\circ} \mathrm{C}$	
		continuous	$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	$\begin{aligned} & \text { 60sec } \\ & 150 \% \end{aligned}$	$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	$\begin{gathered} 120 \mathrm{sec} \\ 150 \% \end{gathered}$	$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	$\begin{aligned} & 10 \mathrm{sec} \\ & 200 \% \end{aligned}$	$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	$\begin{aligned} & \text { 60sec } \\ & 150 \% \end{aligned}$
	${ }^{\circ} \mathrm{C}$	A	A	A	A	A	A	A	A	A
400V, 4Q										
6RA7013-6DV62	45	15	13,9	20,9	13,5	20,3	12,6	25,2	13,9	20,9
6RA7018-6DV62	45	30	24,9	37,4	24,2	36,3	22,4	44,8	24,9	37,4
6RA7025-6DV62	45	60	53,1	79,7	51,8	77,7	47,2	94,4	53,1	79,7
6RA7028-6DV62	45	90	78,2	117,3	76,0	114,0	72,2	144,4	78,2	117,3
6RA7031-6DV62	45	125	106,1	159,2	103,6	155,4	95,4	190,8	106,1	159,2
6RA7075-6DV62	40	210	164,9	247,4	161,4	242,1	136,5	273,0	157,5	236,3
6RA7078-6DV62	40	280	226,8	340,2	219,3	329,0	201,0	402,0	215,8	323,7
6RA7081-6DV62	40	400	300,1	450,2	292,4	438,6	247,4	494,8	285,5	428,3
6RA7085-6DV62	40	600	470,8	706,2	453,9	680,9	410,4	820,8	450,1	675,2
6RA7087-6DV62	40	850	658,3	987,5	634,2	951,3	579,6	1159,2	626,4	939,6
6RA7091-6DV62	40	1200	884,1	1326,2	857,5	1286,3	768,8	1537,6	842,3	1263,5
6RA7093-4DV62	40	1600	1255,5	1883,3	1213,1	1819,7	1139,9	2279,8	1190,1	1785,2
6RA7095-4DV62	40	2000	1477,7	2216,6	1435,3	2153,0	1326,7	2653,4	1404,6	2106,9

Recommended SIMOREG DC Master	Load cycles									
	Tu	DCI continuous	DC II		DC III		DC IV		US rating $\mathrm{Tu}=45^{\circ} \mathrm{C}$	
			$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	$\begin{aligned} & \text { 60sec } \\ & 150 \% \end{aligned}$	$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	$\begin{gathered} 120 \mathrm{sec} \\ 150 \% \end{gathered}$	$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	$\begin{aligned} & 10 \mathrm{sec} \\ & 200 \% \end{aligned}$	$\begin{aligned} & 15 \mathrm{~min} \\ & 100 \% \end{aligned}$	$\begin{aligned} & \text { 60sec } \\ & 150 \% \end{aligned}$
	${ }^{\circ} \mathrm{C}$	A	A	A	A	A	A	A	A	A
460V, 4Q										
6RA7018-6FV62	45	30	24,9	37,4	24,2	36,3	22,4	44,8	15,0	22,5
6RA7025-6FV62	45	60	53,1	79,7	51,8	77,7	47,2	94,4	30,0	45,0
6RA7028-6FV62	45	90	78,2	117,3	76,0	114,0	72,2	144,4	60,0	90,0
6RA7031-6FV62	45	125	106,1	159,2	103,6	155,4	95,4	190,8	100,0	150,0
6RA7075-6FV62	40	210	164,9	247,4	161,4	242,1	136,5	273,0	140,0	210,0
6RA7078-6FV62	40	280	226,8	340,2	219,3	329,0	201,0	402,0	210,0	315,0
6RA7082-6FV62	40	450	320,6	480,9	311,2	466,8	274,3	548,6	255,0	382,5
6RA7085-6FV62	40	600	470,8	706,2	453,9	680,9	410,4	820,8	430,0	645,0
6RA7087-6FV62	40	850	658,3	987,5	634,2	951,3	579,6	1159,2	510,0	765,0
6RA7091-6FV62	40	1200	884,1	1326,2	857,5	1286,3	768,8	1537,6	850,0	1275,0
575V, 4Q										
6RA7025-6GV62	45	60	53,1	79,7	51,8	77,7	47,2	94,4	53,1	79,7
6RA7031-6GV62	45	125	106,1	159,2	103,6	155,4	95,4	190,8	106,1	159,2
6RA7075-6GV62	40	210	164,9	247,4	161,4	242,1	136,5	273,0	157,5	236,3
6RA7081-6GV62	40	400	300,1	450,2	292,4	438,6	247,4	494,8	285,5	428,3
6RA7085-6GV62	40	600	470,8	706,2	453,9	680,9	410,4	820,8	450,1	675,2
6RA7087-6GV62	40	850	658,3	987,5	634,2	951,3	579,6	1159,2	626,4	939,6
6RA7090-6GV62	40	1100	804,7	1207,1	782,6	1173,9	689,6	1379,2	766,8	1150,2
6RA7093-4GV62	40	1600	1255,5	1883,3	1213,1	1819,7	1139,9	2279,8	1190, 1	1785,2
6RA7095-4GV62	40	2000	1663,0	2494,5	1591,2	2386,8	1568,4	3136,8	1569,5	2354,3
6RA7096-4GV62	40	2200	1779,6	2669,4	1699,9	2549,9	1697,2	3394,4	1678,0	2517,0
690V, 4Q										
6RA7086-6KV62	40	760	598,7	898,1	575,4	863,1	532,9	1065,8	569,3	854,0
6RA7090-6KV62	40	1000	737,3	1106,0	715,2	1072,8	639,5	1279,0	702,3	1053,5
6RA7093-4KV62	40	1500	1171,6	1757,4	1140,1	1710,2	1036,6	2073,2	1116,2	1674,3
6RA7095-4KV62	40	2000	1477,7	2216,6	1435,3	2153,0	1326,7	2653,4	1404,6	2106,9
830V, 4Q										
6RA7088-6LV62	40	950	700,8	1051,2	679,8	1019,7	607,8	1215,6	667,6	1001,4
6RA7093-4LV62	40	1500	1171,6	1757,4	1140,1	1710,2	1036,6	2073,2	1116,2	1674,3
6RA7095-4LV62	40	1900	1485,4	2228,1	1421,6	2132,4	1396,9	2793,8	1414,2	2121,3

3.4.2 Converters 3AC 400V, 30A to 125A, 1Q

Explanation at end of list of tables

3.4.3 Converters 3AC 400V, 210A to 600A, 1Q

Explanation at end of list of tables

3.4.4 Converters 3AC 400V, 850A to 2000A, 1Q

Order No.	6RA70 . - 6DS22			6RA70 . - 4DS22	
	87			93	95
Rated supply voltage armature 1) V	3AC 400 (+15\% / - 20\%)				
Rated input current armature ${ }^{2)} \mathrm{A}$	705			1326	1658
Rated supply voltage electronics power supply	2AC $380(-25 \%)$ to $460(+15 \%) ; I_{n}=1 \mathrm{~A}$ or 1AC 190 (-25%) to $230(+15 \%) ; I_{n}=2 A$ (-35\% for 1 min)				
Rated supply voltage fan	3 AC 400 ($\pm 15 \%) 50 \mathrm{~Hz}$ $3 \mathrm{AC} 460(\pm 10 \%) 60 \mathrm{~Hz}$	$\begin{gathered} 3 A C 400 \\ 3 A C 460 \\ 50 \mathrm{~Hz} \end{gathered}$	\%) 50 Hz \%) 60 Hz $60 \mathrm{~Hz}$	$3 A C$ $3 A C$ $50 \mathrm{~Hz}$	$\begin{aligned} & 50 \mathrm{~Hz} \\ & 60 \mathrm{~Hz} \\ & 60 \mathrm{~Hz} \end{aligned}$
Fan rated current A	0,3 8)	1,0 9)	1,25 9)	1,0 9)	1,25 9)
Air flow rate $\quad \mathrm{m}^{3} / \mathrm{h}$	570	1300	1300	2400	2400
Fan noise level dBA	73	83	87	83	87
Rated supply voltage field 1) V	2 AC 400 (+15\% / - 20\%) ${ }^{7}$)				
Rated frequency Hz	45 to 65^{10}				
Rated DC voltage 1) V	485				
Rated DC current A	850			1600	2000
Overload capability ${ }^{6)}$	max. 180\% of rated DC current				
Rated output kW	412			776	970
Power loss at rated DC current (approx.)	2420			5710	6810
Rated DC voltage field ${ }^{1)} \mathrm{V}$	max. 325				
Rated DC current field A	30			40	
Operational ambient temperature ${ }^{\circ} \mathrm{C}$	0 to 40 at $I_{\text {rated }}{ }^{3)}$ forced-cooled				
Storage and transport temperature	-25 to +70				
Installation altitude above sea level	$\leq 1000 \mathrm{~m}$ at rated DC current ${ }^{4)}$				
Control stability	$\Delta n=0.006 \%$ of the rated motor speed, valid for pulse encoder operation and digital setpoint $\Delta n=0.1 \%$ of the rated motor speed, valid for analog tacho or analog setpoint 5)				
Environmental class DIN IEC 721-3-3	3K3				
$\begin{array}{ll}\text { Degree of protect. } & \text { DIN } 40050 \\ & \text { IEC } 144\end{array}$	IP00				
Dimensions (HxWxD) mm	$700 \times 268 \times 362$	780	362	$880 \times 450 \times 500$	
Dimension diagram see Section	5.1.5	5.1 .6		5.1 .7	
Weights (approx.) kg	40	80		125	

Explanation at end of list of tables

3.4.5 Converters 3AC 460V, 30A to 125A, 1Q

Explanation at end of list of tables

3.4.6 Converters 3AC 460V, 210A to 600A, 1Q

Explanation at end of list of tables

3.4.7 Converters 3AC 460V, 850A to 1200A, 1Q

Explanation at end of list of tables

3.4.8 Converters 3AC 575V, 60A to 600A, 1Q

Order No.	6RA70 . . -6GS22				
	$\underline{25}$	31	75	81	85
Rated supply voltage armature 1) V	3AC 575 (+10\% / - 20\%)				
Rated input current armature ${ }^{2)} \mathrm{A}$	50	104	175	332	498
Rated supply voltage electronics power supply	2AC $380(-25 \%)$ to $460(+15 \%) ; I_{n}=1 \mathrm{~A}$ or 1AC 190 (-25%) to $230(+15 \%) ; I_{n}=2 A$ (-35\% for 1 min)				
Rated supply voltage fan Fan rated current A Air flow rate $\quad \mathrm{m}^{3} / \mathrm{h}$ Fan noise level dBA			DC24V internal 100 40	$\begin{aligned} & 3 A C \\ & 3 A C \end{aligned}$	$50 \mathrm{~Hz}$ $60 \mathrm{~Hz}$
Rated supply voltage field 1) V	2AC 460 (+15\% / - 20\%)				
Rated frequency Hz	45 to $65^{10)}$				
Rated DC voltage ${ }^{1)} \mathrm{V}$	690				
Rated DC current A	60	125	210	400	600
Overload capability 6)	max. 180\% of rated DC current				
Rated output kW	41	86	145	276	414
Power loss at rated DC current W (approx.)	265	454	730	1550	1955
Rated DC voltage field ${ }^{1)}$ V	max. 375				
Rated DC current field A	10		15	25	
Operational ambient temperature ${ }^{\circ} \mathrm{C}$	0 to 45 at $I_{\text {rated }}$ 3) self-cooled		0 to 40 at $I_{\text {rated }}{ }^{3)}$ forced-cooled		
Storage and transport temperature	-25 to +70				
Installation altitude above sea level	$\leq 1000 \mathrm{~m}$ at rated DC current ${ }^{4)}$				
Control stability	$\Delta n=0.006 \%$ of the rated motor speed, valid for pulse encoder operation and digital setpoint $\Delta \mathrm{n}=0.1 \%$ of the rated motor speed, valid for analog tacho or analog setpoint 5)				
Environmental class DIN IEC 721-3-3	3K3				
Degree of protect. DIN 40050 IEC 144	IP00				
Dimensions (HxWxD) mm	$385 \times 265 \times 283$			$625 \times 268 \times 318$	
Dimension diagram see Section	5.1.2			5.1.3	5.1 .4
Weights (approx.) kg	14	16		30	

Explanation at end of list of tables

3.4.9 Converters 3AC 575V, 800A to 2200A, 1Q

Order No.	6RA70 . - 6GS22			6RA70 . - 4GS22		
	87			93	95	$\underline{96}$
Rated supply voltage armature ${ }^{1)} \mathrm{V}$	3AC 575 (+10\% / - 20\%)					
Rated input current armature ${ }^{2)} \mathrm{A}$	663			1326	1658	1824
Rated supply voltage electronics power supply	$\begin{gathered} 2 \text { AC } 380(-25 \%) \text { to } 460(+15 \%) ; I_{n}=1 \mathrm{~A} \text { or } \\ \text { 1AC } 190(-25 \%) \text { to } 230(+15 \%) ; I_{n}=2 \mathrm{~A} \\ (-35 \% \text { for } 1 \mathrm{~min}) \end{gathered}$					
Rated supply voltage fan	3 AC 400 ($\pm 15 \%$) 50 Hz 3AC 460 ($\pm 10 \%) 60 \mathrm{~Hz}$	3AC 400 3AC 460 50 Hz	\%) 50 Hz \%) 60 Hz $60 \mathrm{~Hz}$		$\begin{aligned} & 0(\pm 10 \\ & 0(\pm 10 \end{aligned}$	
Fan rated current A	0,3 8)	1,0 9)	1,25 ${ }^{9}$			
Air flow rate $\quad \mathrm{m}^{3} / \mathrm{h}$	570	1300	1300			
Fan noise level dBA	73	83	87			
Rated supply voltage field 1) V	2AC 460 (+15\% / - 20\%)					
Rated frequency Hz	45 to $65 \quad 10)$					
Rated DC voltage 1) V	690					
Rated DC current A	800			1600	2000	2200
Overload capability ${ }^{6)}$	max. 180\% of rated DC current					
Rated output kW	552			1104	1380	1518
Power loss at rated DC current (approx.)	2638			5942	7349	7400
Rated DC voltage field ${ }^{1)} \mathrm{V}$	max. 375					
Rated DC current field A	30			40		85
Operational ambient temperature ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & 0 \text { to } 40 \text { at } I_{\text {rated }}{ }^{3)} \\ & \text { forced-cooled } \end{aligned}$					
Storage and transport temperature	-25 to +70					
Installation altitude above sea level	$\leq 1000 \mathrm{~m}$ at rated DC current ${ }^{4)}$					
Control stability	$\Delta n=0.006 \%$ of the rated motor speed, valid for pulse encoder operation and digital setpoint $\Delta n=0.1 \%$ of the rated motor speed, valid for analog tacho or analog setpoint 5)					
Environmental class DIN IEC 721-3-3	3K3					
Degree of protect. DIN 40050 IEC 144	IP00					
Dimensions (HxWxD) mm	$700 \times 268 \times 362$	$780 \times 410 \times 362$		$880 \times 450 \times 500$		
Dimension diagram see Section	5.1.5	5.1.6		5.1.7		
Weights (approx.) kg	40	80		125		

Explanation at end of list of tables

3.4.10 Converters 3AC 690V, 720A to 2000A, 1Q

Order No.	6RA70 . - 6KS22			6RA70 . - 4KS22	
	86			93	95
Rated supply voltage armature ${ }^{1)} \mathrm{V}$	3AC 690 (+10\% / - 20\%)				
Rated input current armature 2) A	597			1244	1658
Rated supply voltage electronics power supply	2AC $380(-25 \%)$ to $460(+15 \%) ; I_{n}=1 \mathrm{~A}$ or 1AC $190(-25 \%)$ to $230(+15 \%) ; I_{n}=2 A$ (-35\% for 1 min)				
Rated supply voltage fan V	$\begin{aligned} & 3 \mathrm{AC} 400(\pm 15 \%) 50 \mathrm{~Hz} \\ & 3 \mathrm{AC} 460(\pm 10 \%) 60 \mathrm{~Hz} \end{aligned}$	3AC 400 3AC 460 50 Hz	\%) 50 Hz \%) 60 Hz $60 \mathrm{~Hz}$	$\begin{array}{r} 3 \mathrm{AC} \\ 3 \mathrm{AC} \\ 50 \mathrm{~Hz} \end{array}$	50 Hz 60 Hz 60 Hz
Fan rated current A	0,3 8)	1,0 9)	1,25 9)	1,0 9)	1,25 9)
Air flow rate m³/h	570	1300	1300	2400	2400
Fan noise level dBA	73	83	87	83	87
Rated supply voltage field 1) V	2AC 460 (+15\% / - 20\%)				
Rated frequency Hz	45 to 65^{10}				
Rated DC voltage 1) V	830				
Rated DC current A	720			1500	2000
Overload capability ${ }^{6)}$	max. 180\% of rated DC current				
Rated output kW	598			1245	1660
Power loss at rated DC current W (approx.)	2720			6706	8190
Rated DC voltage field 1) V	max. 375				
Rated DC current field A	30			40	
Operational ambient temperature ${ }^{\circ} \mathrm{C}$	0 to 40 at I rated ${ }^{3)}$ forced-cooled				
Storage and transport temperature	-25 to +70				
Installation altitude above sea level	$\leq 1000 \mathrm{~m}$ at rated DC current ${ }^{\text {4) }}$				
Control stability	$\Delta n=0.006 \%$ of the rated motor speed, valid for pulse encoder operation and digital setpoint $\Delta n=0.1 \%$ of the rated motor speed, valid for analog tacho or analog setpoint 5)				
Environmental class DIN IEC 721-3-3	3K3				
$\begin{array}{ll}\text { Degree of protect. } & \text { DIN } 40050 \\ & \text { IEC } 144\end{array}$	IP00				
Dimensions (HxWxD) mm	$700 \times 268 \times 362$	780x410x362		$880 \times 450 \times 500$	
Dimension diagram see Section	5.1.5	5.1.6		5.1.7	
Weights (approx.) kg	40	80		125	

Explanation at end of list of tables

3.4.11 Converters 3AC 830V, 900A to 1900A, 1Q

Order No.	6RA70 . . - 6LS22 88		6RA70 . - 4LS22	
			93	95
Rated supply voltage armature ${ }^{1)} \mathrm{V}$	3AC 830 (+10\% / - 20\%)			
Rated input current armature ${ }^{2)} \mathrm{A}$	746		1244	1575
Rated supply voltage electronics power supply	$\begin{gathered} 2 A C 380(-25 \%) \text { to } 460(+15 \%) ; I_{n}=1 \mathrm{~A} \text { or } \\ 1 \text { AC } 190(-25 \%) \text { to } 230(+15 \%) ; I_{n}=2 A \\ (-35 \% \text { for } 1 \mathrm{~min}) \end{gathered}$			
Rated supply voltage fan V	3 AC 400 ($\pm 10 \%) 50 \mathrm{~Hz}$ 3AC $460(\pm 10 \%) 60 \mathrm{~Hz}$		$\begin{aligned} & 3 \mathrm{AC} 400(\pm 10 \%) 50 \mathrm{~Hz} \\ & 3 \mathrm{AC} 460(\pm 10 \%) 60 \mathrm{~Hz} \end{aligned}$	
Fan rated current A	1,0 9)	1,25 9)	1,0 9)	1,25 ${ }^{\text {9) }}$
Air flow rate m³/h	1300	1300	2400	2400
Fan noise level dBA	83	87	83	87
Rated supply voltage field 1) V	2AC 460 (+15\% / - 20\%)			
Rated frequency Hz	45 to $65{ }^{10}$			
Rated DC voltage 1) V	1000			
Rated DC current A	900		1500	1900
Overload capability ${ }^{6)}$	max. 180\% of rated DC current			
Rated output kW	900		1500	1900
Power loss at rated DC current (approx.)	4638		6778	8700
Rated DC voltage field 1) V	max. 375			
Rated DC current field A	30		40	
Operational ambient temperature ${ }^{\circ} \mathrm{C}$	0 to 40 at $I_{\text {rated }}{ }^{3)}$ forced-cooled			
Storage and transport temperature	-25 to +70			
Installation altitude above sea level	$\leq 1000 \mathrm{~m}$ at rated DC current ${ }^{\text {4) }}$			
Control stability	$\Delta n=0.006 \%$ of the rated motor speed, valid for pulse encoder operation and digital setpoint $\Delta n=0.1 \%$ of the rated motor speed, valid for analog tacho or analog setpoint 5)			
Environmental class DIN IEC 721-3-3	3K3			
$\begin{array}{ll}\text { Degree of protect. } & \text { DIN } 40050 \\ & \text { IEC } 144\end{array}$	IP00			
Dimensions (HxWxD) mm	$780 \times 410 \times 362$		$880 \times 450 \times 500$	
Dimension diagram see Section	5.1.6		5.1.7	
Weights (approx.) kg	80		125	

Explanation at end of list of tables

3.4.12 Converters 3AC 400V, 15A to 125A, 4Q

Order No.	6RA70 . - 6DV62				
	13	18	$\underline{25}$	$\underline{28}$	31
Rated supply voltage armature ${ }^{1)} \mathrm{V}$	3AC 400 (+15\% / - 20\%)				
Rated input current armature ${ }^{2)} \mathrm{A}$	13	25	50	75	104
Rated supply voltage electronics power supply	$\begin{aligned} & 2 \mathrm{AC} 380(-25 \%) \text { to } 460(+15 \%) ; I_{\mathrm{n}}=1 \mathrm{~A} \text { or } \\ & 1 \text { AC } 190(-25 \%) \text { to } 230(+15 \%) ; I_{\mathrm{n}}=2 \mathrm{~A} \\ & (-35 \% \text { for } 1 \mathrm{~min}) \end{aligned}$				
Rated supply voltage field 1) V	2 AC 400 (+15\% / - 20\%) ${ }^{7}$				
Rated frequency Hz	45 to $65{ }^{10}$				
Rated DC voltage 1) V	420				
Rated DC current A	15	30	60	90	125
Overload capability ${ }^{6)}$	max. 180\% of rated DC current				
Rated output kW	6,3	12,6	25	38	52,5
Power loss at rated DC current W (approx.)	117	163	240	312	400
Rated DC voltage field 1) V	max. 325				
Rated DC current field A	3	5	10		
Operational ambient temperature ${ }^{\circ} \mathrm{C}$	0 to 45 at $I_{\text {rated }}{ }^{3)}$ self-cooled				
Storage and transport temperature	-25 to +70				
Installation altitude above sea level	$\leq 1000 \mathrm{~m}$ at rated DC current ${ }^{4)}$				
Control stability	$\Delta n=0.006 \%$ of the rated motor speed, valid for pulse encoder operation and digital setpoint $\Delta \mathrm{n}=0.1 \%$ of the rated motor speed, valid for analog tacho or analog setpoint 5)				
Environmental class DIN IEC 721-3-3	3K3				
Degree of protect. DIN 40050 IEC 144	IP00				
Dimensions (HxWxD) mm	$385 \times 265 \times 239$		$385 \times 265 \times 283$		
Dimension diagram see Section	5.1.8		5.1.9		
Weights (approx.) kg	11	11	14	14	16

Explanation at end of list of tables

3.4.13 Converters 3AC 400V, 210A to 600A, 4Q

Explanation at end of list of tables

3.4.14 Converters 3AC 400V, 850A to 2000A, 4Q

Order No.	6RA70 . - 6DV62			6RA70 . - 4DV62	
	87			93	$\underline{95}$
Rated supply voltage armature 1) V	3AC 400 (+15\% / - 20\%)				
Rated input current armature ${ }^{2)} \mathrm{A}$	705			1326	1658
Rated supply voltage electronics power supply	$\begin{aligned} & 2 A C 380(-25 \%) \text { to } 460(+15 \%) ; \mathrm{I}_{\mathrm{n}}=1 \mathrm{~A} \text { or } \\ & 1 \text { AC } 190(-25 \%) \text { to } 230(+15 \%) ; \mathrm{I}_{\mathrm{n}}=2 \mathrm{~A} \\ & (-35 \% \text { for } 1 \mathrm{~min}) \end{aligned}$				
Rated supply voltage fan	3 AC 400 ($\pm 15 \%) 50 \mathrm{~Hz}$ 3AC $460(\pm 10 \%) 60 \mathrm{~Hz}$	$\begin{gathered} 3 A C 400 \\ 3 A C 460 \\ 50 H z \end{gathered}$	\%) 50 Hz \%) 60 Hz $60 \mathrm{~Hz}$	$\begin{array}{r} 3 \mathrm{AC} \\ 3 \mathrm{AC} \\ 50 \mathrm{~Hz} \end{array}$	$\begin{aligned} & 50 \mathrm{~Hz} \\ & 60 \mathrm{~Hz} \\ & 60 \mathrm{~Hz} \end{aligned}$
Fan rated current A	0,3 8)	1,0 9)	1,25 9)	1,0 9)	1,25 9)
Air flow rate $\mathrm{m}^{3} / \mathrm{h}$	570	1300	1300	2400	2400
Fan noise level dBA	73	83	87	83	87
Rated supply voltage field 1) V	2 AC 400 (+15\% / - 20\%) ${ }^{7}$)				
Rated frequency Hz	45 to $65{ }^{10}$				
Rated DC voltage 1) V	420				
Rated DC current A	850			1600	2000
Overload capability ${ }^{6)}$	max. 180\% of rated DC current				
Rated output kW	357			672	840
Power loss at rated DC current (approx.)	2420			5708	6810
Rated DC voltage field 1) V	max. 325				
Rated DC current field A	30			40	
Operational ambient temperature ${ }^{\circ} \mathrm{C}$	0 to 40 at $I_{\text {rated }}{ }^{3)}$ forced-cooled				
Storage and transport temperature	-25 to +70				
Installation altitude above sea level	$\leq 1000 \mathrm{~m}$ at rated DC current ${ }^{4)}$				
Control stability	$\Delta n=0.006 \%$ of the rated motor speed, valid for pulse encoder operation and digital setpoint $\Delta n=0.1 \%$ of the rated motor speed, valid for analog tacho or analog setpoint 5)				
Environmental class DIN IEC 721-3-3	3K3				
Degree of protect. DIN 40050 IEC 144	IP00				
Dimensions (HxWxD) mm	$700 \times 268 \times 362$	780	x 36	$880 \times 450 \times 500$	
Dimension diagram see Section	5.1.11	5.1.12		5.1.13	
Weights (approx.) kg	45	85		145	

Explanation at end of list of tables

3.4.15 Converters 3AC 460V, 30A to 125A, 4Q

Order No.	6RA70 . - 6FV62			
	18	$\underline{25}$	$\underline{28}$	31
Rated supply voltage armature 1) V	3AC 460 (+15\% / - 20\%)			
Rated input current armature 2) A	25	50	75	104
Rated supply voltage electronics power supply	$\begin{aligned} & \text { 2AC } 380(-25 \%) \text { to } 460(+15 \%) ; I_{n}=1 \mathrm{~A} \text { or } \\ & 1 \text { AC } 190(-25 \%) \text { to } 230(+15 \%) ; I_{n}=2 A \\ & (-35 \% \text { for } 1 \mathrm{~min}) \end{aligned}$			
Rated supply voltage field 1) V	2AC 460 (+15\% / - 20\%)			
Rated frequency Hz	45 to $65^{10)}$			
Rated DC voltage 1) V	480			
Rated DC current A	30	60	90	125
Overload capability ${ }^{6}$	max. 180\% of rated DC current			
Rated output kW	14,4	28,8	43	60
Power loss at rated DC current (approx.)	172	248	328	417
Rated DC voltage field 1) V	max. 375			
Rated DC current field A	5		5 10	
Operational ambient temperature ${ }^{\circ} \mathrm{C}$	0 to 45 at $I_{\text {rated }}{ }^{3)}$ self-cooled			
Storage and transport temperature	-25 to +70			
Installation altitude above sea level	$\leq 1000 \mathrm{~m}$ at rated DC current ${ }^{4)}$			
Control stability	$\Delta n=0.006 \%$ of the rated motor speed, valid for pulse encoder operation and digital setpoint $\Delta \mathrm{n}=0.1 \%$ of the rated motor speed, valid for analog tacho or analog setpoint 5)			
Environmental class DIN IEC 721-3-3	3K3			
Degree of protect. DIN 40050 IEC 144	IP00			
Dimensions (HxWxD) mm	$385 \times 265 \times 239$ 385x265x313			
Dimension diagram see Section	5.1.8 5.2 .5			
Weights (approx.) kg	11	15	15	17

Explanation at end of list of tables

3.4.16 Converters 3AC 460V, 210A to 600A, 4Q

Explanation at end of list of tables

3.4.17 Converters 3AC 460V, 850A to 1200A, 4Q

[^0]
3.4.18 Converters 3AC 575V, 60A to 600A, 4Q

Order No.	6RA70 . - 6GV62				
	$\underline{25}$	31	75	81	85
Rated supply voltage armature ${ }^{1)} \mathrm{V}$	3AC 575 (+10\% / - 20\%)				
Rated input current armature ${ }^{2)} \mathrm{A}$	50	104	175	332	498
Rated supply voltage electronics power supply	$\begin{gathered} \text { 2AC } 380(-25 \%) \text { to } 460(+15 \%) ; I_{n}=1 \mathrm{~A} \text { or } \\ \text { 1AC } 190(-25 \%) \text { to } 230(+15 \%) ; I_{n}=2 \mathrm{~A} \\ (-35 \% \text { for } 1 \mathrm{~min}) \end{gathered}$				
Rated supply voltage fan			DC24V internal $\begin{aligned} & 100 \\ & 40 \end{aligned}$	$\begin{aligned} & 3 A C \\ & 3 A C \\ & 3 \end{aligned}$) 50 Hz 60 Hz
Rated supply voltage field 1) V	2AC 460 (+15\% / - 20\%)				
Rated frequency Hz	45 to $65{ }^{10}$				
Rated DC voltage 1) V	600				
Rated DC current A	60	125	210	400	600
Overload capability ${ }^{6)}$	max. 180\% of rated DC current				
Rated output kW	36	75	126	240	360
Power loss at rated DC current (approx.)	265	455	730	1550	1955
Rated DC voltage field 1) V	max. 375				
Rated DC current field A	10		15	25	
Operational ambient temperature ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & 0 \text { to } 45 \text { at Irated } \\ & \text { self-cooled } \end{aligned}$		0 to 40 at $I_{\text {rated }}{ }^{3)}$ forced-cooled		
Storage and transport temperature	-25 to +70				
Installation altitude above sea level	$\leq 1000 \mathrm{~m}$ at rated DC current ${ }^{4)}$				
Control stability	$\Delta n=0.006 \%$ of the rated motor speed, valid for pulse encoder operation and digital setpoint $\Delta n=0.1 \%$ of the rated motor speed, valid for analog tacho or analog setpoint 5)				
Environmental class DIN IEC 721-3-3	3K3				
Degree of protect. DIN 40050 IEC 144	IP00				
Dimensions (HxWxD) mm	$385 \times 265 \times 283$			$625 \times 268 \times 318$	
Dimension diagram see Section	5.1.9			5.1.10	
Weights (approx.) kg	14	16		30	

Explanation at end of list of tables

3.4.19 Converters 3AC 575V, 850A to 2200A, 4Q

Order No.	6RA70 . - 6GV62			6RA70 . - 4GV62		
	87			93	95	96
Rated supply voltage armature 1) V	3AC 575 (+10\% / - 20\%)					
Rated input current armature ${ }^{2)} \mathrm{A}$	705			1326	1658	1824
Rated supply voltage electronics power supply	$\begin{aligned} & 2 \text { AC } 380(-25 \%) \text { to } 460(+15 \%) ; I_{n}=1 \mathrm{~A} \text { or } \\ & 1 \text { AC } 190(-25 \%) \text { to } 230(+15 \%) ; I_{n}=2 \mathrm{~A} \\ & (-35 \% \text { for } 1 \mathrm{~min}) \end{aligned}$					
Rated supply voltage fan	$\begin{aligned} & 3 \mathrm{AC} 400(\pm 15 \%) 50 \mathrm{~Hz} \\ & 3 \mathrm{AC} 460(\pm 10 \%) 60 \mathrm{~Hz} \end{aligned}$	3AC 400 3AC 460 50 Hz	\%) 50 Hz \%) 60 Hz $60 \mathrm{~Hz}$	50	$\begin{aligned} & 0(\pm 10 \% \\ & 0(\pm 10 \% \end{aligned}$	
Fan rated current A	0,3 8)	1,0 9)	1,25 9)			
Air flow rate $\quad \mathrm{m}^{3} / \mathrm{h}$	570	1300	1300	24		
Fan noise level dBA	73	83	87	8		
Rated supply voltage field 1) V	2AC 460 (+15\% / - 20\%)					
Rated frequency Hz	45 to $65 \quad 10)$					
Rated DC voltage 1) V	600					
Rated DC current A	850			1600	2000	2200
Overload capability ${ }^{6)}$	max. 180\% of rated DC current					
Rated output kW	510			960	1200	1320
Power loss at rated DC current (approx.)	2780			5942	7349	7400
Rated DC voltage field ${ }^{1)} \mathrm{V}$	max. 375					
Rated DC current field A	30					85
Operational ambient temperature ${ }^{\circ} \mathrm{C}$	0 to 40 at $I_{\text {rated }}{ }^{3)}$ forced-cooled					
Storage and transport temperature	-25 to +70					
Installation altitude above sea level	$\leq 1000 \mathrm{~m}$ at rated DC current ${ }^{4)}$					
Control stability	$\Delta n=0.006 \%$ of the rated motor speed, valid for pulse encoder operation and digital setpoint $\Delta n=0.1 \%$ of the rated motor speed, valid for analog tacho or analog setpoint 5)					
Environmental class DIN IEC 721-3-3	3K3					
Degree of protect. DIN 40050 IEC 144	IP00					
Dimensions (HxWxD) mm	$700 \times 268 \times 362$	$780 \times 410 \times 362$		$880 \times 450 \times 500$		
Dimension diagram see Section	5.1.11	5.1.12		5.1.13		
Weights (approx.) kg	45	85		145		

Explanation at end of list of tables

3.4.20 Converters 3AC 690V, 760A to 2000A, 4Q

Order No.	6RA70 . - 6KV62			6RA70 . - 4KV62	
	86			93	95
Rated supply voltage armature 1) V	3AC 690 (+10\% / - 20\%)				
Rated input current armature ${ }^{2)} \mathrm{A}$	630			1244	1658
Rated supply voltage electronics power supply	$\begin{gathered} 2 A C 380(-25 \%) \text { to } 460(+15 \%) ; \mathrm{I}_{\mathrm{n}}=1 \mathrm{~A} \text { or } \\ 1 \text { AC } 190(-25 \%) \text { to } 230(+15 \%) ; \mathrm{I}_{\mathrm{n}}=2 \mathrm{~A} \\ (-35 \% \text { for } 1 \mathrm{~min}) \end{gathered}$				
Rated supply voltage fan V	$\begin{aligned} & 3 \mathrm{AC} 400(\pm 15 \%) 50 \mathrm{~Hz} \\ & 3 \mathrm{AC} 460(\pm 10 \%) 60 \mathrm{~Hz} \end{aligned}$	3AC 400 3AC 460 $50 \mathrm{~Hz}$	\%) 50 Hz \%) 60 Hz $60 \mathrm{~Hz}$	$\begin{array}{r} 3 \mathrm{AC} \\ 3 \mathrm{AC} \\ 50 \mathrm{~Hz} \end{array}$	50 Hz 60 Hz $60 \mathrm{~Hz}$
Fan rated current A	0,3 8)	1,0 9)	1,25 9)	1,0 9)	1,25 9)
Air flow rate m³/h	570	1300	1300	2400	2400
Fan noise level dBA	73	83	87	83	87
Rated supply voltage field 1) V	2AC 460 (+15\% / - 20\%)				
Rated frequency Hz	45 to 65^{10}				
Rated DC voltage 1) V	725				
Rated DC current A	760			1500	2000
Overload capability ${ }^{6)}$	max. 180\% of rated DC current				
Rated output kW	551			1088	1450
Power loss at rated DC current (approx.)	2850			6706	8190
Rated DC voltage field 1) V	max. 375				
Rated DC current field A	30			40	
Operational ambient temperature ${ }^{\circ} \mathrm{C}$	0 to 40 at $I_{\text {rated }}{ }^{3)}$ forced-cooled				
Storage and transport temperature	-25 to +70				
Installation altitude above sea level	$\leq 1000 \mathrm{~m}$ at rated DC current 4)				
Control stability	$\Delta n=0.006 \%$ of the rated motor speed, valid for pulse encoder operation and digital setpoint $\Delta n=0.1 \%$ of the rated motor speed, valid for analog tacho or analog setpoint 5)				
Environmental class DIN IEC 721-3-3	3K3				
$\begin{array}{ll}\text { Degree of protect. } & \text { DIN } 40050 \\ & \text { IEC } 144\end{array}$	IP00				
Dimensions (HxWxD) mm	$700 \times 268 \times 362$	780	x362	$880 \times 450 \times 500$	
Dimension diagram see Section	5.1.11	5.1.12		5.1.13	
Weights (approx.) kg	45	85		145	

Explanation at end of list of tables

3.4.21 Converters 3AC 830V, 950A to 1900A, 4Q

Order No.	$\begin{gathered} \text { 6RA70 . . }-6 L V 62 \\ \underline{88} \end{gathered}$		6RA70 . - 4LV62	
			93	95
Rated supply voltage armature ${ }^{1)} \mathrm{V}$	3AC 830 (+10\% / - 20\%)			
Rated input current armature ${ }^{2)} \mathrm{A}$	788		1244	1575
Rated supply voltage electronics power supply	$\begin{gathered} 2 \mathrm{AC} 380(-25 \%) \text { to } 460(+15 \%) ; \mathrm{I}_{\mathrm{n}}=1 \mathrm{~A} \text { or } \\ 1 \mathrm{AC} 190(-25 \%) \text { to } 230(+15 \%) ; I_{\mathrm{n}}=2 \mathrm{~A} \\ (-35 \% \text { for } 1 \mathrm{~min}) \end{gathered}$			
Rated supply voltage fan V	$\begin{aligned} & 3 \mathrm{AC} 400(\pm 10 \%) 50 \mathrm{~Hz} \\ & 3 \mathrm{AC} 460(\pm 10 \%) 60 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 3 \mathrm{AC} 400(\pm 10 \%) 50 \mathrm{~Hz} \\ & 3 \mathrm{AC} 460(\pm 10 \%) 60 \mathrm{~Hz} \end{aligned}$	
Fan rated current A	1,0 9)	1,25 9)	1,0 9)	1,25 ${ }^{\text {9) }}$
Air flow rate m³	1300	1300	2400	2400
Fan noise level dBA	83	87	83	87
Rated supply voltage field 1) V	2AC 460 (+15\% / - 20\%)			
Rated frequency Hz	45 to $65{ }^{10}$			
Rated DC voltage 1) V	875			
Rated DC current A	950		1500	1900
Overload capability ${ }^{6}$	max. 180\% of rated DC current			
Rated output kW	831		1313	1663
Power loss at rated DC current (approx.)	4870		7153	8700
Rated DC voltage field 1) V	max. 375			
Rated DC current field A	30		40	
Operational ambient temperature ${ }^{\circ} \mathrm{C}$	0 to 40 at $I_{\text {rated }}{ }^{3)}$ forced-cooled			
Storage and transport temperature	-25 to +70			
Installation altitude above sea level	$\leq 1000 \mathrm{~m}$ at rated DC current ${ }^{4)}$			
Control stability	$\Delta n=0.006 \%$ of the rated motor speed, valid for pulse encoder operation and digital setpoint $\Delta n=0.1 \%$ of the rated motor speed, valid for analog tacho or analog setpoint 5)			
Environmental class DIN IEC 721-3-3	3K3			
$\begin{array}{ll}\text { Degree of protect. } & \text { DIN } 40050 \\ & \text { IEC } 144\end{array}$	IP00			
Dimensions (HxWxD) mm	$780 \times 410 \times 362$		$880 \times 450 \times 500$	
Dimension diagram see Section	5.1.12		5.1.13	
Weights (approx.) kg	85		145	

Explanation at end of list of tables

1) The armature/field supply voltage can be lower than the rated armature/field voltage (setting in parameter P078, input voltages down to 85 V are permissible for converters with rated supply voltage of 400 V). The output voltage is reduced accordingly.

The specified output DC voltage can be guaranteed up to an undervoltage corresponding to 5% of line voltage (rated supply voltage armature/field).
2) Values apply to output rated DC current.
3) Load factor K 1 (direct current) as a function of coolant temperature (see P077 Section 11). $\mathrm{K} 1>1$ permitted only if K 1 * $\mathrm{K} 2 \leq 1$.
Total derating factor $\mathrm{K}=\mathrm{K} 1$ * K2 (K2 see below)

Ambient temperature or coolant temperature	in devices with self-cooling	Lin devices with enhanced air cooling
$\leq+30^{\circ} \mathrm{C}$	1,18	1,10
$+35^{\circ} \mathrm{C}$	1,12	1,05
$+40^{\circ} \mathrm{C}$	1,06	1,00
$+45^{\circ} \mathrm{C}$	1,00	0,95
$+50^{\circ} \mathrm{C}$	0,94	0,90
$+55^{\circ} \mathrm{C}$	0,88	a)
$+60^{\circ} \mathrm{C}$	0,82	b)

a) In spite of derating, converters of $\geq 400 \mathrm{~A}$ with forced air cooling may be operated at an ambient or coolant temperature of $50^{\circ} \mathrm{C}$ only if the rated supply voltage of the converter fan is safely within the limited tolerance range of $400 \mathrm{~V}+10 \%-15 \%$.
b) Not permissible when T400 or OP1S is used.
4) Load values as a function of installation altitude (refer to P077 in Section 11)

Total derating factor $\mathrm{K}=\mathrm{K} 1$ * K2 (K 1 see above)

Installation altitude [m]	Derating factor K2
1000	1,0
2000	0,835
3000	0,74
4000	0,71
5000	0,67

Curve b1: Reduction factor of load values (DC current) at installation altitudes above 1000 m
The supply voltages of all circuits are available up to an installation altitude of 5000 m for basic insulation.

Converters for 830 V rated supply voltage are an exception:
Up to 4000 m 830 V
Up to 4500 m 795 V
Up to 5000 m 727 V
5) Conditions

The control stability (closed-loop PI control) is referred to the rated motor speed and applies when the SIMOREG converter is warm The following conditions are applicable:

- Temperature changes of $\pm 10^{\circ} \mathrm{K}$
- Line voltage changes corresponding to $+10 \% /-5 \%$ of the rated input voltage
- Temperature coefficient of temperature-compensated tacho-generators 0.15% per $10^{\circ} \mathrm{K}$ (applies only to analog tacho-generator)
- Constant setpoint (14-bit resolution)

6) Also refer to Section 3.3 and 9.
7) Also permissible for 2AC 460 (+15\% / - 20\%).
8) Motor protection type 3RV1011-0DA1 or 3RV1011-0EA1 trimmed to 0.3A manufactured by Siemens is to be provided for blower motor type R2D220-AB02-19 in drive models 6RA7081, 6RA7085, 6RA7087 with rated input voltage 400 V or 575 V .
9) Motor protection type 3RV1011-0KA1 or 3RV1011-1AA1 trimmed to 1.25A manufactured by Siemens is to be provided for blower motor type RH28M-2DK.3F.1R in drive models 6RA7090, 6RA7091, 6RA7093, 6RA7095 with rated input voltage 400 V or 575 V .
10) Operation in the extended frequency range between 23 Hz and 110 Hz is available on request.

3.5 Applicable standards

VDE 0106 Part 100

Arrangement of operator control elements in the vicinity of components/parts at hazardous voltage levels.

VDE 0110 Part 1
Insulation coordination for electrical equipment in low-voltage installations.
Degree of pollution 2 for boards and power section.
Only non-conductive contamination is permissible.
"Moisture condensation is excluded, as the components are only permitted for humidity class F."
EN60146 T1-1 / VDE 0558 T11
Semiconductor converter
General requirements and line-commutated converters
DIN EN50178 / VDE 0160
Regulations for equipping electrical power systems with electronic equipment.
EN61800-3
Variable-speed drives, part 3, EMC Product Standard including special testing procedures
DIN IEC 60068-2-6 acc. to severity grade 12 (SN29010 Part1)
Mechanical stressing
UL 508 C Power Conversion Equipment

3.6 Certification

The products referred to in this document are manufactured and operated in accordance with DIN ISO 9001 (Certificate Register No.: 257-0).

3.7 Abbreviations

ADB	Adapter Board, carrier for miniature-format supplementary boards
CAN	Field bus specification of user organization CiA (CAN in Automation) (Controller Area Network)
CB	Supplementary Communication Board
CBC	Supplementary board for CAN Bus link (Communication Board CAN Bus)
CBD	Supplementary board for DeviceNet link (Communication Board DeviceNet)
CBP2	Supplementary board for PROFIBUS link (Communication Board PROFIBUS)
COB	Communication Object for CAN Bus communication
CUD1	Electronics board C98043-A7001 of SIMOREG DC Master (Control Unit / Direct Current)
CUD2	Terminal expansion board C98043-A7006 for CUD1
DeviceNet	Field bus specification of ODVA (Open DeviceNet Vendor Association)
DP	Distributed Peripherals
EB1	Supplementary board with additional inputs/outputs (Expansion Board 1)
EB2	Supplementary board with additional inputs/outputs (Expansion Board 2)
GSD file	Device master data file defining the communication features of the PROFIBUS communication board

ID Identifier for CAN Bus communication
IND Parameter Index

LBA Connection module for mounting supplementary modules (Local Bus Adapter)

LWL Fiber-optic cable
MSAC_C1 Designation of a transmission channel for PROFIBUS (Master Slave Acyclic / Class 1)

MSCY_C1 Designation of a transmission channel for PROFIBUS (Master Slave Cyclic / Class 1)

OP1S Optional device operating panel with plaintext display and internal memory for parameter sets (Operator Panel 1 / Store)
PKE Parameter identifier
PKW Reference to parameter (parameter identifier value)
PMU Simple operator panel of SIMOREG DC Master (Parameterization Unit)
PNU Parameter number
PPO Definition of number of parameter and process data words for PROFIBUS communication (Parameter Process Data Object)

PROFIBUS Field bus specification of PROFIBUS user organization (Process Field Bus)
PWE Parameter value

PZD	Process data
SBP	Supplementary board for linking tacho (Sensor Board Pulse)
SCB1	Supplementary board for linking SCI1 or SCI2 via fiber optic cable (Serial Communication Board 1)
SCI1	Supplementary board with additional inputs/outputs; I/O slave module on SCB1 (Serial Communication Interface 1)
SCI2	Supplementary board with additional inputs/outputs; I/O slave module on SCB1 (Serial Communication Interface 2)
SIMOLINK	Field bus specification for fiber optic ring bus (Siemens Motion Link)
SLB	Supplementary board for SIMOLINK link (SIMOLINK Board)
STW	Control word
T100	Supplementary board with technology functions (Technology Board 100)
T300	Supplementary board with technology functions (Technology Board 300)
T400	Supplementary board with technology functions (Technology Board 400)
TB	Technology board T100, T300 or T400
USS	Universal serial interface
ZSW	Status word

4 Shipment, unpacking

SIMOREG converters are packed in the production works according to the relevant ordering data. A product packing label is attached to the box.

Protect the package against severe jolts and shocks during shipment, e.g. when setting it down.
Carefully observe the information on the packaging relating to transportation, storage and proper handling.

The SIMOREG device can be installed after it has been unpacked and the shipment checked for completeness and/or damage.

The packaging materials consist of cardboard and corrugated paper and can be disposed of according to locally applicable waste disposal regulations.

If you discover that the converter has been damaged during shipment, please inform your shipping agent immediately.

4.1 Remove the transportation protection for devices with 1500A to 2200A rated DC

Remove the brackets for cabinet mounting by cutting open the cable ties and fix them to the outside of the device if required. Remove the six M8 hexagon-head nuts.
(3) Remove the two M8 hexagon-head nuts and the transportation bracket.
(4) Remove the two banding strips.
(5) Remove the transportation sheet after assembling the device and before startup by removing the six M6 hexagon-head nuts.

5 Installation

CAUTION

Failure to lift the converter in the correct manner can result in bodily injury and/or property damage.
The device must always be lifted by properly trained personnel using the appropriate equipment (i.e. protective gloves, etc.).

To preclude the risk of deformation damage to the housings of converters with rated DC current of 720A or higher, the lifting lugs used to raise them must not be subjected to any horizontal forces.

The user is responsible for installing the converter, motor, transformer as well as other equipment according to safety regulations (e.g. DIN, VDE), as well as all other relevant national or local regulations regarding cable dimensioning and protection, grounding, isolating switch, overcurrent protection, etc.

The converter must be installed in accordance with the relevant safety regulations (e.g. DIN, VDE), as well as all other relevant national and local regulations. It must be ensured that the grounding, cable dimensioning and appropriate short-circuit protection have been implemented to guarantee operational safety and reliability.

Installation of SIMOREG devices in cabinets in accordance with UL 508 C standards

When the drive is provided in a panel (enclosure), the panel is ventilated and designated "Type 1".
The minimum size panel (enclosure) to be used with the drive is 600 mm length, 600 mm width, 2200 mm hight.

Possible lifting method for converters with rated DC current of 1500A to 2200A

Cubicle mounting of converters with rated DC current of 1500A to 2200A

- These converters are supplied with 2 fixing angles . These can be bolted to the SIMOREG unit by means of the supplied M6 hexagon-head screws (3 per angle) to assist cubicle mounting.
- The unit can then be supported by 2 further angles (not included in scope of supply) in the control cubicle.
- The converters must be bolted to the cubicle rear panel in 4 places.

WARNING

A clearance of at least 100 mm must be left above and below the converter in order to ensure an unrestricted cooling air intake and outlet.

The converter may overheat if this clearance is not provided!

5.1 Dimension diagrams for standard devices

5.1.1 Converters: 3AC 400V and 460V, 30A, 1Q

5.1.2 Converters: 3AC 400V and 575V, 60A to 280A, 1Q

Max. conductor size for cables with cable eye in accordance with DIN 46234: $2 \times 95 \mathrm{~mm}^{2}$
Tightening torque for customer connections:
1U1, 1V1, 1W1, 1C1, $1 \mathrm{D} 1=13 \mathrm{Nm}$
(1) $=25 \mathrm{Nm}$

1) Minimum clearance for air circulation
An adequate cooling air supply must be provided

5.1.3 Converters: 3AC 400V and 575V, 400A, 1Q

[^1]
5.1.4 Converters: 3AC 400 V and $575 \mathrm{~V}, 600 \mathrm{~A}, 1 \mathrm{Q}$

1) Minimum clearance for air circulation
An adequate cooling air supply must be provided

5.1.5 Converters: 3AC 400V, 575V, and 690V, 720A to 850A, 1Q

5.1.6 Converters: 3AC 400V, 460V, 575 V , 690 V , and $830 \mathrm{~V}, 900 \mathrm{~A}$ to 1200A, 1 Q

5.1.7 Converters: 3AC 400V, 575V, 690V, and 830V, 1500A to 2200A, 1Q

5.1.8 Converters: 3AC 400V and 460V, 15A to 30A, 4Q

5.1.9 Converters: 3AC 400V and 575V, 60A to 280A, 4Q

[^2]5.1.10 Converters: 3AC 400V and 575V, 400A to 600A, 4Q

5.1.11 Converters: 3AC 400V, 575V, and 690V, 760A to 850A, 4Q

Tightening torque for customer connections: U1, 1V1, 1W1, 1C1, $1 \mathrm{D} 1=44 \mathrm{Nm}$

5.1.12 Converters: 3AC 400V, 460V, 575V, 690V, and 830V, 950A to 1200A, 4Q

5.1.13 Converters: 3AC 400V, 575V, 690V, and 830V, 1500A to 2200A, 4Q

5.2 Dimension diagrams of the devices with additional cable connections on the top of the device

5.2.1 Converters: 3AC 460V, 60A to 125A, 1Q

5.2.2 Converters: 3AC 460V, 210A to 280A, 1Q

[^3]
5.2.3 Converters: 3AC 460V, 450A to 600A, 1Q

5.2.4 Converters: 3AC 460V, 850A, 1Q

[^4]1) Minimum clearance for air circulation
An adequate cooling air supply must be provided

5.2.5 Converters: 3AC 460V, 60A to 125A, 4Q

(1)		
\cup		-

[^5]
5.2.6 Converters: 3AC 460V, 210A to 280A, 4Q

[^6]
5.2.7 Converters: 3AC 460V, 450A to 600A, 4Q

1) Minimum clearance for air circulation
An adequate cooling air supply must be provided

5.2.8 Converters: 3AC 460V, 850A, 4Q

[^7]1) Minimum clearance for air circulation
An adequate cooling air supply must be provided

5.3 Mounting options

5.3.1 Terminal expansion board CUD2

- Remove electronics board CUD1 from the electronics box by undoing the two fixing screws
- Attach the 3 hexagon-head bolts supplied at position on the CUD1 electronics board with the screws and fixing elements (3) supplied and insert the two plug connectors (4).
The two plug connectors must be positioned such that the short pin ends are inserted in the socket connectors of the CUD1 and the long pin ends in the socket connectors of the CUD2.
- Position board CUD2 in such a way that the two plug connectors (4) are properly contacted.
- Secure board CUD2 in position using the supplied screws and retaining elements (5).
- Insert electronics board CUD1 into electronics box and tighten up the two fixing screws (1) again as instructed.

5.3.2 Optional supplementary boards

WARNING

Safe operation is dependent upon proper installation and start-up by qualified personnel under observance of all warnings contained in these operating instructions.
Boards must always be replaced by properly qualified personnel.
Boards must not be inserted or removed when the power supply is connected.
Failure to observe this warning can result in death, severe physical injury or substantial property damage.

CAUTION

The boards contain ElectroStatic Discharge Sensitive Devices (ESDS). Before touching a board, make sure that your own body has been electrostatically discharged. The easiest way to do this is to touch a conductive, earthed object (e.g. bare metal part of cubicle) immediately beforehand.

5.3.2.1 Local bus adapter (LBA) for mounting optional supplementary boards

Optional supplementary boards can be installed only in conjunction with the LBA option. If an LBA is not already fitted in the SIMOREG converter, one must be installed in the electronics box to accommodate the optional board.

How to install an LBA local bus adapter in the electronics box:

- Undo the two fixing screws on the CUD1 board and pull board out by special handles.
- Push LBA bus extension into electronics box (see picture on right for position) until it engages.
- Insert CUD1 board in left-hand board location again and tighten fixing screws in handles.

5.3.2.2 Mounting of optional supplementary boards

Supplementary boards are inserted in the slots of the electronics box. Option LBA (local bus adapter) is required to fit supplementary boards. The designations of the board locations or slots are shown in the adjacent diagram.

Supplementary boards may be inserted in any slot subject to the following restrictions:

NOTICE

- Slot 3 must not be used until slot 2 is already occupied.
- A technology board must always be installed in board location 2 of the electronics box.
- If a technology board is used in conjunction with one communication board, then the communication board must be fitted in slot G (miniature-format boards, for example CBP2 and CBC) or slot 3 (large-format board SCB1).
A type T400 technology module can also be used with two communication boards of type CBC, CBD or CBP2 (see Section 7.7.1, Procedure for starting up technology boards).
- It is not possible to operate boards EB1, EB2, SLB and SBP in conjunction with a technology board.
- The data of large-format boards are always output under slot E or slot G, i.e. the software version of a technology board, for example, is displayed in r060.003.
- In addition to the LBA, miniature-format boards (for example CBP2 and CBC) also require an ADB (adapter board, support board). Due to their very compact physical dimensions, these boards must be inserted in an ADB before they can be installed in the electronics box.
- No more than 2 supplementary boards of the same type may be installed in one converter (e.g. 2 EB1s).

The diagram below shows which locations or slots can be used for the supplementary boards you wish to install and which board combinations are possible:

For information about starting up supplementary boards, please refer to Section 7.7 "Starting up optional supplementary boards".

6 Connections

WARNING

The converters are operated at high voltages.
Disconnect the power supply before making any connections!
Only qualified personnel who are thoroughly familiar with all safety notices contained in the operating instructions as well as erection, installation, operating and maintenance instructions should be allowed to work on these devices.

Non-observance of the safety instructions can result in death, severe personal injury or substantial property damage.

Failure to make the correct connections may result in irreparable damage to the unit.
Voltage may be present at the power and control terminals even when the motor is stopped.
The snubber capacitors might still be carrying hazardous voltage after isolation from the supply. For this reason, the converter must not be opened for at least two minutes after switch-off.
When working on the open converter, remember that live parts are exposed. The unit must always be operated with the standard front covers in place.

The user is responsible for ensuring that the motor, SIMOREG converter and other devices are installed and connected up in accordance with the approved codes of practice of the country concerned and any other regional or local codes that may apply. Special attention must be paid to proper conductor sizing, fusing, grounding, isolation and disconnection measures and to overcurrent protection.
These converters contain hazardous rotating machinery (fans) and control rotating mechanical components (drives). Death, serious bodily injury or substantial property damage may occur if the instructions in the relevant operating manuals are not observed.

The successful and safe operation of this equipment is dependent on careful transportation, proper storage and installation as well as correct operation and maintenance.

6.1 Installation instructions for proper EMC installation of drives

NOTE

These installation instructions do not purport to handle or take into account all of the equipment details or versions or to cover every conceivable operating situation or application. If you require more detailed information, or if special problems occur, which are not handled in enough detail in this document, please contact your local Siemens office.

The contents of these installation instructions are not part of an earlier or existing agreement or legal contract and neither do they change it. The actual purchase contract represents the complete liability of the A\&D Variable-Speed Drives Group of Siemens AG. The warrant conditions, specified in the contract between the two parties, is the only warranty which will be accepted by the A\&D Variable-Speed Drives Group. The warranty conditions specified in the contract are neither expanded nor changed by the information provided in the installation instructions.

6.1.1 Fundamental principles of EMC

6.1.1.1 What is EMC

EMC stands for "electromagnetic compatibility" and defines the capability of a piece of equipment to operate satisfactory in an electromagnetic environment without itself causing electromagnetic disturbances that would adversely affect other items of equipment in its vicinity.
Thus, different items of equipment must not adversely affect one another.

6.1.1.2 Noise radiation and noise immunity

EMC is dependent on two characteristics of the equipment/units involved, i.e. radiated noise and noise immunity. Items of electrical equipment can either be fault sources (transmitters) and/or noise receivers.
Electromagnetic compatibility exists if the fault sources do not adversely affect the function of the noise receivers.
An item of equipment can be both a fault source and a fault receiver. For example, the power section of a converter must be regarded as a fault source and the control section as a noise receiver.

6.1.1.3 Limit values

Electrical drives are governed by Product Standard EN 61800-3. According to this standard, it is not necessary to implement all EMC measures for industrial supply networks. Instead, a solution adapted specifically to the relevant environment can be applied. Accordingly, it may be more economical to increase the interference immunity of a sensitive device rather than implementing noise suppression measures for the converter. Thus, solutions are selected depending on their cost-effectiveness.
SIMOREG DC Master converters are designed for industrial applications (industrial low-voltage supply system, i.e. a system that does not supply domestic households).

Noise immunity defines the behaviour of a piece of equipment when subjected to electromagnetic disturbance. The Product Standard regulates the requirements and assessment criteria for the behaviour of equipment in industrial environments. The converters in this description comply with this Standard (Section 6.1.2.3).

6.1.1.4 SIMOREG converters in industrial applications

In an industrial environment, equipment must have a high level of noise immunity whereas lower demands are placed on noise radiation.
SIMOREG DC Master converters are components of an electrical drive system in the same way as contactors and switches. Properly qualified personnel must integrate them into a drive system consisting, at least, of the converter, motor cables and motor. Commutating reactors and fuses are also required in most cases. Limit values can only be maintained if these components are installed and mounted in the correct way. In order to limit the radiated noise according to limit value "A1", the appropriate radio interference suppression filter and a commutating reactor are required in addition to the converter itself. Without an RI suppression filter, the noise radiated by a SIMOREG DC Master converters exceeds limit value "A1" as defined by EN55011.
If the drive forms part of a complete installation, it does not initially have to fulfil any requirements regarding radiated noise. However, EMC legislation requires the installation as a whole to be electromagnetically compatible with its environment.
If all control components in the installation (e.g. PLCs) have noise immunity for industrial environments, it is not necessary for each drive to meet limit value "A1" in its own right.

6.1.1.5 Non-grounded supply systems

Non-grounded supply systems (IT systems) are used in a number of industrial sectors in order to increase plant availability. In the event of a ground fault, no fault current flows so that the plant can still produce. When RI suppression filters are installed, however, a ground fault does cause a fault current to flow, resulting in shutdown of the drives and, in some cases, destruction of the suppression filter. For this reason, the Product Standard does not define limit values for these supply systems. From the economic viewpoint, RI suppression should, if required, be implemented on the grounded primary side of the supply transformer.

6.1.1.6 EMC planning

If two units are not electromagnetically compatible, you can either reduce the noise radiated by the noise source, or increase the noise immunity of the noise receiver. Noise sources are generally power electronics units with a high power consumption. To reduce the radiated noise from these units, complex, costly filters are required. Noise receivers are predominantly control equipment and sensors including evaluation circuitry. Increasing the noise immunity of less powerful equipment is generally easier and cheaper. In an industrial environment, therefore, it is often more cost-effective to increase noise immunity rather than reduce radiated noise. For example, in order to adhere to limit value class A1 of EN 55011, the noise suppression voltage at the mains connection may be max. $79 \mathrm{~dB}(\mu \mathrm{~V})$ between 150 kHz and 500 kHz and max. $73 \mathrm{~dB}(\mu \mathrm{~V})(9 \mathrm{mV}$ or 4.5 mV$)$ between 500 kHz and 30 MHz .
In industrial environments, the EMC of the equipment used must be based on a well-balanced mixture of noise radiation and noise immunity.

The most cost-effective RI suppression measure is the physical separation of noise sources and noise receivers, assuming that it has already been taken into account when designing the machine/plant. The first step is to define whether each unit is a potential noise source (noise radiator or noise receiver). Noise sources are, for example, PLCs, transmitters and sensors. Components in the control cabinet (noise sources and receivers) must be physically separated, if necessary through the use of metal partitions or metal enclosures for individual components. Figure 1 shows an example component layout in a control cabinet.

6.1.2 Proper EMC installation of drives (installation instructions)

6.1.2.1 General

Since drives can be operated in a wide range of differing environments and the electrical components used (controls, switched-mode power supplies, etc.) can widely differ with respect to noise immunity and radiation, any mounting/installation guideline can only represent a practical compromise. For this reason, EMC regulations do not need to be implemented to the letter, provided that measures are checked out on a case by case basis.

In order to guarantee electromagnetic compatibility in your cabinets in rugged electrical environments and fulfil the standards specified by the relevant regulatory bodies, the following EMC regulations must be observed when designing and installing cabinets.

Rules 1 to 10 generally apply. Rules 11 to 15 must be followed to fulfil standards governing radiated noise.

6.1.2.2 Rules for proper EMC installation

Rule 1
All the metal components in the cabinet must be conductively connected over a large surface area with one another (not paint on paint!). Serrated or contact washers must be used where necessary. The cabinet door should be connected to the cabinet through the shortest possible grounding straps (top, center, bottom)..

Rule 2

Contactors, relays, solenoid valves, electromechanical hours counters, etc. in the cabinet, and, if applicable, in adjacent cabinets, must be provided with quenching elements, for example, RC elements, varistors, diodes. These devices must be connected directly at the coil.

Rule 3

Signal cables ${ }^{1)}$ should enter the cabinet at only one level wherever possible.

Rule 4

Unshielded cables in the same circuit (incoming and outgoing conductors) must be twisted where possible, or the area between them kept as small as possible in order to prevent unnecessary coupling effects.

Rule 5

Connect spare conductors to the cabinet ground (ground ${ }^{2)}$) at both ends to obtain an additional shielding effect.

Rule 6

Avoid any unnecessary cable lengths in order to reduce coupling capacitances and inductances.

Rule 7

Crosstalk can generally be reduced if the cables are installed close to the cabinet chassis ground. For this reason, wiring should not be routed freely in the cabinet, but as close as possible to the cabinet frame and mounting panels. This applies equally to spare cables.

Rule 8

Signal and power cables must be routed separately from one another (to prevent noise from being coupled in). A minimum 20 cm clearance should be maintained.
If the encoder cables and motor cables cannot be routed separately, then the encoder cable must be decoupled by means of a metal partition or installation in a metal pipe or duct. The partition or metal duct must be grounded at several points.

Rule 9

The shields of digital signal cables must be connected to ground at both ends (source and destination). If there is poor potential bonding between the shield connections, an additional potential bonding cable of at least $10 \mathrm{~mm}^{2}$ must be connected in parallel to the shield to reduce the shield current. Generally speaking, the shields can be connected to the cabinet housing (ground ${ }^{2)}$) at several points. The shields may also be connected at several locations outside the cabinet.

Foil-type shields should be avoided. Their shielding effect is poorer by a factor of 5 as compared to braided shields.

Rule 10
The shields of analog signal cables may be connected to ground at both ends (conductively over a large area) if potential bonding is good. Potential bonding can be assumed to be good if all metal parts are well connected and all the electronic components involved are supplied from the same source.
The single-ended shield connection prevents low-frequency, capacitive noise from being coupled in (e.g. 50 Hz hum). The shield connection should then be made in the cabinet. In this case, the shield may be connected by means of a sheath wire.

Rule 11

The RI suppression filter must always be mounted close to the suspected noise source. The filter must be mounted over the largest possible area with the cabinet housing, mounting plate, etc. Incoming and outgoing cables must be routed separately.

Rule 12

To ensure adherence to limit value class A1, the use of RI suppression filters is obligatory. Additional loads must be connected on the line side of the filter.

The control system used and the other wiring in the cubicle determines whether an additional line filter needs to be installed.

Rule 13

A commutating reactor must be installed in the field circuit for controlled field supplies.
Rule 14
A commutating reactor must be installed in the converter armature circuit.

Rule 15

Unshielded motor cables may be used in SIMOREG drive systems.
The line supply cable must be routed at a distance of at least 20 cm from the motor cables (field, armature). Use a metal partition if necessary.

Footnotes:

1) Signal cables are defined as:

Digital signal cable:
Pulse encoder cables
Serial interfaces, e.g. PROFIBUS-DP

Analog signal cable.:
e.g. $\pm 10 \mathrm{~V}$ setpoint cable
2) The term "Ground" generally refers to all metallic, conductive components which can be connected to a protective conductor, e.g. cabinet housing, motor housing, foundation grounder, etc.

Cabinet design and shielding:

The cabinet design illustrated in Figure 1 is intended to make the user aware of EMC-critical components. The example does not claim to include all possible cabinet components and their respective mounting possibilities.
Details which influence the noise immunity/radiation of the cabinet and are not absolutely clear in the overview diagram are described in Figures 1a-1d.

Figures 2a-2d show details of different shield connection techniques with ordering source information.

Arrangement of RI suppression filters and commutating reactors:

Section 6.1.2.3 shows how RI suppression filters and commutating reactors are arranged in the SIMOREG DC Master system. The specified sequence for mounting reactors and filters must be observed. The line-side and load-side filter cables must be physically separated. Fuses for semiconductor protection are selected according to Section 6.6.2.

Fig. 1: Example of a cabinet design with a SIMOREG DC Master 15 A to 850 A

Fig. 1a: Shield at cable entry point to cabinet

Fig. 1b: Shielding in the cabinet

The customer connections must be routed above the electronics box.
Fig. 1c: Connecting shields on SIMOREG DC Master converters up to 850A

Fig. 1d: Connecting shields on SIMOREG DC Master >850A

Fig. 1e: Line filter for SIMOREG DC Master 6RA70 electronics power supply

Shield connections:

Variant 1

Fig. 2a: Terminal on a copper busbar, max. cable diameter 15 mm

Caution!

The conductor might be damaged if the terminal screw is over-tightened.

Note:

Terminals:
5 mm busbar thickness
Order No. 8US1921-2AC00
10 mm busbar thickness Order No. 8US1921-2BC00

Variant 2:

Fig. 2b: Terminal on copper busbar, max. cable diameter 10 mm

Note:

Terminals:
Order No. 8HS7104,
8HS7104, 8HS7174, 8HS7164

Variant 3:

Fig. 2c: Metallized tubing or cable ties on a bare metal comb-type/serrated rail

Variant 4:

Fig. 2d: Clamp and metallic mating piece on a cable clamping rail

Note:

Siemens 5VC55... cable clamps;
Clamping rails in various sizes:
Item No. K48001 to 48005

6.1.2.3 Arrangement of components for converters

1) The commutating reactor in the field circuit is dimensioned for the rated motor field current.
2) The commutating reactor in the armature circuit is dimensioned for the motor rated current in the armature.
The line current equals DC times 0.82 .
3) The RI suppression filter for the armature circuit is dimensioned for the motor rated current in the armature.
The line current equals DC times 0.82
4) The RI suppression filter for the electronics power supply alone with 400 V is dimensioned for $\geq 1 A$.
The RI suppression filter for the field circuit and electronics power supply with 400 V is dimensioned for the rated current of the motor field plus 1A.
5) The RI suppression filter for the electronics power supply with 230 V is dimensioned for $\geq 2 \mathrm{~A}$.

CAUTION

When RI suppression filters are installed, commutating reactors must always be inserted between the filter and device input to decouple the surge suppression circuits and protect the X capacitors.
The commutating reactors must be selected from Catalog DA93.1. The RI suppression filters must be selected from Catalog DA93.1 or according to the table of EPCOS filters below.

6.1.2.4 List of recommended RI suppression filters made by EPCOS:

Rated current RI suppression filter (A)	RI suppression filter Order number	Terminal cross-section (mm^{2}) Holes for M. .	Weight (kg)	Dimensions HxWxD (mm)
8	B84143-G8-R11*	$4 \mathrm{~mm}^{2}$	1,3	$80 \times 230 \times 50$
20	B84143-G20-R11*	$4 \mathrm{~mm}^{2}$	1,3	$80 \times 230 \times 50$
36	B84143-G36-R11*	$6 \mathrm{~mm}^{2}$	2,8	$150 \times 280 \times 60$
50	B84143-G50-R11*	16 mm ${ }^{2}$	3,3	$150 \times 60 \times 330$
66	B84143-G66-R11*	$25 \mathrm{~mm}^{2}$	4,4	$150 \times 330 \times 80$
90	B84143-G90-R11*	$25 \mathrm{~mm}^{2}$	4,9	$150 \times 330 \times 80$
120	B84143-G120-R11*	$50 \mathrm{~mm}^{2}$	7,5	$200 \times 380 \times 90$
150	B84143-G150-R11*	$50 \mathrm{~mm}^{2}$	8,0	$200 \times 380 \times 90$
220	B84143-G220-R11*	$95 \mathrm{~mm}^{2}$	11,5	$220 \times 430 \times 110$
150	B84143-B150-S**	M10	13	$140 \times 310 \times 170$
180	B84143-B180-S**	M10	13	$140 \times 310 \times 170$
250	B84143-B250-S**	M10	15	$115 \times 360 \times 190$
320	B84143-B320-S**	M10	21	$115 \times 360 \times 260$
400	B84143-B400-S**	M10	21	$115 \times 360 \times 260$
600	B84143-B600-S**	M10	22	$115 \times 410 \times 260$
1000	B84143-B1000-S**	M12	28	$165 \times 420 \times 300$
1600	B84143-B1600-S**	$2 \times \mathrm{M} 12$	34	$165 \times 550 \times 300$
2500	B84143-B2500-S**	$4 \times \mathrm{M} 12$	105	$200 \times 810 \times 385$

*) The code for the construction type must be inserted instead of *: $0=480 \mathrm{~V} 2=530 \mathrm{~V}$
${ }^{* *}$) The code for the construction type must be inserted instead of **: $20=500 \mathrm{~V} \quad 21=760 \mathrm{~V} \quad 24=690 \mathrm{~V}$
${ }^{*}$) RI suppression filters produce discharge currents. VDE 0160 stipulates a $10 \mathrm{~mm}^{2}$ PE connection. To ensure an optimum filtering effect, it is absolutely essential to mount the filters and converter on a single metal plate.

In the case of converters with a 3-phase connection, the minimum rated current of the filter equals the output DC of the converter times 0.82.
With a two-phase connection (field supply and electronics supply), only two phases are connected to the three-phase RI suppression filter. In this case, the line current equals the field DC (plus 1A for the electronics supply).

Important technical data of Siemens RI suppression filters:

Rated supply voltage	$3 \mathrm{AC} 380-460 \mathrm{~V}(\pm 15 \%)$
Rated frequency	$50 / 60 \mathrm{~Hz}(\pm 6 \%)$
Operating temperature	$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Degree of protection	IP20 (EN60529) IP00 with 500 A and above

For further technical data about RI suppression filters, please refer to the Operating Instructions:
SIMOVERT Master Drives RI Suppression Filters EMC Filters, Order number:
6SE7087-6CX87-0FB0.

6.1.3 Information on line-side harmonics generated by converters in a fully-controlled three-phase bridge circuit configuration B6C and (B6)A(B6)C

Converters for the medium power range usually consist of fully-controlled three-phase bridge circuit configurations. An example of the harmonics generated by a typical system configuration for two firing angles ($\alpha=20^{\circ}$ and $\alpha=60^{\circ}$) is given below.
The values have been taken from an earlier publication entitled "Harmonics in the Line-Side Current of Six-Pulse Line-Commutated Converters" written by H. Arremann and G. Möltgen, Siemens Research and Development Dept., Volume 7 (1978) No. 2, © Springer-Verlag 1978.
Formula have been specified with which the short circuit power S_{K} and armature inductance L_{a} of the motor to which the specified harmonics spectrum applies can be calculated depending on the applicable operating data [line voltage (no-load voltage $U_{\mathrm{v} 0}$), line frequency \AA_{N} and DC current I_{d}]. A dedicated calculation must be performed if the actual system short circuit power and/or actual armature reactance deviate from the values determined by this method.

The spectrum of harmonics listed below is obtained if the values for short circuit power S_{K} at the converter supply connection point and the armature inductance L_{a} of the motor calculated by the following formula correspond to the actual plant data. If the calculated values differ, the harmonics must be calculated separately.
a.) $\alpha=20^{\circ}$

Fundamental factor $g=0.962$

\boldsymbol{v}	$\boldsymbol{I}_{\mathbf{v}} / \boldsymbol{I}_{\mathbf{1}}$	\boldsymbol{v}	$\boldsymbol{I}_{\mathbf{v}} / \mathbf{I}_{\mathbf{1}}$
5	0.235	29	0.018
7	0.100	31	0.016
11	0.083	35	0.011
13	0.056	37	0.010
17	0.046	41	0.006
19	0.035	43	0.006
23	0.028	47	0.003
25	0.024	49	0.003

b.) $\alpha=60^{\circ}$

Fundamental factor $g=0.953$

The fundamental-frequency current $\|_{1}$ as a reference quantity is calculated by the following equation:

$$
I_{1}=g \times 0.817 \times I_{\mathrm{d}}
$$

where $I_{\mathrm{d}} \quad$ DC current of operating point under investigation
where $g \quad$ Fundamental factor (see above)
The harmonic currents calculated from the above tables are valid only for
I.) Short-circuit power S_{K} at converter supply connection point

$$
S_{\mathrm{K}}=\frac{U_{\mathrm{v} 0}^{2}}{X_{\mathrm{N}}} \quad(\mathrm{VA})
$$

where

$$
X_{N}=X_{K}-X_{D}=0.03536 \times \frac{U_{\nu 0}}{I_{d}}-2 \pi f_{N} \times L_{D} \quad(\Omega)
$$

and
$U_{\mathrm{v} 0} \quad$ No-load voltage in V at the converter supply connection point
$I_{\mathrm{d}} \quad \mathrm{DC}$ current in A of operating point under investigation
iN Line frequency in Hz
LD Inductance in H of commutating reactor used
$X_{D} \quad$ Impedance of the commutating reactor
$X_{N} \quad$ Impedance of the network
$X_{K} \quad$ Impedance at the converter terminals

II.) Armature inductance L_{a}

$$
L_{\mathrm{a}}=0.0488 \times \frac{U_{\mathrm{v} 0}}{f_{\mathrm{N}} \times I_{\mathrm{d}}}(\mathrm{H})
$$

A separate calculation must be performed if the actual values for short-circuit power S_{K} and/or armature inductance L_{a} deviate from the values calculated on the basis of the above equations.

Example

Let us assume that a drive has the following data:
$U_{\mathrm{VO}}=400 \mathrm{~V}$
$l_{d}=150 \mathrm{~A}$
$\mathrm{f}=50 \mathrm{~Hz}$
$L_{D}=0.169 \mathrm{mH}$ (4EU2421-7AA10 where $/ \mathrm{Ln}=125 \mathrm{~A}$)

When

$$
X_{\mathrm{N}}=0.03536 \times \frac{400}{150}-2 \pi \times 50 \times 0.169 \times 10^{-3}=0.0412 \Omega
$$

the required system short-circuit power at the converter supply connection point is as follows:

$$
S_{\mathrm{K}}=\frac{400^{2}}{0.0412}=3.88 \mathrm{MVA}
$$

and the required motor armature inductance as follows:

$$
L_{\mathrm{a}}=0.0488 \times \frac{400}{50 \times 150}=2.60 \mathrm{mH}
$$

The harmonic currents I_{V} listed in the tables above (where $I_{1}=g \times 0.817 \times I_{\mathrm{d}}$ for firing angles $\alpha=$ 20° and $\alpha=60^{\circ}$) apply only to the values S_{K} and L_{a} calculated by the above method. If the calculated and actual values are not the same, the harmonics must be calculated separately.
For the purpose of dimensioning filters and compensation circuits with reactors, the harmonic values calculated by these equations can be applied only if the values calculated for S_{K} and L_{a} tally with the actual values of the drive. If they do not, they must be calculated separately (this is especially true when using compensated motors as these have a very low armature inductance).

6.2 Block diagram with recommended connection

6.2.1 Converters: $15 A$ to 125A

6.2.2 Converters: 210A to 280A

6.2.3 Converters: 400A to 2200A with a 3-phase fan

6.2.4 Converters: 450A to 850 A with a 1-phase fan

6.3 Parallel connection of converters

6.3.1 Circuit diagram showing parallel connection of SIMOREG converters

1) The same phase sequence is required between $1 \mathrm{U} 1 / 1 \mathrm{~V} 1 / 1 \mathrm{~W} 1$.
2) The same phase sequence is required between 1C1 / 1 D 1.
3) The converters are connected by means of an (8-pin) shielded Patch cable of type UTP CAT5 according to ANSI/EIA/TIA 568, such as those used in PC networking.
A standard 5 m cable can be ordered directly from Siemens (order number: 6RY1707-0AA08). $(n-1)$ cables are needed to connect n converters in parallel.
The bus terminator must be activated $(U 805=1)$ on the converter at each end of the bus.
4) These fuses may only be used on converters up to 850A.
5) For converters up to 850A in 4Q operation only

The terminal expansion option (CUD2) is required for each converter in a parallel connection.
A maximum of 6 converters can be connected in parallel.
When several converters are connected in parallel, the master unit should be positioned in the center to allow for signal transit times. Maximum length of paralleling interface cable between master and slave converters at each end of bus: 15 m .

For the purpose of current distribution, separate commutating reactors of the same type are required for each SIMOREG converter. Current distribution is determined by the differential reactor tolerance. A tolerance of 5% or higher is recommended for operation without derating (reduced current).
Caution:
Parallel connections may only be made between converters with the same DC current rating!

6.3.2 Parameterization of SIMOREG converters for parallel connection

6.3.2.1 Standard operating mode

Master	Slaves
U800 = $1 \quad$ Paralleling interface active	U800 $=2 \quad \begin{aligned} & \text { Paralleling interface active } \\ & \text { Use master firing pulses }\end{aligned}$
U803 = 0 \quad " +1 mode" not active	
U804.01 $=30$ control word 1 U804.02 $=31$ control word 2 U804.03 = 167 Actual speed value	U804.01 $=32$ status word 1
$\begin{array}{rll}\text { U805 = } 1 & \text { (bus termination) } & \text { on th } \\ 0 & \text { (no bus termination) } & \text { (at b } \\ & \end{array}$	on the two end units (at both physical ends of the bus cable) on all other units
U806 =12 master for one slave 13 master for 2 slaves 14 master for 3 slaves 15 master for 4 slaves 16 master for 5 slaves Set U806.02 like U806.01	U806 $=2$ 1 slave U806 $=2$ and 3 2 slaves U806 $=2,3$ and 4 3 slaves U806 $=2,3,4$ and 5 4 slaves U806 $=2,3,4,5$ and 6 5 slaves Set U806.02 like U806.01
P082 <> 0 operating mode for field	P082 $=0 \quad$ internal field is not used
Set P083 depending on the source of the actual speed value	P083 $=4$ Freely connected actual speed value P609 $=6023$ Use actual speed value of master
$\mathrm{P} 100=\frac{\text { Rated motor current }}{\text { Number of SIMOREG units }}$	$\mathrm{P} 100=\frac{\text { Rated motor current }}{\text { Number of SIMOREG units }}$
Set P648, P649 depending on the source of the control word	P648 $=6021$ Use control word 1 from master P649 $=6022$ Use control word 2 from master
	P821.01 = 31 Suppress alarm A031
P110 = Actual armature resistance x no. of SIMOREG converters P111 = Actual armature inductance x no. of SIMOREG converters The optimization run for current controller and precontrol $(\mathrm{P} 051=25)$ sets these parameters correctly.	P110 = set as on master P111 = set as on master

For further details about the operating principle of parallel connections between SIMOREG converters, please refer to Section 8, Function Diagrams, Sheet 41 (paralleling interface).

Notes:

- Control commands "Switch-on/Shutdown", "Enable operation", "Emergency stop" etc. must be connected to a group of parallel-connected SIMOREG converters via the master device. Terminals 37 and 38 must be permanently connected to terminal 34 on the slave !
- Optimization runs must be started on the master device. All slaves must be connected and ready to run when optimization is started.
6.3.2.2 Operating mode "N+1 mode" (redundancy mode)

Master	Standby master	Slaves
U800 = 1 Paralleling interface active	U800 = 2 Paralleling interface active Use master firing pulses	
U803 = 1 " $\mathrm{N}+1$ mode" active		
$\begin{aligned} & \text { U804.01 }=30 \text { control word } 1 \\ & \text { U804.02 }=31 \text { control word } 2 \\ & \text { U804.03 }=167 \text { actual speed value } \\ & \text { U804.04 }=\text { any } \\ & \text { U804.05 }=\text { any } \\ & \text { U804.06 }=32 \text { status word } 1 \\ & \text { U804.07 }=\text { any } \\ & \text { U804.08 }=\text { any } \\ & \text { U804.09 }=\text { any } \\ & \text { U804.10 }=\text { any } \end{aligned}$	$\begin{aligned} & \text { U804.01 }=32 \text { status word } 1 \\ & \text { U804.02 }=\text { any } \\ & \text { U804.03 }=\text { any } \\ & \text { U804.04 }=\text { any } \\ & \text { U804.05 }=\text { any } \\ & \text { U804.06 }=30 \quad \text { control word } 1 \\ & \text { U804.07 }=31 \quad \text { control word } 2 \\ & \text { U804.08 }=167 \text { actual speed value } \\ & \text { U804.09 }=\text { any } \\ & \text { U804.10 }=\text { any } \end{aligned}$	$\begin{aligned} & \text { U804.01 }=32 \text { status word } 1 \\ & \text { U804.02 }=\text { any } \\ & \text { U804.03 }=\text { any } \\ & \text { U804.04 }=\text { any } \\ & \text { U804.05 }=\text { any } \\ & \text { U804.06 }=\text { any } \\ & \text { U804.07 }=\text { any } \\ & \text { U804.08 }=\text { any } \\ & \text { U804.09 }=\text { any } \\ & \text { U804.10 }=\text { any } \end{aligned}$
U805 = 1 (bus termination) 0 (no bus termination)	on the two end units (at both physical ends of the bus cable) on all other units	
$\begin{array}{\|l} \hline \text { U806.01 = } \\ 12 \text { master }+1 \text { slave } \\ \\ 13 \text { master }+2 \text { slaves } \\ \\ 14 \text { master }+3 \text { slaves } \\ \\ 16 \text { master }+4 \text { slaves }+5 \text { slaves } \\ \text { U806.02 = } 2 \text { slave } 2 \end{array}$	$\begin{aligned} \text { U806.01 }= & 2 \text { slave } 2 \\ \text { U806.02 }= & 12 \text { master }+1 \text { slave } \\ & 13 \text { master }+2 \text { slaves } \\ & 14 \text { master }+3 \text { slaves } \\ & 15 \text { master }+4 \text { slaves } \\ & 16 \text { master }+5 \text { slaves } \end{aligned}$	U806.01 $=3$ 2 slaves U806.01 $=3$ and 4 3 slaves U806.01 $=3,4$ and 5 4 slaves U806.01 $=3,4,5$ and 6 5 slaves U806.02 $=$ set like U806.01
P082 <> 0 operating mode for field	$\mathrm{P} 082=0 \quad$ internal field is not used	
P083, set according to source of the actual speed value		P083 $=4 \quad$ Freely connected actual speed value P609 $=6023$ Use actual speed value of master
$\mathrm{P} 100=\frac{\text { Rated motor current }}{\text { Number of SIMOREG units }}$		
P648, P649, set according to source of the control word		$\begin{gathered} \text { P648 = 6021 Use control word } 1 \\ \text { from master } \\ \text { P649 = 6022 Use control word } 2 \\ \text { from master } \end{gathered}$
		$\begin{gathered} \text { P821.01 }=31 \text { Suppress alarm } \\ \text { A031 } \end{gathered}$
U807 $=0.000$ s telegram failure does not lead to a fault message		
P110 =Actual armature resistance x no. of SIMOREG converters P111 = Actual armature inductance x no. of SIMOREG converters The optimization run for current controller and precontrol (P051 = 25) sets these parameters correctly.	$\begin{aligned} & \mathrm{P} 110=\text { set as on master } \\ & \mathrm{P} 111=\text { set as on master } \end{aligned}$	

For further details about the operating principle of parallel connections between SIMOREG converters, please refer to Section 8, Function Diagrams, Sheet G45 (paralleling interface).

Notes:
In this mode it is possible to maintain operation with the remaining SIMOREG units if one unit should fail (e.g. fuse blown in the power section). The functional SIMOREG units continue to run without interruption if one unit fails. During configuration, make sure that the power of only n units (instead of $n+1$ units) is sufficient for the application.

- Control commands "Switch-on/Shutdown", "Enable operation", "Emergency stop" etc. must be connected to a group of parallel-connected SIMOREG converters via the master device AND via the "standby" master device.
Terminals 37 and 38 must be permanently connected to terminal 34 on the slaves!
- The speed setpoint and the actual speed value must be connected to a group of parallelconnected SIMOREG converters via the master device AND via the "standby" master device.!
- All parameters except for those in the above list must be set identically on the master and the "standby" master.
- Optimization runs must be started on the master device. All slaves must be connected and ready to run when optimization is started.

6.4 Power connections

6.4.1 Converters: 30A, 1Q

$a=$ copper busbar 20×3
$\mathrm{b}=$ copper busbar 20×5
$\mathrm{c}=$ Raychem 44A0311－20－9
All cables are Betatherm $1451 \mathrm{~mm}^{2}$ unless otherwise designated
$\underset{\mathrm{K} \text {（cathode）leads leads }}{\mathrm{G} \text {（G）le }}$
Cables are designated as specified at end

Arrangement of thyristor modules
uo！̣onısu 6u！̣eıədo ıərsew Эロ ЭヨyOWIS

C98043－A7002 －

Arrangement of thyristor modules
$a=$ copper busbar 60×5
$b=$ Raychem 44A0311-20-9
All cables are Betherm $1451 \mathrm{~mm}^{2}$ unless otherwise designated
$\underset{\mathrm{K} \text { ((Kathoden) leads }}{\mathrm{G}(\text { Gate leads }} \underset{\text { red }}{\text { yellow }}$
\checkmark Cables are designated as specified at ends

$a=$ copper bar 60×5
$b=$ Raychem 44A0311
$\mathrm{b}=$ Raychem 44A0311-20-9
All cables are Betatherm $1451 \mathrm{~mm}^{2}$ unless otherwise designated
G (Gate) leads
K (Kathoden) leads $\left.\begin{array}{l}\text { yellow } \\ \text { red }\end{array}\right]$
\rangle Cables are sesignated as specified at ends

Arrangement of thyristor modules


```
a= copper busbar 60 x 10
```

All cables are Betatherm $1451 \mathrm{~mm}^{2}$ unless otherwise designated
$\underset{\mathrm{K}}{\mathrm{G} \text { (Gate) leads }}$
Cables are designated as specified at ends

Arangement of thyristor modules

Cables are designated as specified at ends


```
\(=\) copper busbar \(60 \times 10\)
All cables are Betherm \(1451 \mathrm{~mm}^{2}\) unless othervise designated
G (Gate) leads yellow
All cables are Betterm 145 1mm}\mp@subsup{}{}{2}\mathrm{ unless otherwise designated
```

 Cables are designated as specified at ends

$\mathrm{c}=$ Raychem 44A0311-20-9
All cables are Betatherm
All cables are Betatherm $1451 \mathrm{~mm}^{2}$ unless otherwise designated

$\mathrm{G}($ Gate ）leads
K （cathode）leads $\begin{aligned} & \text { ellow } \\ & \text { red }\end{aligned}$
Δ Cables are designated as specified at ends

Arrangement of thyristor blocks
At rear

At front

6.4.10 Converters: 15 to 30A, 4Q

$a=$ copper busbar 20×3
$b=$ copper busbar 20×5
$c=$ Raychem 4410311
= $=$ Rapper busb 44AO311-20-9
All cables are Betatherm 145
G (Gate) leads \quad yellow
A

$$
\begin{aligned}
& \text { Converters: } 400 \mathrm{~V} / 90 \mathrm{~A}, 125 \mathrm{~A} \text { and } 210 \mathrm{~A} \\
& 460 \mathrm{~V} / 90 \mathrm{~A} \text { and } 125 \mathrm{~A}
\end{aligned}
$$ $460 \mathrm{~V} / 90 \mathrm{~A}$ and 125 A

$575 \mathrm{~V} / 125 \mathrm{~A}$ and 210 A

Converters: 460V / 210A

I

은

$0 ヵ-9$

All cables are Betatherm $1451 \mathrm{~mm}^{2}$ unless otherwise designated
$\underset{K}{\mathrm{G}(\text { (Gate) leadhode) leads }} \underset{\text { red }}{\text { yellow }}$
\diamond Cables are designated like specified at ends

Arrangement of thyristor modules

98043-A7002

4U1 4N1


```
K (cathode) leads leals yew red
```


\diamond Cables are designated as specified at ends

$a=$ copper busbar 60×10
$b=$ Raychum 44 A0311 -20
$a=$ copper busbar 60×10
$b=$ Raychum 44 A0311 -20
$a=$ copper busbar 60×10
$b=$ Raychem 44A0311-20-9
All cables are Betatherm $1451 \mathrm{~mm}^{2}$ unless otherwise designated
$\underset{\mathrm{K} \text { (cathoode) leads }}{\mathrm{G} \text { (Gate) leads }} \begin{array}{r}\text { yellow } \\ \text { réd }\end{array}$
Cables are designatedas specified at ends.

Arrangement of thyristor modules

$a=$ copper bar 60×10
$\mathrm{b}=$ Raychem 44A0311-20-9
All cables areBetatherm $1451 \mathrm{~mm}^{2}$ unless otherwise designated
G (Gate) leads
K (cathode) leads
yellow
red
\diamond Cables arer designated as specified at ends
Arrangement of thyristor modules

(


```
a = copper busbar 80 x 10
```

$a=$ copper busbar 00×10
$b=$ copper busbar 50×10
$c=$ Raychem 44AO311-20-9
$b=$ copper busbar 50×110
$c=$ Raychem 44A0311-20-9
All cables are Betatherm $1451 \mathrm{~mm}^{2}$ unless otherwise designated
$\mathrm{G}($ Gate) leads
K (cathode) leads
yellow
red
Cables are designated as specified at ends

Arrangement of thyristor blocks

6.5 Field supply

Converter type D... 15 to 30

Gating leads are Betatherm 145 1mm²

Module	Rated DC current armature	Rated DC current field	R1	R2
A7010-L1	$15 A$	$3 A$	0R1	0R1
A7010-L2	$30 A$	$5 A$	$0 R 1$	$0 R 05$

Converter type D... / 60 to 850

Gating leads are $1451 \mathrm{~mm}^{2}$

Module	Rated DC current armature	Rated DC current field	R1	R2	R3	R4	R5
A7014-L1	60A to 125A	$10 A$	0R04	$0 R 04$	-	-	-
A7014-L2	210 A to 280A	$15 A$	$0 R 04$				
A7014-L2	$400 A$ to 600A	$25 A$	$0 R 04$				
A7014-L2	720 A to 850A	$30 A$	$0 R 04$	$0 R 04$	0R04	0R04	0R04

Converter type D.../ 900 to 2200

a = Betatherm $1456 \mathrm{~mm}^{2}$
Gating leads are Betatherm 145 1mm ${ }^{2}$

Module	Rated DC current armature	Rated DC current field	R1	R2	R3	R4	R5	R6	R7	R8
A7004-L1/-L2	900A to 1200A	30A	0R04	0R04	0R04	OR04	0R04	0R04	0R04	0R04
A7004-L1/-L2	1500A to 2000A	40A	0R04	0R04	0R04	OR04	OR04	0R04	0R04	0R04
A7004-L3	2200A	85A	OR01	0R01	0R01	OR01	OR01	OR01	0R01	OR01

6.6 Fuses and commutating reactors

6.6.1 Commutating reactors

Commutating reactors can be selected from Catalog DA93.1.
The line impedance including commutating reactors must be equivalent of between 4\% and 10\% short-circuit voltage. Commutating reactors can be provided by the customer to limit commutating voltage dips in the supply system (subject to local regulations).

6.6.2 Fuses

For technical data, configuring data and dimension drawings, please refer to Catalog DA94.1.
It is essential to use "UL-listed" or "UL-recognized" fuses for protection of devices in accordance with UL standards.

6.6.2.1 Recommended fuses for field circuit

Converter unit Rated DC current A	Max. permissible field current A	1 Siemens fuse		1 Bussmann fuse FWP 700V Я	
		Order No.	A	Order No.	A
15	3	5SD420	16	FWP-5B	5
30	5	5SD420	16	FWP-5B	5
60 to 125	10	5SD420	16	FWP-15B	15
210 to 280	15	5SD440	25	FWP-20B	20
400 to 600	25	5SD440	25	FWP-30B	30
710 to 1200	30	5SD480	30	FWP-35B	35
1500 to 2000	40	3NE1802-0 1)	40	FWP-50B	50
2200	85	3NE8021-1 1)	100	FWP-100B	100

1) UL-recognized

6.6.2.2 Fuses for armature circuit

6.6.2.2.1 Converters 1Q: 400V, $575 \mathrm{~V}, 690 \mathrm{~V}$ and 830 V

Converter Order No.	C / V	3 line fuses Siemens 	
	AU		
	Order No.	C / V	
A / V			

Converter Order No.	C / V	Branch fuses Siemens $\boldsymbol{\text { OU }}$		
	A/V	Qty.	Order No.	$\begin{aligned} & \mathrm{C} / \mathrm{V} \\ & \mathrm{~A} / \mathrm{V} \end{aligned}$
6RA7091-6DS22	1200 / 400	6	3NE3338-8	$800 / 800$
6RA7090-6GS22	1000 / 575	6	3NE3337-8	710 / 900
6RA7088-6KS22	950 / 690	6	3NE3337-8	710 / 900
6RA7088-6LS22	900 / 830	6	3NE3337-8	710 / 900
6RA7093-4DS22	1600 / 400	6	6RY1702-0BA02	1000 / 660
6RA7093-4GS22	1600 / 575	6	6RY1702-0BA02	1000 / 660
6RA7093-4KS22	1500 / 690	6	6RY1702-0BA03	1000 / 1000
6RA7093-4LS22	1500 / 830	6	6RY1702-0BA03	1000 / 1000
6RA7095-4DS22	2000 / 400	6	6RY1702-0BA01	1250 / 660
6RA7095-4GS22	2000 / 575	6	6RY1702-0BA01	1250 / 660
6RA7095-4KS22	2000 / 690	12	6RY1702-0BA04	630 / 1000
6RA7095-4LS22	1900 / 830	12	6RY1702-0BA04	630 / 1000
6RA7096-4GS22	2200 / 575	6	6RY1702-0BA05	1500 / 660

Branch fuses are included in converter, external semiconductor fuses are not needed.

6.6.2.2.2 Converters 1Q: 460V

Converter Order No.	C/VA/V	3 line fuses Siemens $\boldsymbol{\text { GU }}$		3 line fuses Bussmann ЯU		3 line fuses Bussmann ЯU	
		Order No.	C/V	Order No.	C/V	Order No.	C/V
			A/V		A/V		A/V
6RA7018-6FS22	$30 / 460$	3NE1815-0	$25 / 690$	170M1562	$32 / 660$	FWH-35B	$35 / 500$
6RA7025-6FS22	60 / 460	3NE1817-0	50 / 690	170M1565	63 / 660	FWH-60B	$60 / 500$
6RA7028-6FS22	90 / 460	3NE1820-0	80 / 690	170M1567	100 / 660	FWH-100B	$100 / 500$
6RA7031-6FS22	125 / 460	3NE1021-0	100 / 690	170M1568	125 / 660	FWH-125B	$125 / 500$
6RA7075-6FS22	210/460	3NE3227	250 / 1000	170 M 3166	250 / 660	FWH-225A	$225 / 500$
6RA7078-6FS22	280/460	3NE3231	350 / 1000	170 M 3167	315 / 660	FWH-275A	$275 / 500$
6RA7082-6FS22	450 / 460	3NE3233	450 / 1000	170M3170	450 / 660	FWH-450A	$450 / 500$
6RA7085-6FS22	600 / 460	3NE3336	630 / 1000	170M4167	700 / 660	FWH-600A	$600 / 500$
6RA7087-6FS22	850 / 460	3NE3338-8	800 / 800	170M5165	900 / 660	FWH-800A	$800 / 500$

FWH-... and FWP-... fuses are not mechanically compatible with the 3NE... or 170M... fuses.

Converter Order No.	C / V	Branch fuses Siemens OU			
	A/V	Qty.	Order No.	C / V A/V	
6RA7091-6FS22	$1200 / 460$	6	3NE3338-8	$800 / 800$	

Branch fuses are included in converter, external semiconductor fuses are not needed.

6.6.2.2.3 Converters 4Q: 400V, $575 \mathrm{~V}, 690 \mathrm{~V}$ and 830 V

Converter Order No.	C/VA/V	3 line fuses Siemens $\boldsymbol{\text { ¢U }}$		1 DC fuse Siemens ЯU	
		Order No.	I / U	Order No.	C / V
			A/V		A / V
6RA7013-6DV62	15/400	3NE1814-0	20/690	3NE1814-0	20/690
6RA7018-6DV62	$30 / 400$	3NE8003-1	$35 / 690$	3NE4102	40 / 1000
6RA7025-6DV62	60 / 400	3NE1817-0	50 / 690	3NE4120	$80 / 1000$
6RA7025-6GV62	60 / 575	3NE1817-0	50 / 690	3NE4120	80 / 1000
6RA7028-6DV62	90 / 400	3NE1820-0	80/690	3NE4122	125 / 1000
6RA7031-6DV62	125 / 400	3NE1021-0	100 / 690	3NE4124	160 / 1000
6RA7031-6GV62	125 / 575	3NE1021-0	100 / 690	3NE4124	160 / 1000
6RA7075-6DV62	210/400	3NE3227	250 / 1000	3NE3227	250 / 1000
6RA7075-6GV62	210 / 575	3NE3227	250 / 1000	3NE3227	250 / 1000
6RA7078-6DV62	280/400	3NE3231	350 / 1000	3NE3231	350 / 1000
6RA7081-6DV62	400 / 400	3NE3233	450 / 1000	3NE3233	450 / 1000
6RA7081-6GV62	400 / 575	3NE3233	450 / 1000	3NE3233	450 / 1000
6RA7085-6DV62	600 / 400	3NE3336	630 / 1000	3NE3336	630 / 1000
6RA7085-6GV62	600 / 575	3NE3336	630 / 1000	3NE3336	630 / 1000
6RA7087-6DV62	850 / 400	3NE3338-8	$800 / 800$	3NE3334-0B 1)	$500 / 1000$
6RA7087-6GV62	850 / 575	3NE3338-8	800 / 800	3NE3334-0B 1)	500 / 1000
6RA7086-6KV62	760 / 690	3NE3337-8	710/900	3NE3334-0B 1)	500 / 1000

1) Two fuses connected in parallel

Converter Order No.	C/V A/V	Branch fuses Siemens ЯU		
		Qty.	Order No.	$\begin{aligned} & \mathbf{C} / V \\ & \mathbf{A} / V \end{aligned}$
6RA7091-6DV62	1200 / 400	6	3NE3338-8	800 / 800
6RA7090-6GV62	1100 / 575	6	3NE3338-8	800 / 800
6RA7090-6KV62	1000 / 690	6	3NE3337-8	710 / 900
6RA7088-6LV62	950 / 830	6	3NE3337-8	710 / 900
6RA7093-4DV62	1600 / 400	6	6RY1702-0BA02	1000 / 660
6RA7093-4GV62	1600 / 575	6	6RY1702-0BA02	1000 / 660
6RA7093-4KV62	1500 / 690	6	6RY1702-0BA03	1000 / 1000
6RA7093-4LV62	1500 / 830	6	6RY1702-0BA03	1000 / 1000
6RA7095-4DV62	2000 / 400	6	6RY1702-0BA01	1250 / 660
6RA7095-4GV62	2000 / 575	6	6RY1702-0BA01	1250 / 660
6RA7095-4KV62	2000 / 690	12	6RY1702-0BA04	630 / 1000
6RA7095-4LV62	1900 / 830	12	6RY1702-0BA04	630 / 1000
6RA7096-4GV62	2200 / 575	6	6RY1702-0BA05	1500 / 660

Branch fuses are included in converter, external semiconductor fuses are not needed.

6.6.2.2.4 Converters 4Q: 460V

Converter Order No.	C/VA/V	3 line fuses Siemens ЯU		3 line fuses Bussmann ЯU		3 line fuses Bussmann ЯU	
		Order No.	C/V A/V	Order No.	C/V A/V	Order No.	C/V A/V
6RA7018-6FV62	$30 / 460$	3NE1815-0	25/690	170M1562	$32 / 660$	FWH-35B	$35 / 500$
6RA7025-6FV62	60 / 460	3NE1817-0	50 / 690	170M1565	63 / 660	FWH-60B	$60 / 500$
6RA7028-6FV62	90 / 460	3NE1820-0	$80 / 690$	170M1567	100 / 660	FWH-100B	$100 / 500$
6RA7031-6FV62	125 / 460	3NE1021-0	100 / 690	170M1568	125 / 660	FWH-125B	$125 / 500$
6RA7075-6FV62	210/460	3NE3227	250 / 1000	170 M 3166	250 / 660	FWH-225A	$225 / 500$
6RA7078-6FV62	280 / 460	3NE3231	350 / 1000	170M3167	315 / 660	FWH-275A	$275 / 500$
6RA7082-6FV62	450 / 460	3NE3233	450 / 1000	170 M 3170	450 / 660	FWH-450A	$450 / 500$
6RA7085-6FV62	600 / 460	3NE3336	630 / 1000	170M4167	700 / 660	FWH-600A	600/500
6RA7087-6FV62	850 / 460	3NE3338-8	800 / 800	170M5165	900 / 660	FWH-800A	800/500

Converter Order No.	C / V	1 DC fuse Siemens ЯU		1 DC fuse ussmann ЯU $^{\text {U }}$	
		Order No.	C/V	Order No.	C/V
	A/V		A / V		A / V
6RA7018-6FV62	$30 / 460$	3NE4102	40 / 1000	FWP-35B	$35 / 660$
6RA7025-6FV62	60 / 460	3NE4120	80 / 1000	FWP-70B	70 / 660
6RA7028-6FV62	90 / 460	3NE4122	125 / 1000	FWP-125A	125 / 660
6RA7031-6FV62	125 / 460	3NE4124	160 / 1000	FWP-150A	150 / 660
6RA7075-6FV62	210 / 460	3NE3227	250 / 1000	FWP-250A	250 / 660
6RA7078-6FV62	280 / 460	3NE3231	350 / 1000	FWP-350A	350 / 660
6RA7082-6FV62	450 / 460	3NE3334-0B	500 / 1000	FWP-500A	500 / 660
6RA7085-6FV62	600 / 460	3NE3336	630 / 1000	FWP-700A	700 / 660
6RA7087-6FV62	850 / 460	3NE3334-0B 1)	500 / 1000	FWP-1000A	1000 / 660

FWH-... and FWP-... fuses are not mechanically compatible with the 3NE... or 170M... fuses.

1) Two fuses connected in parallel

Converter Order No.	C / V	Branch fuses		
Siemens 9U				
		Qty. Order No.	C / V A/V	
ARA7091-6FV62	$1200 / 460$		3NE3338-8	$800 / 800$

Branch fuses are included in converter, external semiconductor fuses are not needed.

6.6.2.3 F1 and F2 fuses in the power interface

Only UL listed or UL recognized fuses must be used for UL listed converters.
Wickmann 198 1A / 250 V 5×20 mm time lag
Wickmann 343 1A / $250 \mathrm{~V} 6,3 \times 32 \mathrm{~mm}$ time lag
Schurter FSD 1A / 250 V $5 \times 20 \mathrm{~mm}$ time lag Ordering Code 0034.3987
Schurter FST 1A / 250 V $5 \times 20 \mathrm{~mm}$ time lag Ordering Code 0034.3117

6.7 Terminal arrangement

Module C98043-A7001 (CUD1)

Module C98043-A7006 (CUD2)

Module C98043-A7002 or C98043-A7003

Module C98043-A7010

Module C98043-A7014
XF1
XF2

6.8 Terminal assignments

WARNING
The converter might sustain serious or irreparable damage if connected incorrectly.
The power cables and/or busbars must be secured mechanically outside the converter.

Power section

15A and 30A units

60A to 280A units

Terminal type:
KDS10 PCB feed-through terminal (screw-type terminal) Maximum cross-section $10 \mathrm{~mm}^{2}$, finely stranded

1U1,1V1,1W1: Through-hole for M8 (3×20 copper bus) 1C1,1D1: Through-hole for M8 (5x20 copper bus)

400A and 600A units 1U1,1V1,1W1: Through-hole for M10 (5x30 copper bus)
1C1,1D1: Through-hole for M10 (5×35 copper bus)
710A to 850A units Through-hole for M12 (5×60 copper bus)
950A to 1200A units
1500A to 2200A units
Through-hole for M12 (10x60 copper bus)
1U1,1V1,1W1: Through-hole for M12 (10x80 copper bus)
1C1,1D1: Through-hole for M12 (10x50 copper bus)
The converters are designed for a permanent power supply connection according to DIN VDE 0160 Section 6.5.2.1.
PE conductor connection: Minimum cross-section $10 \mathrm{~mm}^{2}$. (see Section 5.1 for connection options).
The connection cross-sections must be determined according to the applicable regulations, e.g. DIN VDE 100 Part 523, DIN VDE 0276 Part 1000.

Function	Terminal	Connection values/Remarks
Armature supply input	1 U 1	
	1V1	
	1W1	
PE conductor	\cap	see technical data in Section 3.4
Armature circuit motor	1C1 (1D1)	
connection	1D1 (1C1)	

Field circuit

15A to 850A units

1200A to 2000A units

2200A units

Terminal type:

MKDS terminal block (screw-type terminal) Maximum connection cross-section $4 \mathrm{~mm}^{2}$, finely stranded

G10/4 converter terminal (screw-type terminal)
Maximum connection cross-section $10 \mathrm{~mm}^{2}$, finely stranded
UK16N converter terminal (screw-type terminal)
Maximum connection cross-section $16 \mathrm{~mm}^{2}$, finely stranded

Function	Terminal		Connection values/Remarks
Supply connection	XF1-2	3 U 1	$2 \mathrm{AC} 400(-20 \%), 2 \mathrm{AC} 460(+10 \%)$
	XF1-1	$3 \mathrm{3W} 1$	
	Field winding connection	XF2-2	3C
	Rated DC voltage 325V / 373V		
	XF2-1	3D	For 2AC 400 / 460 supply connection

Electronics power supply

Terminal type: Type 49 plug-in terminal
Maximum cross-section $1.5 \mathrm{~mm}^{2}$, finely stranded

Function	Connection	$\begin{gathered} \text { Terminal } \\ \text { XP } \\ \hline \end{gathered}$	Connection values/Remarks
Incoming supply 400V	$\begin{array}{ll} \hline & 1 \\ \hline & 2 \\ \mathrm{NC} & 3 \end{array}$	5U1 5W1 5N1	$\begin{aligned} & \text { 2AC } 380 \text { to } 460(+15 \% /-25 \%) ; \ln _{\mathrm{n}}=1 \mathrm{~A} \\ & (-35 \% \text { for } 1 \mathrm{~min}) \end{aligned}$ Internal fuse protection with F1, F2 on board C98043-A7002 or -A7003 (see Section 6.6.2.3) external fuse protection 6A, characteristic C recommended
or			
Incoming supply 230V	$\begin{array}{r} 1 \\ -2 \\ -3 \end{array}$	$\begin{aligned} & 5 \mathrm{U} 1 \\ & 5 \mathrm{~W} 1 \\ & 5 \mathrm{~N} 1 \end{aligned}$	$\begin{gathered} 1 \mathrm{AC} 190(-25 \%) \text { to } 230(+15 \%) ; \mathrm{I}_{\mathrm{n}}=2 \mathrm{~A} \\ (-35 \% \text { for } 1 \mathrm{~min}) \end{gathered}$ Internal fuse protection with F1, F2 on board C98043-A7002 or -A7003 (see Section 6.6.2.3) external fuse protection 6 A, characteristic C recommended

NOTE

In the case of line voltages which exceed the tolerance range specified in Section 3.4, the electronics supply voltage, field circuit mains supply connection and converter fan connection must be adjusted by means of transformers to the permissible value stated in Section 3.4. It is essential to use an isolating transformer for rated line voltages in excess of 460V.

The rated supply voltage for the armature circuit (index 001) and the field circuit (index 002) must be set in parameter P078.

Fan

(for forced-cooled converters $\geq 400 \mathrm{~A}$)
Terminal type: DFK-PC4 plug-in terminal (screw-type)
Maximum connection cross-section $4 \mathrm{~mm}^{2}$, finely stranded
The insulation on the supply cables must be taken up to the terminal housing.

Function	Terminal	Connection values/Remarks
Incoming supply 400V to 460V	4 U 1	3 AC 400 to 460
	4 V 1	For further details, see technical data in Section 3.4
	4 W 1	
PE conductor	\ddots	
or		
Incoming supply 230V	4 V 1	1AC 230
	4 N 1	For further details, see technical data in Section 3.4

WARNING
The converter might overheat if the incorrect phase sequence is connected (incorrect direction of rotation of fan).
Check:

- On converters up to 850A (fan at bottom), check whether fan is rotating in direction of arrow
- On converters of $>850 \mathrm{~A}$ (fan at top), check whether fan is rotating in counter-clockwise direction (to left) when viewed from above
Caution: Rotating parts can cause physical injuries!

Open-loop and closed-loop control section

Terminal type:	$\mathbf{X 1 7 1}$ to $\mathbf{X 1 7 5}$	Plug-in terminal (screw-type) $\mathbf{X R}, \mathbf{X S}, \mathbf{X T}$
	Maximum connection cross-section $1.5 \mathrm{~mm}^{2}$	
	MSTB2.5 plug-in terminal	
	Maximum connection cross-section $2.5 \mathrm{~mm}^{2}$	

Analog inputs - setpoint inputs, reference voltage (see also Section 8, sheet G113)

Function		$\begin{gathered} \hline \text { Terminal } \\ \text { X174 } \end{gathered}$	Connection values/Remarks
Reference	M P10 N10	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \pm 1 \% \text { at } 25^{\circ} \mathrm{C} \text { (stability } 0.1 \% \text { per } 10^{\circ} \mathrm{K} \text {); } 10 \mathrm{~mA} \text { short- } \\ & \text { circuit-proof } \end{aligned}$
Select input	main setpoint + main setpoint -	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	Differential input Parameter settings: $\pm 10 \mathrm{~V} ; 150 \mathrm{k} \Omega$
Select input	analog 1 + analog 1 -	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	Resolution can be parameterized up to approx. $555 \mu \mathrm{~V}$ (± 14 bits) Parameter settings: 0-20mA; 300 $4-20 \mathrm{~mA} ; 300 \Omega$ Common mode suppression: $\pm 15 \mathrm{~V}$

Analog inputs - actual speed inputs, tacho inputs (see also Section 8, sheet G113)

Function	Terminal XT	Connection values/Remarks
Tacho connection 8V to 270V	103	$\pm 270 \mathrm{~V} ;>143 \mathrm{k} \Omega$
Ground analog M	104	

Pulse encoder input (see also Section 8, sheet G145)

Function		$\begin{gathered} \text { Terminal } \\ \text { X173 } \end{gathered}$	Connection values/Remarks
Supply (+13,7V to+15,2V)		26	200mA; short-circuit-proof (electronic protection) Overload response: Fault message F018
Ground pulse encoder M		27	
Track 1	Positive terminal	28	Load: $\quad \leq 5.25 \mathrm{~mA}$ at 15 V
	Negative terminal	29	(w/o switching losses, see below for cable, cable length, shield connection)
Track 2	Positive terminal	30	Switching hysteresis: See below
	Negative terminal	31	Pulse/pause ratio: 1:1
Zero marker	Positive terminal	32	Level of input pulses: See below
	Negative terminal	33	Track offset: Table 1 see below
			Pulse frequency: Table 2 see below

Characteristic data of pulse tacho evaluation electronics

Level of input pulses:

Encoder signals (symmetrical and asymmetrical) up to a max. 27 V differential voltage can be processed by the evaluated electronics.

Electronic adaptation of evaluation electronics to signal voltage of encoder:

- Rated input voltage range 5V P142=0 (see also Section 8, sheet 17):

Low level: Differential voltage $<0.8 \mathrm{~V}$
High level: Differential voltage $>2.0 \mathrm{~V}$
Hysteresis: $\quad>0.2 \mathrm{~V}$
Common-mode control range: $\pm 10 \mathrm{~V}$

- Rated input voltage range 15V P142=1 (see also Section 8, sheet 17):

Low level: Differential voltage $<5.0 \mathrm{~V}$
High level: Differential voltage >8.0V Restriction: See switching frequency
Hysteresis: >1V
Common-mode control range: $\pm 10 \mathrm{~V}$
If the pulse encoder does not supply symmetrical encoder signals, then its ground must be routed as a twisted-pair lead with every signal cable and connected to the negative terminals of track 1, track 2 and the zero marker.

Switching frequency:

The maximum frequency of the encoder pulses is 300 kHz . To ensure correct evaluation of the encoder pulses, the minimum distance $T_{\text {min }}$ between two encoder signal edges (tracks 1 and 2) specified in the table must be observed:

Table 1:

	Rated input voltage 5V		Rated input voltage 15V		
Differential voltage 1)	2 V	$>2.5 \mathrm{~V}$	8 V	10 V	$>14 \mathrm{~V}$
$\mathrm{~T}_{\min }{ }^{2)}$	630 ns	380 ns	630 ns	430 ns	380 ns

1) Differential voltage at terminals of evaluation electronics
2) The phase error L_{G} (deviating from 90°), which may occur as the result of encoder and cable, can be calculated from $\mathrm{T}_{\text {min }}$:
$\mathrm{L}_{\mathrm{G}}= \pm\left(90^{\circ}-\mathrm{f}_{\mathrm{p}} * \mathrm{~T}_{\min } * 360^{\circ} * 10^{-6}\right)$
$\mathrm{L}_{\mathrm{G}}\left[{ }^{\circ}\right]=$ phase error
$\mathrm{f}_{\mathrm{p}}[\mathrm{kHz}]=$ pulse frequency
$\mathrm{T}_{\text {min }}[\mathrm{ns}]=$ minimum distance between edges
This formula applies only if the encoder pulse ratio is $1: 1$.

If the pulse encoder is incorrectly matched to the encoder cable, disturbing cable reflections will be produced at the receive end. These reflections must be damped so that the encoder pulses can be correctly evaluated. The limit values listed in the table below must be maintained to ensure that the resultant power loss in the adapting element of the evaluation electronics is not exceeded.

Table 2:

$\mathrm{f}_{\max }$	50 kHz	100 kHz	150 kHz	200 kHz	300 kHz
Differential voltage 3)	Up to 27 V	Up to 22 V	Up to 18 V	Up to 16 V	Up to 14 V

3) Differential voltage of encoder pulses at no load (approximate encoder power supply voltage)

Cable, cable length, shield connection:

The encoder cable capacitance must be recharged at each encoder edge change. The RMS value of this current is proportional to the cable length and the pulse frequency and must exceed the current specified by the encoder manufacturer. A suitable cable as recommended by the encoder manufacturer must be used. The maximum cable length must not be exceeded. Generally, a twisted cable pair with common pair shield is sufficient for each track. Crosstalk between the cables is thus reduced. The shielding of all pairs protects against noise pulses. The shield must be connected to the shield bar of the SIMOREG converter over the largest possible surface area.

Temperature sensor inputs (motor interface 1) (see also Section 8, sheet G185)

Function	Terminal X174	Connection values/Remarks
Motor temperature Connection of the temperature sensor	22	Sensor acc. to P490 index 1
Ground analog M	23	

Analog outputs (see also Section 8, sheet G115)

Function	$\begin{gathered} \text { Terminal } \\ \text { X175 } \end{gathered}$	Connection values/Remarks
Actual current Ground analog M	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	0. . . $\pm 10 \mathrm{~V}$ corresponds to $0 . . . \pm 200 \%$ Converter rated DC current (r072.002) Max. load 2 mA , short-circuit-proof
Select output analog 1 Ground analog M	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	0... $\pm 10 \mathrm{~V}$, max. 2mA short-circuit-proof
Select output analog 2 Ground analog M	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	Resolution ± 11 bits

Binary control inputs (see also Section 8, sheet G110)

Function	$\begin{gathered} \text { Terminal } \\ \text { X171 } \end{gathered}$	Connection values/Remarks
Supply (output)	34	24V DC, internal short-circuit-proof supply referred to internal ground. The sum of the currents drawn from terminals 34,44 and 210 must not exceed 200 mA . Overload response: Fault message F018
Ground digital M	35	
Select input binary 1	36	H signal:+13V to +33V L signal: -33 V to +3 V or terminal open 8.5 mA at 24 V
Power On / Shutdown H signal: Power ON Line contactor CLOSED + (with H signal at terminal 38), acceleration along rampfunction generator ramp to operating speed. L signal: Shutdown Deceleration along rampfunction generator ramp to $\mathrm{n}<\mathrm{n}_{\text {min }}$ (P370) + , controller disable + line contactor OPEN. See Section 9.3 for exact function description.	37	
Enable operation H signal: Controller enabled L signal: Controller disabled See Section 9.3.4 for exact function description	38	
Select input binary 2	39	

Safety shutdown (E-STOP, see also Section 9.8)

Function	Terminal XS	Connection values/Remarks
Supply for safety shutdown (output)	106	24 V DC, max. load 50mA, short-circuit-proof Overload response: Fault message F018
Safety shutdown switch	105	$\mathrm{I}_{\mathrm{e}}=20 \mathrm{~mA}$
Safety shutdown pushbutton	107	NC contact $\mathrm{I}_{\mathrm{e}}=30 \mathrm{~mA}$
Safety shutdown Reset	108	NO contact $\mathrm{I}_{\mathrm{e}}=10 \mathrm{~mA}$

NOTICE

Either terminal 105 or terminals $107+108$ may be used!
Terminal 105 is connected to terminal 106 in the delivery state.

Binary control outputs (see also Section 8, sheet G112)

Function	Terminal X171	Connection values/Remarks	
Select output binary 1	46	H signal: +20V to +26V	
Ground M		47	L signal: 0 to +2V
Select output binary 2	48	Short-circuit-proof 100mA	
Ground M	54	Overload response: Fault message F018	

Binary control outputs (isolated relay outputs)

Function	Terminal XR	Connection values/Remarks
Relay for line contactor	109	Load capability:
	110	$\leq 250 \mathrm{~V}$ AC, 4A; $\cos \Phi=1$
		$\leq 250 \mathrm{~V}$ AC, $2 \mathrm{~A} ; \cos \Phi=0,4$ $\leq 30 \mathrm{~V}$ DC, 2 A
		External fuse protection 4A, characteristic C recommended

Serial interface 1 RS232 (9-pin SUBMIN D socket connector)
X300
Use a shielded connecting cable! Ground shield at both ends!

Con. pin X300	Function
1	Housing earth
2	Receive cable to RS232 (V.24) standard
3	Send and receive cables to RS485, two-wire, positive differential input/output
4	Input: Reserved for later use
5	Ground
6	5 V voltage supply for OP1S
7	Send cable to RS232 (V.24) standard
8	Send and receive cables to RS485, two-wire, positive differential input/output
9	Ground

Cable length: Up to 15 m according to EIA Standard RS232C
Up to 30 m capacitive load, max. 2.5 nF (cable and receiver)
A serial connection to a PLC or PC can be made using connector X300 on the PMU, allowing the converter to be controlled and operated from a central control center or room.

Serial interface 2 RS485

Function	Terminal $\mathbf{X 1 7 2}$	Connection values/Remarks
TX+	56	RS485, 4-wire send cable, positive differential input
TX-	57	RS485, 4-wire send cable, negative differential input
RX+/TX+	58	RS485, 4-wire receive cable, positive differential input, 2-wire send/receive cable, positive differential input
RX-/TX-	59	RS485, 4-wire receive cable, negative differential input, 2-wire send/receive cable, negative differential input
M	60	Ground

Cable length: For transmission rate $=187.5 \mathrm{kBd} \quad 600 \mathrm{~m}$
For transmission rate $\leq 93.75 \mathrm{kBd} \quad 1200 \mathrm{~m}$
The following must be observed: DIN 19245 Part 1
The potential difference between the data reference potentials M of all interfaces must not exceed $-7 \mathrm{~V} /+12 \mathrm{~V}$. If this cannot be guaranteed, then equipotential bonding must be provided.

Activation of interface 1 or 2:

- Set the baud rate in parameter P783 or P793.
- Set the protocol in parameter P780 or P790.

Options:

Terminal expansion CUD2 (C98043-A7006)

Terminal type: Plug-in terminal (screw-type)
Max. connection cross-section $1.5 \mathrm{~mm}^{2}$
Motor interface (see also function diagrams, Section 8, sheets G185 and G186)

Function	$\begin{gathered} \text { Terminal } \\ \text { X164 } \end{gathered}$	Connection values/Remarks
Motor temp. positive terminal negative terminal	$\begin{aligned} & 204 \\ & 205 \end{aligned}$	Sensor acc. to P490 index 2
	$\begin{gathered} \hline \text { Terminal } \\ \text { X161 } \end{gathered}$	
Supply \quad binary inputs (output)	210	24V DC, internal short-circuit-proof supply referred to internal ground. The sum of the currents drawn from terminals 34,44 and 210 must not exceed 200 mA . Overload response: Fault message F018
Binary input	211	
Binary input	212	H signal: +13 V to +33 V
Binary input	213	\} L signal:- 33 V to +3 V or terminal open
Binary input	214	Input resistance $=2.8 \mathrm{k} \Omega$
Ground for binary inputs	215	can be isolated from internal ground
Ground for binary inputs	216	(open wire jumper between terminals
M	217	216 and 217)

Analog inputs (see also Section 8, sheet G114)

Function	Terminal $\mathbf{X 1 6 4}$	Connection values/Remarks
Select input analog 2	8	$\pm 10 \mathrm{~V}, 52 \mathrm{k} \Omega$
Ground analog	9	Resolution: ± 10 bit
Select input analog 3	10	Common mode suppression: $\pm 15 \mathrm{~V}$
Ground analog	11	

Analog outputs (see also Section 8, sheet G116)

Function	Terminal $\mathbf{X 1 6 4}$	Connection values/Remarks	
Select output	analog 3	18	$0 \ldots \pm 10 \mathrm{~V}$, max. 2mA
Ground analog M		19	Short-circuit-proof
Select output	analog 4	20	Resolution ± 11 bit
Ground analog M		21	

Binary inputs (see also Section 8, sheet G111)

Function	Terminal X163	Connection values/Remarks
Supply	44	24V DC, internal short-circuit-proof supply referred to internal ground. The sum of the currents drawn from terminals 34,44 and 210 must not exceed 200 mA.
Ground digital M	45	Overload response: Fault message F018
Select input	binary 3	40
Select input	binary 4	41
Select input	binary 5 signal:+13V to +33V	
Select input	binary 6 63 V to +3V or terminal open	

Binary outputs (see also Section 8, sheet G112)

Function	Terminal X163	Connection values/Remarks	
Select output binary 3	50	H signal:+20V to +26V	
Ground M		51	L signal:0 to +2V
Select output binary 4	52	Short-circuit-proof 100 mA	
Ground M		53	Internal snubber circuit (free-wheeling diode)

Serial interface 3 RS485

Function	Terminal $\mathbf{X 1 6 2}$	Connection values/Remarks
TX+	61	RS485, 4-wire send cable, positive differential input
TX-	61	RS485, 4-wire send cable, negative differential input
RX+/TX+	63	RS485, 4-wire receive cable, positive differential input, 2-wire send/receive cable, positive differential input
RX-/TX-	64	RS485, 4-wire receive cable, negative differential input, 2-wire send/receive cable, negative differential input
M	65	Ground

Cable length: For transmission rate $=187.5 \mathrm{kBd} \quad 600 \mathrm{~m}$
For transmission rate $\leq 93.75 \mathrm{kBd} \quad 1200 \mathrm{~m}$
The following must be observed: DIN 19245 Part 1
The potential difference between the data reference potentials M of all interfaces must not exceed $-7 \mathrm{~V} /+12 \mathrm{~V}$. If this cannot be guaranteed, then equipotential bonding must be provided.

Activate interface 3:

- Set the baud rate in parameter P803.
- Set the protocol in parameter P800.

7 Start-Up

7.1 General safety information for start-up

DANGER

Before commencing with start-up on the converters (90A to 600A), make sure that the transparent terminal cover is mounted in the correct position (see Section 5.1).

CAUTION

Before handling any boards (in particular, the A7001 electronics board), please make sure that your body is electrostatically discharged to protect electronic components against high voltages caused by electrostatic charges. The simplest way of doing this is to touch a conductive, grounded object (e.g. bare metal cabinet component immediately beforehand).

PCBs must not be allowed to come into contact with highly insulating materials (e.g. plastic foil, insulating table tops or clothing made of synthetic fibers).

PCBs may only be set down on electrically conducting surfaces.

WARNING

Hazardous voltages and rotating parts (fans) are present in this electrical equipment during operation. Non-observance of the safety instructions can result in death, severe personal injury or substantial property damage.
Hazardous voltage may be present at the signaling relays in the customer's installation.
The converters must not be connected to a supply with earth-leakage circuit-breaker (VDE 0160, Section 6.5) since, in the event of a fault to frame or ground, the fault current may contain a DC component that will either prevent or hinder a higher-level e.l.c.b. from tripping. In this case, all loads connected to this e.l.c.b. have no protection either.

Only qualified personnel who are thoroughly familiar with all safety notices contained in the operating instructions as well as erection, installation, operating and maintenance instructions should be allowed to work on these devices.

The successful and safe operation of this equipment is dependent on careful transportation, proper storage and installation as well as correct operation and maintenance.
The converter is at a hazardous voltage level even when the line contactor is open. The gating board (board mounted directly to lower part of housing) has many circuits at hazardous voltage levels. Before carrying out any maintenance or repair work, all converter power sources must be disconnected and locked out.

These instructions do not claim to list all of the measures required to ensure safe and reliable operation of the converter. For special applications, additional, supplementary information or instructions might be required. If problems do occur and you feel in any way uncertain, please contact your local Siemens office or representative.

The use of unauthorized parts in the repair of this converter and handling of the equipment by unqualified personnel can give rise to hazardous conditions which may cause death, severe personal injury or substantial property damage. All safety notices contained in this instruction manual and attached to the converter itself must be carefully observed.

Please read the safety information given in Section 1 of this instruction manual.

7.2 Operator control panels

The basic converter is equipped with a simple operator panel (PMU) as standard. A user-friendly panel with plaintext display (OP1S) can be connected as an option.

7.2.1 Simple operator control panel (PMU "Parameterization Unit")

The simple operator control panel is mounted in the converter door and consists of a 5-digit, 7segment display with three status display LEDs and three parameterization keys below.

All adjustments and settings that need to be undertaken for the purpose of start-up can be made on the simple control panel.

- P key
- Switches over between parameter number (parameter mode), parameter value (value mode) and index number (index mode) on indexed parameters.
- Acknowledges active fault messages.
- P and RAISE keys to switch a fault message and alarm to the background (see Section 10, Fault Messages and Alarms)
- P and LOWER key to switch a fault message and alarm from the background back to the foreground display on the PMU (see Section 10, Fault Messages and Alarms)
- UP key ($\mathbf{\Delta}$)
- Selects a higher parameter number in parameter mode. When the highest number is displayed, the key can be pressed again to return to the other end of the number range (i.e. the highest number is thus adjacent to the lowest number).
- Increases the selected and displayed parameter value in value mode.
- Increases the index in index mode (for indexed parameters)
- Accelerates an adjustment process activated with the DOWN key (if both keys are pressed at the same time).
- DOWN key ($\mathbf{\nabla}$)
- Selects a lower parameter number in parameter mode. When the lowest number is displayed, the key can be pressed again to return to the other end of the number range (i.e. the lowest number is thus adjacent to the highest number).
- Decreases the selected and displayed parameter value in value mode.
- Decreases the index in index mode (for indexed parameters)
- Accelerates an adjustment process activated with the UP key (if both keys are pressed at the same time).

LED displays

Run green LED
in "Torque direction active" state (MI, MII, MO).
(see r000 in Section 11)
Ready yellow LED LED illuminated
in "Ready" state (o1 .. o7).
(see r000 in Section 11)
Fault red LED
LED illuminated

LED flashing
in "Fault signal present" state (o11)
(see r000 in Section 11 and Faults and Alarms (Section 10))
An alarm is active (see Faults and Alarms in Section 10).

7.2.2 User-friendly operator control panel (OP1S)

The optional, user-friendly, operator control panel with plaintext display (order no.: 6SE7090$0 X X 84-2 F K 0$) is mounted in the special location provided in the converter door.
This location provides a connection to the serial basic converter interface SST1.
Parameters can be selected directly through input of the parameter number via the keyboard of the OP1S. The following interrelationships apply:

	Displayed number	Number to be keyed in on OP1S
Basic converter parameter	rxxx, Pxxx	(0) x xx
	Uxxx, nxxx	2xxx
Technology board parameter	Hxxx, dxxx	1xxx
	Lxxx, cxxx	3 xxx

If the RAISE or LOWER key on the OP1S is used to select adjacent parameter numbers, then any missing numbers in the range of basic converter parameters are skipped.
This automatic skipping over missing numbers does not work for technology board parameters. In this case, the numbers of existing parameters must be entered directly.

The OP1S switches to operational display a few seconds after initialization.

By pressing the <P> key, you can switch from the operating display to the Basic Menu in which you can either select "Free access" to all parameters or a variety of functions. Details of these functions can be found in the function diagram "OP1S operational display" (Section 8, Sheet Z12) and the OP1S operating instructions.

The converter parameters can be set in "Free access" status.

You can return to the operating status display by pressing the <R> key (several times if necessary).

Control bits from OP1S operator panel:

(see also function diagram "OP1S operational display" (Section 8, Sheet Z12) and the OP1S operating instructions)

Data are exchanged between the OP1S and SIMOREG 6RA70 converter via the G-SST1 interface (RS485) and USS protocol.
The OP1S operator panel transfers the following control bits in process data word 1 in the USS message:

Key on OP1S	Function *)	Bit in PZD word1 $($ connector K2001)	Binector
ON key / OFF key (I/0)	ON / OFF1	Bit 0	B2100
Reset	Acknowledge	Bit 7	B2107
Jog	Jog (inch)	Bit 8	B2108
Reverse	Enable positive direction of rotation	Bit 11	B2111
	Enable negative direction of rotation	Bit 12	B2112
	Increase motorized potentiometer	Bit 13	B2113
	Decrease motorized potentiometer	Bit 14	B2114

*) Suggested functions. Since binectors can be freely wired up to any selector switch, the control signals from the OP1S can be used for any type of control task in the SIMOREG 6RA70.

Connection of control signals from the OP1S for the suggested functions:

Functions can be implemented via the OP1S only if the following conditions are fulfilled:

1) Bit-by-bit input of control bits in control word 1 (P648 = 9), see also Section 8, Function Diagrams, Sheet 33
2) OP1S in "Operational display" status

ON / OFF1:
Parameterization of switch-on/shutdown via OP1S by setting
P654 = 2100
Please also note AND operation with "Switch-on/Shutdown" from terminal 37 (see also Function Diagrams, Sheet 14 in Section 8 and Section "Switch-on/Shutdown (ON / OFF) terminal 37" in Section 9)

Acknowledge:
Parameterization of fault message acknowledgements via OP1S by setting
P665, P666 or P667 = 2107
Faults can always be acknowledged by pressing the <P> key on the PMU.
Inching:
Parameterization of inching via OP1S by setting
P668 or P669 = 2108
Selection of source of inching setpoint via the corresponding index of P436 (see "Inching setpoint" function diagram)

Direction of rotation enable:
Parameterization of direction of rotation enabling via OP1S by setting
P671 = 2111 (positive direction of rotation)
P672 = 2112 (negative direction of rotation)
Motorized potentiometer:
Parameterization of motorized potentiometer via OP1S by setting
P673 = 2113 (higher)
P674 = 2114 (lower)
P644 = 240 (main setpoint from motorized potentiometer)

7.3 Parameterization procedure

Parameterization is the process of changing setting values (parameters) via the operator panel, activating converter functions or displaying measured values.
Parameters for the basic converter are called P, r, U or n parameters. Parameters for an optional supplementary board are called $\mathrm{H}, \mathrm{d}, \mathrm{L}$ or c parameters.

The basic unit parameters are displayed first on the PMU, followed by the technology board parameters (if such a board is installed). It is important not to confuse the parameters of the optional SOO technology software of the basic unit with the parameters of an optional supplementary board (T100, T300 or T400).

Depending on how parameter P052 is set, only some parameter numbers (see Section 11,
Parameter List) are displayed.

7.3.1 Parameter types

Display parameters are used to display current quantities such as the main setpoint, armature voltage, setpoint/actual value difference of speed controller, etc. The values of display parameters are read-only values and cannot be changed.

Setting parameters are used to both display and change quantities such as the rated motor current, thermal motor time constant, speed controller P gain, etc.
Indexed parameters are used to both display and change several parameter values which are all assigned to the same parameter number.

7.3.2 Parameterization on simple operator control panel

After the electronics supply voltage has been switched on, the PMU is either in the operational display state and indicating the current operating status of the SIMOREG 6RA70 (e.g. o7.0), or in the fault/alarm display state and indicating a fault or alarm (e.g. F021).

Operational states are described under parameter r000 in Section 11 and the fault and alarm messages in Section 10.

1. To reach the parameter number level from the operational display state (e.g. o7.0), press the P key and then the <Up> or <Down> key to select individual parameter numbers.
2. To reach the parameter index level (for indexed parameters) from the parameter number level, press P and then the <Up> or <Down> key to select individual indices.
If you press P when a non-indexed parameter is displayed, you go directly to the parameter value level.
3. To reach the parameter value level from the parameter index level (for indexed parameters), press P.
4. On the parameter value level, you can change the setting of a parameter value by pressing the <Up> or <Down> key.

NOTE

Parameters can be altered only if the following conditions are fulfilled:
The appropriate access authorization is set in key parameter P051, e.g. "40" (see Section 11, "Parameter List").

The converter is the correct operational state. Parameters with characteristic "offline" cannot be changed when the converter is in the "Run" (online) state. To change parameters with this characteristic, switch the converter to the ≥ 01.0 status ("Ready").

The values of display parameters can never be changed (read only).

5．Manual shifting

If the 5 existing digits on the 7 －segment display are not sufficient to display a parameter value，the display first shows just 5 digits（see Fig．7．1）．To indicate that digits are concealed to the right or left of this＂window＂，the right－hand or left－hand digit flashes．By pressing the＜P＞＋＜Down＞or ＜P＞＋＜Up＞key，you can shift the window over the remaining digits of the parameter value．
As an orientation guide，the position of the right－hand digit within the overall parameter value is displayed briefly during manual shifting．

Example：Parameter value＂208．173＂
＂208．17＂is displayed when the parameter is selected．When the P and LOWER keys are pressed，＂ 1 ＂appears briefly followed by ＂ 08.173 ＂，i．e．the right－hand digit 3 is the $1^{\text {st }}$ position in the parameter value．
When the P and RAISE keys are pressed，＂2＂appears briefly followed by＂208．17＂，i．e．the right－hand digit 7 is the $2^{\text {nd }}$ position in the parameter value．

Fig．7．1 Shifting the PMU display for parameter values with more than 5 digits

6．Press the P key to return to the parameter number level from the parameter value level．

Tables 7.1 and 7.2 below show an overview of displays which may appear on the PMU：

		Parameter number e．g．	Index e．g．	Parameter value
e．g．				

Table7．1 Display of visualization and setting parameters on the PMU

	Actual value	Parameter value not（currently） possible	Alarm	Fault
Display	－こ．．В	－	คПココ	F～ちG

Table 7．2 Status displays on the PMU

NOTE

Parameters are described in the Parameter List in Section 11 and faults and alarms in Section 10.

7.4 Reset to default value and adjust offset

Restoring parameters values to defaults (works settings) and performing an internal converter offset adjustment.

The "Restore factory setting" function must be executed after every software update if the converter software has been updated from version 1.0 or 1.1.

With converter SW version 1.2 and later, it is no longer necessary to execute "Restore factory settings" after a software update because the parameter settings prior to the update remain valid.

The "Restore to default" function can be executed if a defined basic setting is to be established, e.g. in order to carry out a complete new start-up operation.

NOTICE

When the "Restore to default" function is activated, all parameters set for a specific installation are overwritten (deleted). We therefore recommend that all old settings be read out beforehand with Drive Monitor and stored on a PC or programmer.
"Restore to default" must be followed by a completely new start-up operation or else the converter will not be "ready" with respect to safety.

Execution of function:

1. Set parameter P051 = $\mathbf{2 1}$
2. Transfer parameter values to the non-volatile memory.

The parameter values are stored in non-volatile storage (EEPROM) so that they will still be available when the converter is switched off. This operation takes at least 5 s (but may also last several minutes). The number of the parameter currently being processed is displayed on the PMU during the process. The electronics power supply must remain connected while this operation is in progress.
3. Offset adjustments

Parameter P825.ii is set (takes approx. 10 s).
The offset adjustment can also be activated as an individual function by means of parameter P051 = 22.

7.5 Start-up procedure

WARNING

4

The converter is at a hazardous voltage level even when the line contactor is open. The gating board (board mounted directly to lower part of housing) has many circuits at hazardous voltage levels.

Non-observance of the safety instructions given in this manual can result in death, severe personal injury or substantial property damage.

P051 . . . Key parameter
0 Parameter cannot be changed
40 Parameter can be changed
. . Selection of parameters to be displayed
0 Only parameters that are not set to default are visible
3 All parameters are visible

2 Adjustment of converter rated currents

NOTICE

On North American manufactured Base Drive assemblies (Type 6RA70xx-2xxxx) the US rating must be set in Parameter P067.

The rated converter armature DC current must be adapted by the setting in parameter P076.001 (in \%) or parameter P067, if::

$$
\frac{\text { Max. armature current }}{\text { Rated armature DC current }}<0,5
$$

The rated converter field DC current must be adjusted by the setting in parameter P076.002 (in \%) if:

$$
\frac{\text { Max. field current }}{\text { Rated converter field DC current }}<0,5
$$

P078.001 . . . Supply voltage for armature circuit (in volts)
P078.002 . . . Supply voltage for field circuit (in volts)

4 Input of motor data

In the parameters below, the motor data must be entered as specified on the motor rating plate.
P100 . . . Rated armature current (in amps)
P101 . . . Rated armature voltage (in volts)
P102 . . . Rated field current (in amps)
P104 . . Speed n_{1} (in rpm) see also Section 9.16
P105 . . . Armature current I_{1} (in amperes) see also Section 9.16
P106 . . . Speed n_{2} (in rpm)
see also Section 9.16
P107 . . . Armature current I_{2} (in amperes)
see also Section 9.16
P108 . . . Maximum operating speed n_{3} (in rpm)
P109... 1 = speed-dependent current limitation active
see also Section 9.16

P114 . . . Thermal time constant of motor (in minutes)
see also Section 9.16
(if necessary: activate fault signal F037 with P820!)
see also Section 9.14

5 Actual speed sensing data

5.1 Operation with analog tacho

P083 = 1: The actual speed is supplied from the "Main actual value" channel (K0013) (terminals XT.103, XT.104)

P741 Tacho voltage at maximum speed (-270,00V to $+270,00 \mathrm{~V})$

5.2 Operation with pulse encoder

P083 = 2: \quad The actual speed is supplied by the pulse encoder (K0040)

P140 Selecting a pulse encoder type (pulse encoder types see below)
0 No encoder/"Speed sensing with pulse encoder" function not selected
1 Pulse encoder type 1
2 Pulse encoder type 1a
3 Pulse encoder type 2
4 Pulse encoder type 3

1. Pulse encoder type 1

Encoder with two pulse tracks mutually displaced by 90° (with/without zero marker)

Heidenhain ROD
Teldix Rotaswitch Serie 26
2. Pulse encoder type 1a Encoder with two pulse tracks mutually displaced by 90° (with/without zero marker). The zero marker is converted internally to a signal in the same way as on encoder type 1.

3. Pulse encoder type 2

Encoder with one pulse track per direction of rotation (with/without zero marker).

4. Pulse encoder type 3

Encoder with one pulse track and one output for direction of rotation (with/without zero marker).

P141 Number of pulses of pulse encoder (in pulses/rev)

P142 Matching to pulse encoder signal voltage
0 Pulse encoder outputs 5 V signals
1 Pulse encoder outputs 15 V signals
Matching of internal operating points to signal voltage of incoming pulse encoder signals.

NOTICE

Resetting parameter P142 to the alternative setting does not switch over the supply voltage for the pulse encoder (terminals X173.26 and 27).
Terminal X173.26 always supplies +15 V . An external voltage supply is must be provided for pulse encoders requiring a 5 V supply.

P143 Setting the maximum speed for pulse encoder operation (in pulses/rev)
The speed set in this parameter corresponds to an actual speed (K0040) of 100\%.
5.3 Operation without tacho (EMF control)

P083 = 3: \quad The actual speed is supplied from the "Actual EMF" channel (K0287), but weighted with P.

P115 EMF at maximum speed
(1.00 to 140.00\% of rated converter supply voltage (r078.001)).
5.4 Freely wired actual value

P083 = 4: The actual value input is defined with P609.
P609 Number of connector to which actual speed controller value is connected.

6 Field data

6.1 Field control

P082 = 0: Internal field is not used
(e.g. with permanent-field motors)

P082 = 1: \quad The field is switched together with the line contactor (field pulses are enabled/disabled when line contactor closes/opens)

P082 = 2: \quad Automatic connection of standstill field set via P257 after a delay parameterized via P258, after operating status o7 or higher has been reached

P082 = 3: Field current permanently connected
6.2 Field weakening

P081 $=0$: \quad No field weakening as a function of speed or EMF
P081 = 1: Field weakening operation as a function of internal EMF control so that, in the field weakening range, i.e. at speeds above rated motor speed (= "threshold speed"), the motor EMF is maintained constantly at setpoint EMFset $(\mathrm{K} 289)=$ P101 - P100 * P110.

7 Selection of basic technological functions

7.1 Current limits

P171 Motor current limit in torque direction I (in\% of P100)
P172 Motor current limit in torque direction II (in\% of P100)

7.2 Torque limits

P180 Torque limit 1 in torque direction I (in \% of rated motor torque)

P181 Torque limit 1 in torque direction II (in \% of rated motor torque)
7.3

P303 Acceleration time 1 (in seconds)
P304 Deceleration time 1 (in seconds)
P305 Initial rounding 1 (in seconds)
P306 Final rounding 1 (in seconds)

8

execution of optimization runs

8.1
fhe drive must be in operating state 07.0 or o7.1 (enter SHUTDOWN!).
8.2
 one of the following optimization runs in key parameter P051:

P051 = 25
Optimization run for precontrol and current controller for armature and field
P051 = 26 Speed controller optimization run
can be preceded by selection of the degree of dynamic response of the speed control loop with P236, where lower values produce a softer controller setting.

P051 = 27 Optimization run for field weakening
P051 = 28 Optimization run for compensation of friction moment and moment of inertia
P051 = 29 Speed controller optimization run for drives with oscillating mechanical system.
8.3 he SIMOREG converter switches to operating state o7.4 for several seconds and then to o7.0 onot. 1 and waits for the input of SWITCH-ON and OPERATING ENABLE..

Enter the commands SWITCH-ON and OPERATING ENABLE.
The flashing of the decimal point in the operational status display on the PMU (simple operator control panel) indicates that an optimization run will be performed after the switch-on command.

If the switch-on command is not given within 30 s , this waiting status is terminated and fault message F052 displayed.
8.4 As soon as the converter reaches operating status <01.0 (RUN), the optimization run is exocuted.
An activity display appears on the PMU, consisting of two 2-digit numbers, separated by a bar that moves up and down. These two numbers indicate (for SIEMENS personnel) the current status of the optimization run.

P051 = $\mathbf{2 5}$ Optimization run for precontrol and current controller for armature and field (process lasts approximately 40s)
The current controller optimization run may be executed without a mechanical load coupled to the motor; it may be necessary to lock the rotor.
The following parameters are set automatically: P110, P111, P112, P155, P156, P255, P256, P826.

CAUTION

Permanent-field motors (and motors with an extremely high residual flux) must be mechanically locked during this optimization run.

WARNING

The set current limits are not effective during the current controller optimization run. 75% of the rated motor armature current flows for approximately 0.7 s . Furthermore, individual current spikes of approximately 120% of the motor rated armature current are generated.

P051 = $\mathbf{2 6}$ Speed controller optimization run (process lasts approximately 6s)
The degree of dynamic response of the speed control loop can be selected with P236, where lower values produce a softer control loop. P236 must be set before the speed controller is optimized, and affects the settings of P225, P226, and P228.
For the purpose of speed controller optimization, the ultimate mechanical load should be connected to the motor where possible, since the parameter settings are determined by the measured moment of inertia.
The following parameters are set automatically: P225, P226 and P228.
Note:
The speed controller optimization run takes only the filtering of the actual speed controller value parameterized in P200 into account and, if P083=1, filtering of the main actual value parameterized in P745.
When P200 < 20ms, P225 (gain) is limited to a value of 30.00 .
The speed controller optimization run sets P228 (speed setpoint filter) to the same value as P226 (speed controller integration time) (for the purpose of achieving an optimum control response to abrupt setpoint changes).

WARNING

During the speed controller optimization run, the motor is accelerated at a maximum of 45% of its rated armature current. The motor may reach speeds of up to approximately 20% of maximum speed.

If field weakening is selected (P081 = 1), if closed-loop torque control (P170=1) or torque limiting (P169=1) is selected or if a variable field current setpoint is applied:

P051 = $\mathbf{2 7} \quad$ Optimization run for field weakening (process lasts approx. 1min) This optimization run may also be started without a mechanical load. The following parameters are set automatically: P117 to P139, P275 and P276.

Note:
In order to determine the magnetization characteristic, the field current setpoint is reduced during the optimization run from 100% of the motor rated field current as set in P102 down to a minimum of 8%. The field current setpoint is limited to a minimum according to P103 by parameterizing P103 to values < 50\% of P102 for the duration of the run. This might be necessary in the case of uncompensated motors with a very high armature reaction.
The magnetizing characteristic is approximated linearly to 0 , starting from the measuring point, at a minimum field current setpoint.

To execute this optimization run, the minimum field current (P103) must be parameterized to less than 50% of the rated motor field current (P102).

WARNING

$\sqrt{7}$
During this optimization run, the drive accelerates to approximately 80% of rated motor speed (the armature voltage corresponds to maximum 80% of the rated motor armature voltage (P 101)).

P051 = $28 \quad$ Optimization run for compensation of friction moment and moment of inertia (if desired) (process lasts approx. 40s)
The following parameters are set automatically: P520 to P530, P540

WARNING

$\sqrt{7}$
The drive accelerates up to maximum speed during this optimization run.

On completion of this run, the friction and inertia moment compensation function must be activated manually by setting P223=1.

When the operating mode is switched from current control to torque control with P170, the optimization run for friction and inertia moment compensation must be repeated.

Note:
The speed controller may not be parameterized as a pure P controller or as a controller with droop when this optimization run is executed.

P051 = 29 Speed controller optimization run on drives with oscillating mechanical components (takes up to 10 minutes)
The following parameters are set automatically: P225, P226 and P228.
The frequency response of the controlled system for frequencies of 1 to 100 Hz are recorded during this optimization run.
The drive is first accelerated up to a base speed (P565, FS=20\%). A sinusoidal speed setpoint with low amplitude ($\mathrm{P} 566, \mathrm{FS}=1 \%$) is then injected. The frequency of this supplementary setpoint is changed in steps of 1 Hz from 1 Hz to 100 Hz . An average is calculated from a programmable number of current peaks (P567, $W E=300$) for each frequency.
[The value set in P567 is significant in determining the time taken to perform the run. With a setting of 300 , the run can take about 3 to 4 minutes.]

The optimum speed controller setting for the controlled system is calculated on the basis of the frequency response measured for the system.

WARNING

This optimization run must not be carried out if the motor is coupled to a mechanical load which is capable of moving the torque-free motor (e.g. a vertical load).
8.5 At the end of the optimization run, P051 is displayed on the operator panel and the drive switches to operating state 07.2.

NOTICE

In the case of drives with a limited travel path, the optimization run for field weakening (P051=27) may not be interrupted by the SHUTDOWN command until the 1st field weakening measuring point has been plotted. Likewise, the optimization run for the friction moment and moment of inertia compensation function (P051=28) may not be interrupted by SHUTDOWN until the measuring point at 10% of maximum speed has been determined. Premature interruption in both cases will lead to activation of fault message F052. When either of these optimization runs is restarted (P051=27 or P051=28), it will be continued at a more advanced position. In this way, the respective run can be completed in several stages, even if the travel path is limited.
Note:
The respective optimization run is executed completely after a restart if a) a fault message is activated during the optimization run, b) if the electronics supply is disconnected before the relevant optimization run is restarted, c) if another function dataset than the one before is selected or d) if another optimization run is started in-between.

The parameters of the function data set selected in each case are optimized.
While optimization runs are being executed, the function data set selection must not be changed or else a fault message will be activated.

NOTE

Optimization runs should be executed in the order listed above (precontrol and current controller, speed controller, field weakening control, friction moment and moment of inertial compensation).

The determined parameters are dependent on the motor temperature. Values set automatically when the motor is cold can be used as effective defaults.

For highly dynamic drives, the optimization run $\mathrm{P} 051=25$ should be repeated after the drive has been operated under load (i.e. when motor is warm).

9 Checking and possible fine adjustment of maximum speed

After the optimization runs have been executed, the maximum speed must be checked and its setting corrected if necessary.
If it is necessary to change the maximum speed setting by more than about 10%, the control response of the speed control loop must be checked. It may be necessary to repeat the speed controller optimization run or re-optimize the controller manually.

The optimization runs for field weakening and friction motor and moment of inertial compensation must be repeated every time the maximum speed setting is altered.

10 Checking the drive settings
The optimization runs do not provide optimum results for every application. The controller settings must therefore be checked by suitable means (oscilloscope, DriveMonitor, Trace etc.). In some cases, manual re-optimization will be necessary.

Manual (post-)optimization (if necessary)

Precontrol and current controller for armature and field

Instructions on how to manually set parameters for the precontrol function can be found in Section 7.2 "Manual optimization".

Speed controller

P200 Actual speed filtering
P225 Speed controller P gain
P226 Speed controller integration time
P227 Speed controller droop
P228 Speed setpoint filtering
Note:
P228 is set to the same value as P226 (speed controller integration time) during the speed controller optimization run ($\mathrm{P} 051=26$) (for the purpose of achieving an optimum control response to abrupt setpoint changes). When the ramp-function generator is used, it may be better to parameterize a lower speed setpoint filtering value (P228).

Setting of empirical values or optimization using setpoint control boxes according to generally applicable optimization guidelines.

EMF controller

P275 EMF controller P gain
P276 EMF controller integration time
Setting of empirical values or optimization using setpoint control boxes according to generally applicable optimization guidelines.
e.g. activating monitoring functions

NOTE

In the factory setting, the following fault signals are deactivated with parameters P820.01 to P820.06:

F007 (overvoltage)
F018 (short circuit at the binary outputs)
F031 (controller monitoring speed controller)
F035 (drive blocked)
F036 (no armature current can flow)
F037 (i^{2} t monitoring of motor)
Activate the monitoring functions required in your applications by replacing the fault number in question with the value 0 .
e.g. activating the free function blocks

NOTE

Freely assignable function blocks are enabled in parameter U977.
For enabling instructions, please refer to Section 11, Parameter List, description of parameters U977 and n978.

13 Documentation of setting values

- Read out parameters with DriveMonitor (see Section 15 "DriveMonitor") or
- Document parameters If P052=0, only parameters that are not set to the default setting are displayed on the operator control panel.

7.6 Manual optimization (if required)

7.6.1 Manual setting of armature resistance RA (P110) and armature inductance LA (P111)

- Setting of armature circuit parameters according to motor list

Disadvantage: The data is very inaccurate and/or the actual values deviate significantly.
The feeder resistances are not taken into account in the armature circuit resistance. Additional smoothing reactors and feeder resistances are not taken into account in the armature circuit inductance.

- Rough estimation of armature circuit parameters from motor and supply data Armature circuit resistance P110
$\operatorname{RA}[\Omega]=\frac{\text { Rated motor armature voltage }[\mathrm{V}](\mathrm{P} 101)}{10 * \text { Rated motor armature current }[\mathrm{A}](\mathrm{P} 100)}$
The basis for this formula is that 10% of the rated armature voltage drops across armature circuit resistor R_{A} at rated armature current.

Armature circuit inductance P111

$$
\mathrm{LA}[\mathrm{mH}]=\frac{1.4 * \text { Rated converter supply voltage of armature power section }[\mathrm{V}](\mathrm{P} 071)}{\text { Rated motor armature current }[\mathrm{A}](\mathrm{P} 100)}
$$

The basis for this formula is the empirical value: The transition from discontinuous to continuous current is at approx. 30% of the rated motor armature current.

- Calculation of armature circuit parameters based on current/voltage measurement
- Select current-controlled operation: P084=2
- Set parameter P153=0 (precontrol deactivated)
- The field must be switched off by setting P082=0 and, in the case of excessively high residual flux, the rotor of the DC motor locked so that it cannot rotate.
- Set the overspeed protection threshold P354=5\%
- Enter a main setpoint of 0
- If "ENABLE OPERATION" is applied and the "SWITCH ON" command entered, an armature current of approximately 0\% now flows.

Calculation of armature circuit resistance P110 from measured armature current and armature voltage values

- Increase the main setpoint (displayed at r001) slowly until the actual armature current value (r019 in \% of rated converter armature current) reaches approximately 70\% of the rated motor armature current.
- Read out r019 (actual armature current value) and convert to amps (using P100)
- Read out r038 (actual armature voltage in volts)
- Calculate the armature circuit resistance:

$$
\mathrm{RA}[\mathrm{~W}]=\frac{\mathrm{rO38}}{\mathrm{r} 019 \text { (converted to amps) }}
$$

- Set the armature circuit resistance in parameter P110

Calculation of armature circuit inductance P111 from measured armature current at transition from discontinuous to continuous current

- Make an oscilloscope trace of the armature current (e.g. at terminal 12) Increase the main setpoint (displayed at r001) slowly starting from 0 until the armature current reaches the transition from discontinuous to continuous current.
- Measure armature current at transition (at standstill EMF=0) $l_{\text {LG, EMF=0 }}$ or read out the value of r019 and convert to amps using P100.
- Measure the phase-to-phase voltage of the armature power section $U_{\text {supply }}$ or read out the value of r015.
- Calculate the armature circuit inductance using the following formula:

$$
\mathrm{LA}[\mathrm{mH}]=\frac{0.4 * \text { Usupply }[\mathrm{V}]}{\mathrm{ILG}, \mathrm{EMF}=[\mathrm{A}]}
$$

- Set the armature circuit inductance in parameter P111.

7.6.2 Manual setting of field circuit resistance RF (P112)

- Rough estimation of field circuit resistance \mathbf{R}_{F} (P112) from motor rated field data

$$
R F=\frac{\text { Rated motor field voltage }}{\text { Rated motor field current }(\mathrm{P} 102)}
$$

- Adapt the field circuit resistance $R_{F}(\mathrm{P} 112)$ using a field current setpoint/actual value comparison
- Set parameter P112=0 to produce a 180° field precontrol output, and thus an actual field current value $=0$
- Set parameter P082=3 to ensure that the field remains permanently energized, even when the line contactor has dropped out
- Set parameters P254=0 and P264=0, i.e. only field precontrol active and field current controller disabled
- Set parameter P102 to the rated field current
- Increase parameter P112 until the actual field current (r035 converted to amps be means of r073.002) is equal to the required setpoint (P102).
- Reset parameter P082 to the plant operating value.

7.7 Starting up optional supplementary boards

For board mounting instructions, see Section 5.3.2, Mounting Optional Supplementary Boards. This section also contains details on the number of supplementary boards that can be installed and in which slots they may be inserted.

The basic converter automatically detects all installed supplementary boards during power-up.
All communications-related settings must be made by means of parameters. The function diagrams in Section 8 show a general overview of the parameters provided for this purpose.

If two boards of the same type (e.g. two EB1s) are installed in a converter, the slots in which they are installed determine the parameter settings. The board in the slot with the lower slot letter is the $1^{\text {st }}$ board (e.g. the $1^{\text {st }}$ EB1) of this particular type and the board with the higher letter the $2^{\text {nd }}$ board (e.g. $2^{\text {nd }} E B 1$).

The $1^{\text {st }}$ board is parameterized via index 1 and the $2^{\text {nd }}$ board via index 2 of the corresponding parameter (e.g. to define the signal type of the analog inputs of boards of type EB1, parameter U755.001 is used for the $1^{\text {st }}$ EB1 and parameter U755.002 for the $2^{\text {nd }} E B 1$).

7.7.1 Procedure for starting up technology boards (T100, T300, T400):

NOTE

Freely configurable technology boards T300 and T400 are guaranteed to operate correctly (board runup and data exchange with the SIMOREG 6RA70). The user, however, must bear responsibility for ensuring that the system is properly configured.

1 Disconnect the power supply and insert the board in location 2.

2 Power up the system again to gain access to the parameters of the technology board (d and H parameters, as well as c and L parameters if programmed).
The process data are interconnected at the basic converter end by means of the appropriate connectors and binectors (see Section 8, function diagram Z110)
For meaning of bits of control and status words, please see Section 8, Sheets G180 to G183.
If a communication board is used in addition to a technology board, then data are exchanged with the basic converter via the technology board. The basic converter cannot directly access the data of the communication board. The connections of the transfer data are then determined by the configuration or parameter settings of the technology board.
Module T100 comprising software submodule MS100 already contains several technology functions and arithmetic, control, and logic modules, which are freely configurable using parameters. This software can be expanded with customized components, if required.
As module T300 has already been replaced by T400, T300 should only be used in special circumstances.

Only one communication module (CBC, CBD, CBP2, SCB1) is permitted in slot G in addition to the technology modules T100 and T300 in slot 2.

Module T400 is already available with standard configurations for frequent applications. They permit the use of several functions (e.g. inputs/outputs, serial interfaces, link to a communications module) without any additional configuration.

As from configuration software D7-SYS V4.0 R07/98, it is possible to configure not only one, but two communications modules (CBC, CBD, CBP2) for module T400. These modules are then located on an ADB in slots $G(1 . C B)$ and $F(2 . C B)$.
In this case, the $2^{\text {nd }} C B$ is not configured with parameters of the basic device, but the CB parameters must be configured as modifiable parameters of the T400.
Possible communications paths are shown in the figure below. For details of how to configure a T400, please consult the relevant documentation (e.g. SIMADYN D - Configuring Instructions T400, 6DD1903-0EA0 etc.).

The SIMOREG DC Master 6RA70 does not permit direct evaluation of the signals of a pulse generator connected to the terminals of the CUD1 by the T400.

7.7.2 Sequence of operations for starting up PROFIBUS boards (CBP2):

1 Switch off the power supply and insert the board or adapter with board. For board mounting instructions, see Section 5.3.2, Mounting Optional Supplementary Boards.

2 The following are important communication parameters. Index 1 of each parameter is set for the $1^{\text {st }}$ communication board ($1^{\text {st }} \mathrm{CB}$) and index 2 for the $2^{\text {nd }}$ communication board ($2^{\text {nd }} \mathrm{CB}$):

- U712 PPO type, definition of the number of words in the parameter and process data section of the telegram (required only if the PPO type cannot be set via PROFIBUSDP master)
- U722 Telegram failure time for process data ($0=$ deactivated) The DP master configuring data determine whether the slave (CBP2) must monitor telegram traffic with the master. If this monitoring function is activated, the DP master passes a time value (watchdog time) to the slave when the link is set up. If no data are exchanged within this period, the slave terminates the process data exchange with the SIMOREG converter. The latter can monitor the process data as a function of U722 and activate fault message F082.
- P918 Bus address
- P927 Parameterization enable (need only be set if parameters are to be assigned via PROFIBUS)
-The process data of the $1^{\text {st }}$ or $2^{\text {nd }}$ communication board are connected by means of the appropriate connectors and binectors (see Section 8, function diagrams Z110 and Z111) For meaning of bits of control and status words, please see Section 8, Sheets G180 to G183.

3 Turn the electronics supply voltage off and on again or set U710.001 or U710.002 to "0" to transfer the values of parameters U712, U722 and P918 to the supplementary board.

WARNING

This initialization process will interrupt the communication of any supplementary board that has already been started up.

The CBP2 (Communication Board PROFIBUS) serves to link drives and higher-level automation systems via the PROFIBUS-DP. For the purpose of PROFIBUS, it is necessary to distinguish between master and slave converters.

Masters control the data traffic via the bus and are also referred to as active nodes. There are two classes of master:
DP masters of class 1 (DPM1) are central stations (e.g. SIMATIC S5, SIMATIC S7 or SIMADYN D) which exchange data with slaves in predefined message cycles.
DPM1s support both a cyclic channel (transmission of process data and parameter data) and an acyclic channel (transmission of parameter data and diagnostic data).
DP masters of class 2 (DPM2) are programming, configuring or operator control/visualization devices (e.g. DriveMonitor) which are used in operation to configure, start up or monitor the installation.
DPM2s support only an acyclic channel for transferring parameter data.
The contents of the data frames transferred via these channels are identical to the structure of the parameter section (PKW) as defined by the USS specification.

The following diagram shows the services and channels supported by a CBP2:

Slaves (e.g. CBP, CB1) may only respond to received messages and are referred to as passive nodes.

PROFIBUS (Process Field Bus) combines high baud rates (to RS485 standard) with simple, lowcost installation. The PROFIBUS baud rate can be selected within a range of 9.6 kbaud to 12 Mbaud and is set for all devices connected to the bus when the bus system is started up.
The bus is accessed according to the token-passing method, i.e. permission to transmit for a defined time window is granted to the active stations (masters) in a "logical ring". The master can communicate with other masters, or with slaves in a subordinate master-slave process, within this time window.
PROFIBUS-DP (Distributed Peripherals) predominantly utilizes the master-slave method and data is exchanged cyclically with the drives in most cases.

The user data structure for the cyclic channel MSCY_C1 (see picture above) is referred to as a Parameter Process(data) Object (PPO) in the PROFIBUS profile for variable-speed drives. This channel is also frequently referred to as the STANDARD channel.
The user data structure is divided into two different sections which can be transferred in each telegram:

PZD section

The process data (PZD) section contains control words, setpoints, status words and actual values.

PKW section
The parameter section (PKW - Parameter ID Value) is used to read and write parameter values.

When the bus system is started up, the type of PPO used by the PROFIBUS master to address the drive is selected. The type of PPO selected depends on what functions the drive has to perform in the automation network.

Process data are always transferred and processed as priority data in the drive.
Process data are "wired up" by means of connectors of the basic unit (drive) or via technology board parameters, if these are configured.

Parameter data allow all parameters of the drive to be accessed, allowing parameter values, diagnostic quantities, fault messages, etc. to be called by a higher-level system without impairing the performance of the PZD transmission.

A total of five PPO types are defined:

PKW section					PZD section									
	PKE	IND			$\begin{aligned} & \text { PZD1 } \\ & \text { STW } \\ & 1 \\ & \text { ZSW } \end{aligned}$	$\begin{aligned} & \text { PZD2 } \\ & \text { HSW } \\ & \text { HIW } \end{aligned}$	PZD3	PZD4	PZD5	PZD6	PZD7	PZD8	PZD9	$\begin{gathered} \text { PZD } \\ 10 \end{gathered}$
	$\begin{gathered} 1^{\text {st }} \\ \text { word } \end{gathered}$	$\begin{aligned} & 2^{\text {nd }} \\ & \text { word } \end{aligned}$	$\begin{aligned} & 3^{\text {rd }} \\ & \text { word } \end{aligned}$	$\begin{aligned} & 4^{\text {th }} \\ & \text { word } \end{aligned}$	$1^{\text {st }}$ word	$\begin{aligned} & 2^{\text {nd }} \\ & \text { word } \end{aligned}$	$\begin{aligned} & 3^{\text {rd }} \\ & \text { word } \end{aligned}$	$4^{\text {th }}$ word	$\begin{aligned} & 5^{\text {th }} \\ & \text { word } \end{aligned}$	$6^{\text {th }}$ word	$7^{\text {th }}$ word	$8^{\text {th }}$ word	$9^{\text {th }}$ word	$\begin{aligned} & 10^{\text {th }} \\ & \text { word } \end{aligned}$
$\begin{gathered} \text { PPO } \\ 1 \end{gathered}$														
$\begin{gathered} \text { PPO } \\ 2 \end{gathered}$														
$\begin{gathered} \text { PPO } \\ 3 \end{gathered}$														
$\begin{gathered} \text { PPO } \\ 4 \end{gathered}$														
$\begin{gathered} \text { PPO } \\ 5 \end{gathered}$														
PKW:	Param	ter ID	alue		IND:	Index				ZSW	Status	word		
PZD:	Proces	data			PWE:	Param	ter val			HSW:	Main s	tpoint		
PKE:	Param	ter ide	tifier		STW:	Contro	word			ISW:	Main	ctual va		

The acyclic channel MSCY_C2 (see diagram above) is used exclusively for the start-up and servicing of DriveMonitor.

7.7.2.1 Mechanisms for processing parameters via the PROFIBUS:

The PKW mechanism (with PPO types 1, 2 and 5 and for the two acyclic channels MSAC_C1 and MSAC_C2) can be used to read and write parameters. A parameter request job is sent to the drive for this purpose. When the job has been executed, the drive sends back a response. Until it receives this response, the master must not issue any new requests, i.e. any job with different contents, but must repeat the old job.
The parameter section in the telegram always contains at least 4 words:

	Parameter identifier PKE	Index IND	Parameter value 1 PWE1 (H word)	Paramter value 2 PWE2 (L word)	

Details about the telegram structure can be found in Section 7.7.9, "Structure of request/response telegrams", and in the PROFIBUS profile "PROFIBUS Profile, Drive technology" of the user's organization PROFIBUS International (http://www.profibus.com).

The parameter identifier PKE contains the number of the relevant parameter and an identifier which determines the action to be taken (e.g. "read value").

The index IND contains the number of the relevant index value (equals 0 in the case of nonindexed parameters). The IND structure differs depending on the communication mode:

- Definition in the PPOs (structure of IND with cyclical communication via PPOs)
- Definition for acyclical channels MSAC_C1 and MSAC_C2 (structure of IND with acyclical communication)
The array subindex (referred to simply as "subindex" in the PROFIBUS profile) is an 8 -bit value which is transferred in the high-order byte (bits 8 to 15) of the index (IND) when data are transferred cyclically via PPOs. The low-order byte (bits 0 to 7) is not defined in the DVA profile. The low-order byte of the index word is used in the PPO of CBP2 to select the correct number range (bit7 = Page Select bit) in the case of parameter numbers of > 1999.
In the case of acyclical data traffic (MSAC_C1, MSAC_C2) the number of the index is transferred in the low-order byte (bits 0 to 7). Bit 15 in the high-order byte is used as the Page Select bit. This assignment complies with the USS specification.

Index value 255 (request applies to all index values) is meaningful only for acyclical transmission via MSAC_C1. The maximum data block length is 206 bytes with this transmission mode.

The parameter value PWE is always transferred as double word (32-bit value) PWE1 and PWE2. The high-order word is entered as PWE1 and the low-order word as PWE2. In the case of 16-bit values, PWE1 must be set to 0 by the master.

Example

Read parameter P101.004 (for details, see Section 7.7.9, "Structure of request/response telegrams"):

```
    Request identifier PKE = 0x6065 (request parameter value (array) P101),
    Index IND = 0004h = 4d
    Parameter value PWE1 = PWE2 = 0
SIMOREG response:
```

 Response identifier PKE \(=0 \times 4065\),
 Index IND = 0004h = 4d
 Value of P101.004 \(=0190 \mathrm{~h}=400 \mathrm{~d}(\mathrm{PWE} 1=0\), because it is not a double word parameter \()\)

Rules for job/response processing:

A job or a response can only ever refer to one parameter.
The master must send the job repeatedly until it receives an appropriate response from the slave. The master recognizes the response to the job it has sent by analyzing the response identifier, the parameter number, the parameter index and the parameter value.

The complete job must be sent in one telegram. The same applies to the response.
The actual values in repeats of response telegrams are always up-to-date values.
If no information needs to be fetched via the PKW interface (but only PZD) in cyclic operation, then a "No job" job must be issued.

PROFIBUS devices have a variety of difference performance features. In order to ensure that all master systems can correctly address each supplementary board, the characteristic features of each board are stored in a separate device master file (GSD).
You need file <siem8045.gsd> for CBP2.
The appropriate file can be chosen in the selection menu for the SIMOVERT MASTER DRIVES files in later versions of the configuring tool.
If a device master file is not available in the menu, it can be collected from an Internet site. The Internet address is http://www4.ad.siemens.de/view/cs/en/4647098.
Product Support/PROFIBUS GSD files/Drives/ . Have all entries displayed using the search function and click on the search results.

SIMOVERT/SIMOREG/SIMADYN CBP

File: siem8045.gsd
The communication boards can only be operated on a non-Siemens master as a DP standard slave, the corresponding GSD file containing all necessary information for this mode.
Detailed information about communication via PROFIBUS can be found in Section 8.2 of the compendium for SIMOVERT MASTER DRIVES Motion Control (order no. 6SE7080-0QX50). The description in this document is fully applicable in every respect, except that the specified parameter numbers differ from those used on the SIMOREG DC MASTER 6RA70.

7.7.2.2 Diagnostic tools:

LED displays of CBP2 (flashing LEDs mean normal operation):
Red LED Status of CBP2
Yellow LED Communication between SIMOREG and CBP2
Green LED Communication between CBP2 and PROFIBUS

As a start-up support tool, the PROFIBUS board supplies data which can be displayed in n732.001 to n 732.032 ($1^{\text {st }} \mathrm{CB}$) or n 732.033 to n 732.064 ($2^{\text {nd }} \mathrm{CB}$).
The values of the indices are as follows:

Index	Meaning for CBP2
001/033	CBP_Status Bit0: "CBP Init", CBP is being initialized or waiting to be initialized by the basic unit (not set in normal operation) Bit1: "CBP Online", CBP is selected by basic unit (set in normal operation) Bit2: "CBP Offline", CBP not selected by basic unit (not set in normal operation) Bit3: Illegal bus address (P918) (not set in normal operation) Bit4: Diagnostic mode activated (U711 <> 0) (not set in normal operation) Bit8: Incorrect identifier bytes transferred (incorrect configuring message from PROFIBUS Master) (not set in normal operation) Bit9: Incorrect PPO type (incorrect configuring message from PROFIBUS Master) (not set in normal operation) Bit10: Correct configuring data received from PROFIBUS_DP Master (set in normal operation) Bit12: Fatal error detected by DPS Manager software (not set in normal operation) Bit13: Program in endless loop in main.c (loop can only be exited by a Reset) Bit15: Program in communications online loop (loop can only be exited through re-initialization by basic unit)
002/034	SPC3_Status Bit0: Offline/Passive Idle ($0=$ SPC3 is operating in normal mode (offline) $1=$ SPC3 is operating in Passive Idle) Bit2: Diag flag ($0=$ diagnostic buffer has been picked up by master $1=$ diagnostic buffer has not been picked up by master) Bit3: RAM Access Violation, memory access $>1.5 \mathrm{kB}$ ($0=$ no address violation, $1=$ for addresses >1536 bytes, 1024 is subtracted from address and access made to the new address) Bit4+5: DP state ($00=$ Wait_Prm, 01=Wait_Cfg, 10=Data_Ex, 11=not possible) Bit6+7: WD state ($00=$ Baud search, $01=$ Baud_Control, $10=$ DP_Control, $11=$ not possible) Bit8-11: Baud rate $(0000=12 \mathrm{MBd}, 0001=6 \mathrm{MBd}, 0010=3 \mathrm{MBd}, 0011=1,5 \mathrm{MBd}, 0100=500 \mathrm{kBd}, 0101=187.5 \mathrm{kBd}$, $0110=93.75 \mathrm{kBd}, 0111=45.45 \mathrm{kBd}, 1000=19.2 \mathrm{kBd}, 1001=9.6 \mathrm{kBd})$ Bit12-15: SPC3-Release (0000=Release 0)
003/035	SPC3_Global_Controls Bits remain set until the next DP global command Bit1: 1=Clear_Data message received Bit2: 1=Unfreeze message received Bit3: 1=Freeze message received Bit4: 1=Unsync message received Bit5: 1=Sync message received
004/036	L byte: No. of received error-free messages (DP Standard only) H byte: Reserved
005/037	L byte: "Timeout" counter H byte: Reserved
006/038	L byte: "Clear Data" counter H byte: Reserved
007/039	L byte: "Heartbeat counter error" counter H byte: Reserved
008/040	L byte: No. bytes for special diagnosis H byte: Reserved
009/041	L byte: Mirroring of slot identifier 2 H byte: Mirroring of slot identifier 3
010/042	L byte: Mirroring of P918 (CB bus addr.) H byte: Reserved
011/043	L byte: "Re-config. by CUD" counter H byte: "Initialization runs" counter
012/044	L byte: Error ID DPS manager error H byte: Reserved

Index	
$013 / 045$	L byte: PPO type found H byte: Reserved
$014 / 046$	L byte: Mirroring of "DWord specifier ref"
$015 / 047$	H byte: Mirroring of "DWord specifier act"
$016 / 048$	L byte: DPV1:DS_Write, pos. ack. counter H byte: Reserved CBP2
$017 / 049$	L byte: DPV1:DS_Write, neg. ack. counter H byte: Reserved
$018 / 050$	L byte: DPV1:DS_Read, pos. ack. counter H byte: Reserved
$019 / 051$	L byte: DPV1:DS_Read, neg. ack. counter H byte: Reserved
$020 / 052$	L byte: DP/T:GET DB99 pos. ack. counter H byte: DP/T:PUT DB99 pos. ack. counter
$021 / 053$	L byte: DP/T:GET DB100 ps. ack. counter H byte: DP/T:PUT DB100 ps. ack. counter
$022 / 054$	L byte: DP/T:GET DB101 ps. ack. counter H byte: DP/T:PUT DB101 ps. ack. counter
$023 / 055$	L byte: DP/T service neg. acknow. counter H byte: DP/T:Application association pos. acknow. counter
$024 / 056$	Reserved
$025 / 057$	Date of creation: Day, month
$026 / 058$	Date of creation: Year
$027 / 059$	Software version (Vx.yz, display x)
$028 / 060$	Software version (Vx.yz, display yz)
$029 / 061$	Software version: Flash-EPROM checks.
$030 / 062$	Reserved
$031 / 063$	Reserved
$032 / 064$	Reserved

Fault and alarm messages:

For details about fault messages, see Section 10.
Fault F080
An error occurred as board CBP2 was being initialized, e.g. incorrect value of a CB parameter, incorrect bus address or defective module.

Fault F081

The heartbeat counter (counter on CBP2) which is monitored by SIMOREG for "signs of life" from the board has not changed for at least 800 ms .

Fault F082

Failure of PZD telegrams or a fault in the transmission channel.

Alarm A081 ($1^{\text {st }} \mathrm{CB}$) or alarm A089 (2 $2^{\text {nd }} \mathrm{CB}$)
The identifier byte combinations transmitted by the DP master in the configuration telegram do not match the permitted identifier byte combinations (configuring error on DP master) Effect: No link can be established with the DP master, reconfiguration necessary.

Alarm A082 (1 $1^{\text {st }} \mathrm{CB}$) or alarm A090 (2nd CB)
No valid PPO type can be determined from the configuration telegram from the DP master. Effect: No link can be established with the DP master, reconfiguration necessary.

Alarm A083 (1 $1^{\text {st }} \mathrm{CB}$) or alarm A091 (2 $2^{\text {nd }} \mathrm{CB}$)
No user data, or only invalid data, are being received from the DP master.
Effect:The process data are not transferred to the basic unit. When the telegram failure monitoring function is active (U722 set to value other than 0), this disturbance generates fault message F082 with fault value 10.
Alarm A084 ($1^{\text {st }} \mathrm{CB}$) or alarm A092 ($2^{\text {nd }} \mathrm{CB}$)
The exchange of data between the communication board and DP master has been interrupted (e.g. cable break, bus connector removed or DP master switched off).
Effect: When the telegram failure monitoring function is active (U722 set to value other than 0), this disturbance generates fault message F082 with fault value 10.
Alarm A085 ($1^{\text {st }} \mathrm{CB}$) or alarm A093 ($2^{\text {nd }} \mathrm{CB}$)
Error in the DPS software of the communication board.
Effect: Fault message F081 is generated.
Alarm A086 (1st CB) or alarm A094 (2 ${ }^{\text {nd }} \mathrm{CB}$)
Failure of heartbeat counter detected by SIMOREG DC master.
Effect: Interruption in communication with PROFIBUS.
Alarm A087 ($1^{\text {st }} \mathrm{CB}$) or alarm A095 ($2^{\text {nd }} \mathrm{CB}$)
DP slave software has detected serious fault, fault number in diagnostic parameter n 732.08 . Effect:Total communication failure (secondary fault F082).
Alarm A088 ($1^{\text {st }} \mathrm{CB}$) or alarm A096 ($2^{\text {nd }} \mathrm{CB}$)
At least 1 configurable internode transmitter is not yet active or has failed again (for details, see diagnostic parameter n732).
Effect:If a transmitter is not yet active, the associated setpoints are set to " 0 " as an alternative. If an internode transmitter fails again, transmission of the setpoints to the SIMOREG may be interrupted depending on the setting of U715 (with secondary fault F082).

7.7.3 Sequence of operations for starting up CAN bus boards (CBC):

1 With the power supply switched off, insert the board with adapter board (ADB) into the slot. Forboard mounting instructions, see Section 5.3.2, Mounting Optional Supplementary Boards.

2 The following are important communication parameters. Index 1 of each parameter is set for the $1^{\text {st }}$ communication board ($1^{\text {st }} \mathrm{CB}$) and index 2 for the $2^{\text {nd }}$ communication board ($2^{\text {nd }} \mathrm{CB}$): Exception: In parameter U721, i 001 to i 005 are applicable to the $1^{\text {st }} \mathrm{CB}$ and i 006 to i 010 to the $2^{\text {nd }} \mathrm{CB}$ (indices 3 to 5 and 8 to 10 are reserved).
The meaning of the parameters also differs depending on the setting of U721, i.e. CAN-Layer 2 (U721=0) and CANopen (U721=1):

	CAN-Layer 2	CANopen
U711	Basic identifier for PKW Request/PKW Response	$1{ }^{\text {st }}$ Receive-PDO
U712	Basic identifier for PZD Receive	$2^{\text {nd }}$ Receive-PDO
U713	Basic identifier for PZD Send	$3{ }^{\text {rd }}$ Receive-PDO
U714	Number of PZD for PZD Send	$4^{\text {th }}$ Receive-PDO
U715	Updating rate for PZD Send	$1{ }^{\text {st }}$ Transmit-PDO
U716	Basic identifier for PZD Receive-Broadcast	$2^{\text {nd }}$ Transmit-PDO
U717	Basic identifier for PZD Receive-Multicast	$3^{\text {rd }}$ Transmit-PDO
U718	Basic identifier for PZD Receive-Internode	$4^{\text {th }}$ Transmit-PDO
U719	Basic identifier for PKW Request-Broadcast	Response to Life Time Event
U720	Baud rate when U721.002 or U721.007 = 0: $0=10 \mathrm{kbit} / \mathrm{s}, 1=20 \mathrm{kbit} / \mathrm{s}, 2=50 \mathrm{kbit} / \mathrm{s}, 3=100 \mathrm{kbit} / \mathrm{s}$, $4=125 \mathrm{kbit} / \mathrm{s}, 5=250 \mathrm{kbit} / \mathrm{s}, 6=500 \mathrm{kbit} / \mathrm{s}$, 7=Reserved, 8=1Mbit/s	Baud rate when U721.002 or U721.007 = 0: $0=10 \mathrm{kbit} / \mathrm{s}, 1=20 \mathrm{kbit} / \mathrm{s}, 2=50 \mathrm{kbit} / \mathrm{s}, 3=100 \mathrm{kbit} / \mathrm{s}$, $4=125 \mathrm{kbit} / \mathrm{s}, 5=250 \mathrm{kbit} / \mathrm{s}, 6=500 \mathrm{kbit} / \mathrm{s}$, 7=Reserved, $8=1 \mathrm{Mbit} / \mathrm{s}$
$\begin{aligned} & \text { U721.01 } \\ & \text { or } \\ & \text { U721.06 } \end{aligned}$	0 = Functionality according to Layer 2 of ISO-OSI-7 Layer Model	1 = Functionality according to Layer 7 of ISO-OSI-7 Layer Model (CANopen)
$\begin{gathered} \text { U721.02 } \\ \text { or } \\ \text { U721.07 } \end{gathered}$	Bus timing (this should not be changed)	Bus timing (this should not be changed)
U722	Telegram failure time ($0=$ deactivated)	Telegram failure time ($0=$ deactivated $)$
P918	Bus address (node ID)	Bus address (node ID)
P927	Parameterizing enable (required only in cases where parameter values must be altered via the CAN Bus)	Parameterizing enable (required only in cases where parameter values must be altered via the CAN Bus)

The process data of the $1^{\text {st }}$ or $2^{\text {nd }}$ communication board are connected by means of the appropriate connectors and binectors (see Section 8, function diagrams Z110 and Z111) For meaning of bits of control and status words, please see Section 8, Sheets G180 to G183.
 transfer the values of parameters U 711 to U 721 and P918 to the supplementary board. Note: The initialization process may interrupt the communication link to a supplementary board which is already operational.

WARNING

This initialization process will interrupt the communication of any supplementary board that has already been started up.

The CAN (Controller Area Network) fieldbus is being used increasingly for industrial applications in spite of its limited network length (max. 40 m with a data transmission rate of 1 Mbaud).

Data are transferred by means of telegrams. Each data message, the so-called COBs
(Communication Objects), has its own individual identifier and contains a maximum of 8 bytes of user data. The CBC board uses the Standard Message Format with 11-bit identifier. Simultaneous use by other nodes of Extended Message Format with 29-bit identifiers is tolerated, but messages with this format are not evaluated.
Nodes on the bus determine from the identifier which telegrams apply to them. The COBs to be sent and received by each node must be defined before data transmission commences.
The identifiers also determine bus accessing priority. Low identifiers gain faster access to the bus, i.e. they have higher priority then high identifiers.

Errored telegrams can be reliably detected by means of a number of interactive error detection mechanisms. A transmission is automatically repeated when errors are detected.

The figure below shows a diagram of the CAN architecture model that is oriented toward the ISO-OSI-7 layer reference model. The CBC supports the functionalities provided by layers 2 and 7 of this model.

Functionality according to layer 2
The user data from the user software (as COBs on byte level) must be transferred directly to layer 2 (see also the examples of PZD and PKW data exchange given further down).

Functionality according to layer 7 (CANopen)
Process data are exchanged rapidly by means of so-called PDOs (Process Data Objects) analogous to the transmission method used for layer 2.
Parameter data are exchanged by means of so-called SDOs (Service Data Objects).

			CAN protocol	Device net
Application		Device profile		Device net specification includes: - Device profile - Communication profile - Application layer
		Communication profile	$\begin{gathered} \text { CIA } \\ \text { DS } 301 \end{gathered}$	
Communication	Layer 7	Application layer	CIA CAL DS 201 .. 205, 207 CANopen CAL	
	Layer 3-6			
	Layer 2	Data link layer	ISO-DIS 11898	
	Layer 1	Physical layer, electrical		
		Physical layer, mechanical	CIA DS 102-1	Device Net ODVA

7.7.3.1 Description of CBC with CAN Layer 2

User data are exchanged between the CAN master and the CAN boards on the drives, i.e. the slaves. User data are categorized as either process data (control and status information, setpoints and actual values) or data which relate to parameters.
Process data (PZDs) are time-critical and therefore processed faster by the drive (every 3.3 ms at system frequency of 50 Hz) than the non-time-critical PKW data (parameter identifier value), which is processed by the drive every 20 ms .
All settings required to operate the communication board are made in drive parameters (see Section 8, function diagrams Z110 and Z111).
Process data (PZD) are categorized as either data received by the drive (control words and setpoints: PZD Receive) or data transmitted by the drive (status words and actual values: PZD Send). A maximum of 16 PZDs can be transferred in either direction; these are divided into COBs with 4 data words each by the communication board. In other words, 4 COBs are required to transfer 4 PZD words, with each COB requiring its own separate identifier. Identifiers are assigned in the CB parameters as shown in the following diagram:

Example of PZD Receive:
P918 = $1 \quad$ This settings assigns identifier 100 to the first 4 receive PZDs, U712 = 96 identifier 101 to the second 4 receive PZDs, etc.

Example of PZD Send:

$$
\begin{array}{ll}
\text { P918 }=1 & \text { This setting assigns identifier } 200 \text { to the first } 4 \text { send PZDs, } \\
\text { U713 }=196 & \text { identifier } 201 \text { to the second } 4 \text { send PZDs, etc. }
\end{array}
$$

How received data are utilized by the drive or which data are to be sent by the drive is determined by connectors (see Section 8, function diagrams Z110 and Z111).
3 different modes of COB transmission can be selected in CB parameter 5 (U715):

$$
\begin{array}{ll}
\text { U715 = 0 } & \begin{array}{l}
\text { Actual values are transmitted only on request (Remote Transmission } \\
\text { Requests) }
\end{array} \\
\text { U715 = 1 to 65534 } & \begin{array}{l}
\text { Actual values are transmitted after the set time [ms] or on request } \\
\text { (Remote Transmission Requests) }
\end{array} \\
\text { U715 = 65535 } & \begin{array}{l}
\text { Actual values are transmitted if the values have changed (event) or on } \\
\text { request (Remote Transmission Requests). This option should only be } \\
\text { used in cases where values seldom change so as to prevent excessive } \\
\text { bus loading. }
\end{array}
\end{array}
$$

Structure of a telegram for PZD data exchange:

The telegram consists of the following data words:

Identifier	Process data word 1 ID	Process data word 2 PZD2	Process data word 3 PZD3	Process data word 4 PZD4

ID is the CAN identifier that is defined for the COB in question by parameterization.
PZDx are process data words

Example of a PZD setpoint telegram:
Using the receive identifier of the above example

Receive identifier	100_{d}	0064_{h}	
1. Setpoint	40063_{d}	$9 C 7 F_{h}$	control word 1
2. Setpoint	8192_{d}	2000_{h}	speed setpoint 50%
3. Setpoint	123_{d}	$007 B_{h}$	
4. Setpoint	0_{d}	0_{h}	

Using the CAN BusAnalyser++ from Steinbeis, the setpoint data appear as follows (data field length = 8 bytes, low and high bytes are shown swapped round):

Identifier	Data field			
6400	7F 9C	0020	$7 B 00$	0000
ID	PZD1	PZD2	PZD3	PZD4

The following functions are also available, each allowing a maximum of 16 process data to be transferred:

PZD Receive Broadcast

This function is used to send setpoints and control words from the master to all slaves on the bus simultaneously. With this option, an identical identifier must be set on all slaves utilizing the function. This common identifier is set in CB parameter 6 (U716). The first 4 PZDs are transferred with the value set in U716 and the second 4 PZDs with the value in U716+1, etc.

PZD Receive Multicast

This function is used to send setpoints and control words from the master to a group of slaves on the bus simultaneously. With this option, all slaves within the group using the function must be set to an identical identifier. This group identifier is set in CB parameter 7 (U717). The first 4 PZDs are transferred with the value set in U717 and the second 4 PZDs with the value in $U 717+1$, etc.

PZD Receive Internode

This function is used to receive setpoints and control words from another slave, allowing PZDs to be exchanged between drives without intervention by a CAN master. For this purpose, the identifier of PZD Receive Internode on the receiving slave must be set to the identifier of PZD Send on the transmitting slave. This identifier is set in CB parameter 8 (U718). The first 4 PZDs are transferred with the value set in U718 and the second 4 PZDs with the value in $\mathrm{U} 718+1$, etc.

Notes regarding PZD transmission:

Control word 1 must always be transferred as the first PZD word for setpoints. If control word 2 is needed, then it must be transferred as the fourth PZD word.

Bit 10 (control by PLC) must always be set in control word 1 or else the drives will not accept setpoints and control words.

The consistency of process data can only be guaranteed within a COB. If more than 4 data words are needed, these must be divided among several COBs. Since drives accept the data asynchronously, the data transferred in several COBs may not always be accepted and processed in the same processing cycle.
For this reason, interrelated data should be transferred within the same COB. If this is not possible, data consistency can be assured by means of control word bit 10 (control by PLC), i.e. by setting the bit to "off" in the first COB to temporarily prevent the drive from accepting the data from the communications board. The remaining data are then transmitted. Finally, a COB containing a control word bit 10 set to "on" is transmitted. Since a drive can accept up to 16 PZDs simultaneously from the communication board, data consistency is assured.

Since a variety of different functions can be used to transfer PZDs simultaneously, data are overlayed in the drive. For example, the first PZD from PZD Receive and PZD Receive Broadcast are always interpreted as the same control word 1. For this reason, care should be taken to ensure that data are transferred in meaningful combinations.

Two CAN identifiers are required for the purpose of processing parameters, i.e. one CAN identifier for PKW Request (parameter request job to drive) and one CAN identifier for PKW Response (parameter response by drive). These assignments are made in CB parameters as shown in the following diagram:

Example of PKW data exchange:

P918 $=1$	This setting assigns identifier 300 to the parameter job (request)
U711 $=298$	and identifier 301 to the parameter response.

Structure of a telegram for PKW data exchange:

The telegram consists of the following data words:

Identifier	Parameter identifier ID	Parameter index PKE	Parameter value 1 PWE1	Parameter value 2 PWE2

ID is the CAN identifier that is defined for the COB in question by parameterization.
PKE contains the request or response ID and the parameter number

Request or response ID		Parameter number PNU

Bit 0 to bit 10 contain the number of the parameter concerned. Bit 12 to bit 15 contain the request or response ID.

The index IND contains the value 0 for unindexed parameters, for indexed parameters it contains the corresponding index value. Bit15 also has a special function as the page select bit for parameter numbers greater than 1999.
The index value 255 means that the request concerns all indices of the parameter in question. For a change request, the parameter values must then be passed on for all indices of the parameter. Because a COB can only contain up to 4 data words (8 bytes) of net data, use of this request is only possible for parameters with (up to) 2 indices. In the other direction, the drive supplies all index values in the response telegram to a read request.

Details about the telegram structure can be found in Section 7.7.9, "Structure of request/response telegrams".

Example of a PKW request:

Changing the parameter value of the indexed parameter P301.02 (in the RAM) to -95.00\%.
The example telegram therefore contains the following values:

Request identifier	300_{d}	$012 C_{h}$	For use of the IDs of the example above Request code
Parameter number	7_{d}	301_{d}	7_{h}
Index	$012 D_{h}$	"Change parameter value (array word)"	
Parameter value	2_{d}	0002_{h}	
Pa PKE $=712 D_{h}$			

Using the CAN BusAnalyser++ from Steinbeis, the transmit data appear as follows (data field length $=8$ bytes, low and high bytes are shown swapped round):

Identifier	Data field			
2C 01	2D 71	0200	E4 DA	0000
ID	PKE	IND	PWE1	

The following transfer function is also available:

PKW Request Broadcast

A parameter job (request) is processed simultaneously by all slaves on the bus. The node address is not used to generate the CAN identifier because this must be set identically on all slaves utilizing the PKW Request Broadcast function. This common identifier is set in CB parameter 9 (U719). The corresponding parameter response is made with the CAN identifier for PKW Response described above.

Notes regarding PKW transmission:

The length of the job and the response is always 4 words. Jobs which apply to all indices of a parameter (e.g. "Request all indices") are not possible.

As a general rule, the low-order byte (in words) or the low-order word (in double words) is transferred first. SIMOREG 6RA70 does not use double word parameters itself, these jobs can only be executed where access is available to technology board parameters (e.g. T400).

The CBC does not respond to a parameter request job until the drive data are available. This normally takes 20 ms . The response times will be longer only if change (write) jobs including storage of the value in the EEPROM are received from other sources (e.g. serial basic converter interface), resulting in a delay in job execution.

In certain system states (e.g. initialization states), parameter processing is greatly delayed or does not take place at all.

The master may not issue a new parameter request job until any current parameter job has been acknowledged.

7.7.3.2 Description of CBC with CANopen

7.7.3.2.1 Introduction to CANopen

CANopen is a standardized application for distributed, industrial automation systems based on CAN and the CAL communication standard. CANopen is a standard of CAN in Automation (CiA) and was in widespread use shortly after it became available.

CANopen can be regarded in Europe as the definitive standard for the implementation of industrial CAN-based system solutions.

CANopen is based on a so-called "communication profile" which specifies the underlying communication mechanisms and their definition [CiA DS-301].

The main types of device deployed for automating industrial systems, such as digital and analog input/output modules [CiA DS-401], drives [CiA DS-402], control panels [CiA DS-403], controllers [CiA DS-404], PLCs [CiA DS-405] or encoders [CiA DS-406], are described in so-called "device profiles". These profiles define the functionality of standard equipment of the relevant type.

A central componentof the CANopen standard is the definition of device functionality using an "Object Directory" (OD). This object directory is subdivided into two sections, one which contains general information about the device, such as identification, manufacturer's name, etc. and the communication parameters, and the other describing the scope of device functions. An entry ("object") in the object directory is identified by means of a 16-bit index and an 8 -bit subindex.
The "application objects" of a device, such as input and output signals, device parameters, device functions or network variables, are made accessible in standardized form via the network by means of the entries in the object directory.

Similar to other field bus systems, CANopen employs two basic data transmission mechanisms: The rapid exchange of short process data via so-called "process data objects" (PDOs) and the accessing of entries in the object directory via so-called "service data objects" (SDOs). Process data objects are generally transferred either event-oriented, cyclically or on request as broadcast objects without an additional protocol overhead. SDOs are used mainly to transmit parameters during the device configuring process and generally for the transmission of longer data areas.

A total of 8 bytes of data can be transferred in a PDO. The assignment between application objects and a PDO (transfer object) can be set by means of a structure definition ("PDO mapping") stored in the OD and is thus adaptable to the individual operating requirements of a device.

SDOs are transmitted as a confirmed data transfer with two CAN objects in each case between two network nodes. The relevant object directory entry is addressed through the specification of index and subindex. Messages of unrestricted length can be transferred in principle. The transmission of SDO messages involves an additional overhead.

Standardized, event-oriented, high priority alarm messages ("Emergency Messages") are available for signaling device malfunctions.
The functionality required for the preparation and coordinated starting of a distributed automation system corresponds to the mechanisms defined under CAL Network Management (NMT); this also applies to the "Node Guarding" principle underpinning the cyclical node monitoring function.

Identifiers can be entered directly into the data structures of the object directory to assign CAN message identifiers to PDOs and SDOs; predefined identifiers can be used for simple system structures.

7.7.3.2.2 Functionality of CBC with CANopen

The CBC with CANopen supports only minimal boot-up as defined in communication profile CiaA DS-301 (Application Layer and Communication Profile).
Up to four Receive PDOs and four Transmit PDOs are available. Parameters U711 to U714 can be programmed to select the mapping and communication properties of the Receive PDOs and parameters U715 to U718 to set the mapping and communication properties of the Transmit PDOs.
Dynamic mapping, i.e. changing the assignment between the objects from the object directory and a PDO in operation, is not supported by the CBC. Transmission type and identifier of the communication objects (PDO, SDO, SYNC, EMCY and Node Guarding Object) can, however, be set via SDOs in operation. These settings override the settings of the CP parameters and are erased when the supply voltage is switched off.

One server SDO is available.
Another available communication object is the SYNC object. Using a synchronization message, the CAN master can synchronize the transmission and reception of PDOs for the whole network ("synchronous PDOs").

The EMCY object (Emergency Object) is implemented. This telegram is used to signal all faults and alarms generated in the SIMOREG system via the CAN Bus.
The network functionality is monitored via the Node Guarding Telegram with which the master addresses the slaves cyclically. Each slave must individually respond to this telegram within a parameterizable time frame.

If the master does not receive a response to its request, the communication link to the slave must be malfunctioning in some way (e.g. cable break, bus connector removed, etc.).

If the slave does not receive a Node Guarding Telegram from the master within a particular time period (Life Time Event), it can assume that there is error in the communication link. The reaction of the slave to this event can be parameterized in parameter U719.

Canopen modes Velocity Mode (speed control) and Profile Torque Mode (torque control), both in accordance with CiA DS-401 (Device Profile for Drives and Motion Control), and the manufacturerspecific Current Mode (current control) are implemented.

7.7.3.2.3 Requirements for operating the CBC with CANopen

To be able to operate the CBC with CANopen, the following two conditions must be fulfilled:

- SIMOREG firmware, V1.9 and later
- CBC firmware, V2.2 and later

To be able to operate the individual CANopen profiles, certain parameter settings must be made in the SIMOREG.

7.7.3.3 Diagnostic tools:

LED displays on the CBC (flashing LEDs indicate normal operation):

Red LED	Status of CBC
Yellow LED	Communication between SIMOREG and CBC
Green LED	Communication between CBC and CAN Bus

red	yellow	green	
flashing	flashing	flashing	Normal operation
flashing	off	on	CBC waiting for commencement of initialization by SIMOREG
flashing	on	off	CBC waiting for end of initialization by SIMOREG
flashing	flashing	off	No PZD data exchange via CAN Bus
flashing	on	on	CBC defective

Diagnostic parameter n732:

Indices i001 to i032 apply to a CBC as the first communication board; indices i033 to i064 apply to a CBC as the second communication board.

	Value	Meaning
$\begin{gathered} \mathrm{n} 732.001 \\ \text { or } \\ \mathrm{n} 732.033 \end{gathered}$		No fault Fault F080/fault value 5 is displayed under fault conditions: Fault values for CAN layer 2: Incorrect address on CAN Bus (P918 / slave address) Incorrect CAN identifier with PKW Request (U711) Incorrect CAN identifier with PKW Request-Broadcast (U719) Incorrect CAN identifier with PZD Receive (U712) Incorrect CAN identifier with PZD Transmit (U713) PZD transmit length $=0$ (U714) PZD transmit length > 16 , i.e. too long (U714) Incorrect CAN identifier with PZD Receive-Broadcast (U716) Incorrect CAN identifier with PZD Receive-Multicast (U717) Incorrect CAN identifier with PZD Receive-Internode (U718) Invalid baud rate (U720) Incorrect CAN protocol type (U721) PKW Request-Broadcast (U719) without PKW Request (U711) Overlap between CAN identifier PKW and PKW Broadcast Overlap between CAN identifier PKW and PZD Receive Overlap between CAN identifier PKW and PZD Transmit Overlap between CAN identifier PKW and PZD Receive-Broadcast Overlap between CAN identifier PKW and PZD Receive-Multicast Overlap between CAN identifier PKW and PZD Receive-Internode Overlap between CAN identifier PKW Broadcast and PZD Receive Overlap between CAN identifier PKW Broadcast and PZD Transmit Overlap between CAN identifier PKW Broadcast and PZD Receive-Broadcast Overlap between CAN identifier PKW Broadcast and PZD Receive-Multicast Overlap between CAN identifier PKW Broadcast and PZD Receive-Internode Overlap between CAN identifier PZD Receive and PZD Transmit Overlap between CAN identifier PZD Receive and PZD Receive-Broadcast Overlap between CAN identifier PZD Receive and PZD Receive-Multicast Overlap between CAN identifier PZD Receive and PZD Receive-Internode Overlap between CAN identifier PZD Transmit and PZD Receive-Broadcast Overlap between CAN identifier PZD Transmit and PZD Receive-Multicast Overlap between CAN identifier PZD Transmit and PZD Receive Internode Overlap between CAN identifier PZD Receive-Broadcast and PZD Receive-Multicast Overlap between CAN identifier PZD Receive-Broadcast and PZD Receive-Internode Overlap between CAN identifier PZD Receive-Multicast and PZD Receive-Internode Fault values for CANopen: Incorrect bus address (P918) Invalid baud rate (U720) Incorrect CAN protocol type (U721) Invalid mapping of 1st Receive PDO (U711) Invalid transmission type of $1^{\text {st }}$ Receive PDO (U711) Invalid mapping of $1^{\text {st }}$ Transmit PDO (U715) Invalid transmission type of $1^{\text {st }}$ Transmit PDO (U715) Invalid mapping of $2^{\text {nd }}$ Receive PDO (U712) Invalid transmission type of $2^{\text {nd }}$ Receive PDO (U712) Invalid mapping of $2^{\text {nd }}$ Transmit PDO (U716) Invalid transmission type of $2^{\text {nd }}$ Transmit PDO (U716) Invalid mapping of $3^{\text {rd }}$ Receive PDO (U713) Invalid transmission type of $3^{\text {rd }}$ Receive PDO (U713) Invalid mapping of $3^{\text {rd }}$ Transmit PDO (U717) Invalid transmission type of $3^{\text {rd }}$ Transmit PDO (U717) Invalid mapping of $4^{\text {th }}$ Receive PDO (U714) Invalid transmission type of $4^{\text {th }}$ Receive PDO (U714) Invalid mapping of $4^{\text {th }}$ Transmit PDO (U718) Invalid transmission type of $4^{\text {th }}$ Transmit PDO (U718) Invalid Life Time Event or incorrect basic unit parameterized (U719)
$\begin{gathered} \text { n732.002 } \\ \text { or } \\ \text { n732.034 } \end{gathered}$		Number of correctly received PZD CAN telegrams since Power ON Irrelevant for CANopen
$\begin{gathered} \mathrm{n} 732.003 \\ \text { or } \\ \mathrm{n} 732.035 \end{gathered}$		Number of PZD telegrams lost since Power ON Telegrams will be lost if the CAN Bus master sends PZD telegrams faster than they can be processed by the slave. Irrelevant for CANopen

	Value	Meaning
$\begin{gathered} \text { n732.004 } \\ \text { or } \\ \text { n732.036 } \end{gathered}$		Counter of Bus Off states since Power ON (alarm A084)
$\begin{gathered} \text { n732.005 } \\ \text { or } \\ \text { n732.037 } \end{gathered}$		Counter of Error Warning states since Power ON (alarm A083)
$\begin{gathered} \text { n732.006 } \\ \text { or } \\ \text { n732.038 } \end{gathered}$		Status of the CAN controller
$\begin{gathered} \text { n732.007 } \\ \text { or } \\ \text { n732.039 } \end{gathered}$		Number of errors occurring during reception of PCD frames
$\begin{gathered} \text { n732.008 } \\ \text { or } \\ \text { n732.040 } \end{gathered}$		Type of error occurring during reception of PCD frames
$\begin{gathered} \text { n732.009 } \\ \text { or } \\ \text { n732.044 } \end{gathered}$		Value of error occurring during reception of PCD frames
$\begin{gathered} n 732.010 \\ \text { or } \\ \mathrm{n} 732.042 \end{gathered}$		Number of correctly transmitted PZD CAN telegrams since Power ON Irrelevant for CANopen
$\begin{gathered} \mathrm{n} 732.011 \\ \text { or } \\ \mathrm{n} 732.043 \end{gathered}$		Number of errors during transmission of PZD telegrams PZD telegrams cannot be transmitted when the bus is overloaded Irrelevant for CANopen
$\begin{gathered} \text { n732.012 } \\ \text { or } \\ \text { n732.044 } \end{gathered}$		Type of error occurring during transmission of PCD frames
$\begin{gathered} \mathrm{n} 732.013 \\ \text { or } \\ \mathrm{n} 732.045 \end{gathered}$		Value of error occurring during transmission of PCD frames
$\begin{gathered} \text { n732.014 } \\ \text { or } \\ \mathrm{n} 32.046 \end{gathered}$		Number of correctly processed PKW requests and responses since Power ON Irrelevant for CANopen
$\begin{gathered} \text { n732.015 } \\ \text { or } \\ \text { n732.047 } \end{gathered}$		Number of PKW request processing errors, e.g. owing to bus overload or missing responses from CUD1 (see below for error type) Irrelevant for CANopen
$\begin{gathered} \text { n732.016 } \\ \text { or } \\ \mathrm{n} 32.048 \end{gathered}$	$\begin{gathered} 0 \\ 9 \\ 11 \\ 12 \end{gathered}$	Type of PKW request processing error: No error Error transmitting the PKW response (while waiting for a free channel) Timeout waiting for the PKW response from the CUD1 Timeout waiting for a free channel (bus overload) Irrelevant for CANopen
$\begin{gathered} \mathrm{n} 732.017 \\ \text { or } \\ \mathrm{n} 732.049 \end{gathered}$		Value of error occurring while processing PKW requests
$\begin{gathered} \text { n732.018 } \\ \text { or } \\ \mathrm{n} 732.050 \end{gathered}$		Number of lost PKW requests Irrelevant for CANopen
$\begin{gathered} \text { n732.026 } \\ \text { or } \\ \text { n732.058 } \end{gathered}$		Software version of CBC (e.g. " 12 " = version 1.2 , see also r060)
$\begin{gathered} \mathrm{n} 732.027 \\ \text { or } \\ \mathrm{n} 732.059 \end{gathered}$		Software identifier (extended software version identifier, see also r065)
$\begin{gathered} \mathrm{n} 732.028 \\ \text { or } \\ \mathrm{n} 32.060 \end{gathered}$		Date of generation of CBC software Day (H byte) and month (L byte)
$\begin{gathered} \mathrm{n} 732.029 \\ \text { or } \\ \mathrm{n} 32.061 \end{gathered}$		Date of generation of CBC software Year

Fault and alarm messages:

Detailed information about fault messages can be found in Section 10.

Fault F080

An error occurred during initialization of the CBC board, e.g. incorrect setting of a CB parameter, incorrect bus address or defective board.

Fault F081
The heartbeat counter (counter on CBC) which is monitored by SIMOREG for "signs of life" from the board has not changed for at least 800 ms .
Fault F082
Failure of PZD telegrams or a fault in the transmission channel

Abstract

Alarm A083 (Error Warning) Errored telegrams are being received or sent and the error counter on the supplementary board has exceeded the alarm limit. Errored telegrams are ignored. The data most recently transferred remain valid. If the errored telegrams contain process data, fault message F082 with fault value 10 may be activated as a function of the telegram failure time set in U722. No fault message is generated for PKW data.

Alarm A084 (Bus Off)
Errored telegrams are being received or sent and the error counter on the supplementary board has exceeded the fault limit.
Errored telegrams are ignored. The data most recently transferred remain valid. If the errored telegrams contain process data, fault message F082 with fault value 10 may be activated as a function of the telegram failure time set in U722. No fault message is generated for PKW data.

7.7.4 Procedure for starting up SIMOLINK boards (SLB):

1 Disconnect the power supply and insert adapter board (ADB) containing SLB in a location. Please remember to insert a board in location 2 before you use location 3. .

2 The SLBs must be connected up using fiber optics in such a manner as to avoid long distances between two units (max. 40 m with plastic fiber optics and max. 300 m with glass fiber optics). Please also note that the transmitter (in center of SLB) on one unit is connected to the receiver (at corner of SLB) on the next unit. These connections must be made on all units until they are linked in a closed circuit.

3 The following are important communication parameters. Index 1 of each parameter is set for the $1^{\text {st }}$ SIMOLINK board ($1^{\text {st }}$ SLB) and index 2 for the $2^{\text {nd }}$ SIMOLINK board ($2^{\text {nd }}$ SLB) (the use of a $2^{\text {nd }}$ SLB is planned for future software versions):

- U740 Node address (address 0 identifies the dispatcher)

Node addresses must be assigned consecutively unless a SIMOLINK master is being used.

- U741 Telegram failure time ($0=$ deactivated)
- U742 Transmitter power

The output of the fiber optic transmitter module can be set on each active bus node.

- U744 Reserved for SLB selection (leave at 0 setting)
- U745 Number of channels (telegrams) used per node

The SLB with dispatcher function assigns the same number of channels to all nodes

- U746 Traffic cycle time

In contrast to converters of the SIMOVERT series, the line-synchronous SIMOREG converter cannot be synchronized with the cycle time of the SIMOLINK bus in order to minimum the data interchange time.
The user data in the telegrams are exchanged cyclically ($6 x$ per mains period, i.e. every 3.3 ms at 50 HZ) between the SIMOREG converter and the SLB, irrespective of the cycle time on the bus (U746). A shorter cycle time still means, however, that the data are transferred more quickly after they have been made available by the converter or more up-to-date information for the converter.

U745 and U746 together determine the number of addressable nodes (this can be checked with diagnostic parameter n748.4 in the converter with the dispatcher board).

No. of addressable nodes =

$$
\left(\frac{U 746[u s]+3,18 u s}{6,36 u s}-2\right) * \frac{1}{U 745}
$$

The number of nodes serves only to check whether data can be exchanged with the values set in U745 and U746. These parameters must otherwise be corrected.

A maximum of 201 nodes (dispatcher and 200 transceivers) can be connected to the SIMOLINK bus. Node addresses 201 to 255 are reserved for special telegrams and others. Consequently, with 8 channels per node, a bus cycle can be a maximum of 6.4 ms in duration.

4 Process data are connected to the SIMOLINK board through assignment of the corfesponding connectors and/or binectors to telegram addresses and channel numbers (see Section 8, Sheet SIMOLINK Board: Receiving, Transmitting").

Example:

U749.01 $=0.2$	
	means that the values of node $0 /$ channel 2 are read as word1 $($ K7001 $)$ and word2 $($ K7002 $)$
U740.01 $=1$	
means that node 1 in channel 0 transmits status word 1 (K0032) as	
U751.01 $=32$	
U751.02 $=33$	

Changes to the settings of the receive data parameters do not take effect until the electronics power supply is switched on again.

WARNING
Changing parameters U740, U745, U746 and U749 causes re-initialization, resulting in an interruption in communication with all drives linked to the SIMOLINK bus.

SIMOLINK (Siemens Motion Link) is a digital, serial data transmission protocol which uses fiber optics as a transmission medium. The SIMOLINK drive link has been developed to allow a fast, cyclic exchange of process data (control information, setpoints, status information and actual values) via a closed ring bus.
Parameter data cannot be transferred via SIMOLINK.
SIMOLINK consists of the following components:

SIMOLINK Master

Active bus node as interface to higher-level automation systems (e.g. SIMATIC M7 or SIMADYN)
SIMOLINK Board (SLB)
Active bus node as interface for drives on SIMOLINK

SIMOLINK Switch

Passive bus node with switching function between two SIMOLINK ring busses. The separating filter and concentrator are identical in terms of hardware, but perform different functions. Separating filters are used to reverse the signal flow, e.g. in order to link the nodes on one ring bus to another ring bus after the failure of their master. Concentrators allow ring segments to be star-connected to form a complete ring.

Fiber optic cables

Transmission medium between the SIMOLINK nodes. Glass or plastic fiber optic cables can be used. The permissible maximum distances between adjacent nodes in the ring differs depending on the type of fiber optic used (plastic: $\max 40 \mathrm{~m}$, glass: max. 300 m).

SIMOLINK is a closed fiber optic ring. One of the nodes on the bus has a dispatcher function (SIMOLINK master or SLB parameterized as the dispatcher). This dispatcher node is identified by node address $\mathbf{0}$ and controls communication on the bus. Using SYNC telegrams, it supplies the common system clock cycle for all nodes and sends telegrams in ascending sequence of telegram addresses and channel numbers in the task table. The task table contains all telegrams which are transmitted cyclically in normal data interchange.

When an SLB is employed as the dispatcher, the task table is configured solely on the basis of drive parameters. The following restrictions apply as compared to the use of a SIMOLINK master as the dispatcher:

Flexible address lists with gaps in address sequence are not allowed on the bus. Addresses are assigned consecutively to the nodes, starting with address 0.
The number of telegrams (channels) used per node is identical for all nodes.
It is not possible to use application-specific special data.
All other active bus nodes apart from the dispatcher are transceivers. These simply forward telegrams (with updated contents in some cases) along the bus.

Active bus nodes receive and/or send telegrams (SIMOLINK master, dispatcher, transceivers).
Passive bus nodes simply forward received telegrams along the bus without changing their contents (separating filters, concentrators).
A separate address is assigned to each active bus node; the dispatcher is always assigned node address 0.
A maximum of 8 telegrams can be transferred per active node. The number of telegrams used per node is a parameterizable quantity.
Telegrams are identified by the node address and distinguished by their channel number of between 0 and 7 , with 2 data words transferred as user data in each telegram. The first channel number starts with 0 and is counted in ascending sequence.

The assignment between connector values to be transferred and individual telegrams and channels is also parameterized (see Section 8, Sheet Z122).

Transmission of double-word connectors:
The values of double-word connectors can be transmitted in the first four channels (selected with U749.01 to U749.04 in the receive direction or with U751.01 to U751.08 in the transmission direction). In the receive direction, the values of any two adjacent connectors (K) are combined to form a double-word connector (KK) (e.g. K7001 and K7002 to KK7031). These double-word connectors can be connected to other function blocks in the usual way. For details of how to connect with double-word connectors, see Section 9.1, subsection, " The following rules apply to the selection of double-word connectors ".
In the transmission direction, a double-word connector is applied by entering the same double-word connector at two contiguous indices of selection parameter U751.
Examples:

$2 x$ the same KK - number

U751 (0)	. 01	H-Word
$\rangle 9498$		
¢9499	. 02	H-Word
$\sum 401$. 03	Word
$\sum 401$. 04	
< 402		Word

Apart from these data, a SIMOLINK master can also send special telegrams with applicationspecific data (addresses 201 to 204 and channel number 0). An SLB as dispatcher does not support these special telegrams.
If a transceiver stops receiving telegrams due to an interruption, it automatically transmits special telegram "Time Out".

The transmission rate is $\mathbf{1 1} \mathbf{~ M b i t s} / \mathbf{s}$. The data telegrams are transmitted in direct succession, followed by a SYNC telegram and a pause telegram, within one bus cycle. Transferring the data telegrams without pauses ensures a higher data throughput. At a data transmission rate of 11 $\mathrm{Mbit} / \mathrm{s}$, the transmission time for one telegram is $6.36 \mu \mathrm{~s}$.

The assignment of telegrams to nodes is determined by the type of SIMOLINK application, i.e. peer-to-peer functionality or master-slave functionality.
When an SLB is configured as the dispatcher, only the peer-to-peer functionality is available.
Peer-to-peer functionality
In this mode, there is no defined logical master for distributing information. The drives have equal status in logical terms and exchange data with one another via the ring bus. One node (SLB) specifies the bus cycle in its dispatcher role to keep the transmission alive. All nodes receive and/or send user data. Dispatcher and transceivers can read any telegram, but may only write information in the telegrams specifically assigned to them (node address = address in telegram).

Master-slave functionality
A logical master (e.g. SIMATIC) supplies all nodes with information on the one hand and, on the other, specifies the bus clock cycle (dispatcher function). All other nodes behave as described above under peer-to-peer functionality, i.e. they receive and/or send user data, but are only permitted to read or write telegrams containing their address.
In contrast to peer-to-peer functionality, the restrictions described above (no gaps in address sequence, uniform number of used channels, no special data) do not apply. The master has its own 8 channels for transferring data, but can also use telegrams with the address and channel numbers of the transceivers for its data transmissions.

NOTE

An external 24 V power supply to the SIMOLINK modules ensures that communication with the other bus nodes continues if a device fails.
However, this power supply does not prevent the short interruption in communication when the device is switched on again when establishing communication is forced.

7.7.5 Procedure for staring up expansion boards (EB1 and EB2)

1 Remove connector X480 from the EB1 board for safety reasons. A short circuit could otherwise occur should the signal direction of the bidirectional binary inputs/outputs be incorrectly parameterized (see also point 3).
This risk of short circuits does not exist on EB2 boards.

2 The analog inputs on the EB1 can be used either as current or voltage inputs, the mode being selected by setting jumpers (X486, X487, X488) appropriately (see Function Diagrams, Section 8). The same applies to EB2 (X498); on this board, the analog output can also be configured as a current or voltage source (X499).

3 Parameterize the desired functions for the inputs and outputs (see Function Diagrams, Section 8).
If you wish to operate a bidirectional binary input/output on an EB1 as an input, please note that the output circuit must be deactivated in the corresponding parameter (e.g. U769.01=0). A short circuit will otherwise occur if the signal levels of the external input and output signals are opposed.
Switch off the device.

4 With the power supply disconnected, insert the adapter board with expansion board in a location. Please remember to insert a board in location 2 before you use location 3.

5 EB1 boards only: Plug connector X480 back into board.

Expansion boards EB1 and EB2 expand the range of terminals on the basic converter. A total of 2 EB1 boards and 2 EB2 boards may be installed in one SIMOREG DC MASTER 6RA70. The EB1 and/or EB2 are plugged into adapter (carrier) boards (ADB). 2 boards may be mounted on each ADA.

The EB1 provides the following expansion terminals:
3 binary inputs
4 bidirectional binary inputs/outputs
1 analog input for differential signal (current or voltage input)
2 analog inputs (single ended), can also be used as binary inputs
2 analog outputs
1 connector for external 24 V voltage supply to binary outputs

The EB2 provides the following expansion terminals:
2 binary inputs
1 connector for external 24 V voltage supply to binary outputs
1 relay output with changeover contacts
3 relay outputs with NO contacts
1 analog input for differential signal (current or voltage input)
1 analog output (current or voltage output)

For further details, see Section 8, function diagrams for expansion boards EB1 and EB2.

7.7.6 Procedure for starting up the pulse encoder board (SBP)

Set the switches (for encoder supply and bus terminating resistors) on the SBP board:
If ohe pulse encoder is connected to one SBP board, then the three switches for bus terminating resistors must be switched to ON.
If one pulse encoder is connected to several SBP boards, then the three switches for bus terminating resistors must be switched to ON only on the last SBP.
The fourth switch connects and disconnects the supply voltage for the encoder.

(Caution: Switch open means supply voltage connected)

2 Disconnect power supply and insert adapter with board into location. Please remember to insert a board in location 2 before you use location 3. encoder board). If you connect unipolar signals, a ground connection for all signals to terminal 75 (CTRL-) is sufficient. For very long lines or high interference irradiation, we recommend jumpering terminals 69, 71, and 75 (A-, B-, and CTRL-) and connecting to encoder ground. The zero track of the pulse encoder is not evaluated by SIMOREG and need not therefore be connected.
The terminals designated coarse pulse1, coarse pulse2 and fine pulse2 can be used as digital inputs for any function (see Function Diagrams in Section 8)

4

- U790 Voltage level of inputs

0: HTL unipolar
1: TTL unipolar
2: HTL differential input
3: TTL/RS422 differential input

- U791 Level of encoder supply
$0: \quad 5 \mathrm{~V}$ voltage supply
1: $\quad 15 \mathrm{~V}$ voltage supply
- U792 Pulse encoder resolution
- U793 Type of pulse encoder

0: \quad Encoder with A/B track (two tracks displaced by 90 degrees)
1: Encoder with separate forward and reverse track

- U794 Reference speed
(For further details, see Section 11, description of parameters U790- U794)

The pulse encoder board SBP (Sensor Board Pulse) supports commercially available pulse encoders with pulse frequencies up to 410 kHz . The voltage level of the encoder signals can be parameterized. TTL or HTL level pulses, bipolar or unipolar, can be used.

A voltage supply for 5 V and 15 V encoders is provided on the board.
Evaluation of a temperature sensor is not supported on SIMOREG DC MASTER 6RA70 converters.

7.7.7 Sequence of operations for starting up DeviceNet boards (CBD):

1 With the power supply switched off, insert the board or adapter board with board in the slot. Please note that slot 2 (on right) must always be occupied before slot 3 (in center) can be used.

2 Wire up the DeviceNet using appropriate cabling (see below for details of cables).

3 The following parameters are relevant with respect to communications. Index 1 of the relevant parameter applies to the $1^{\text {st }}$ communication board ($1^{\text {st }} \mathrm{CBx}$) and index 2 to the $2^{\text {nd }}$ communication board ($2{ }^{\text {nd }} C B x$):

- U711 CB parameter1

Definition of number of words in the process data area that the SIMOREG sends as a response to a request by the master (produced data). The following options can be selected:
U711 = 170 ... 4 PZD (status word and actual values)
U711 = $171 \ldots 8$ PZD (status word and actual values)
U711 = 172 ... 16 PZD (status word and actual values)

- -U712 CB parameter2

Definition of number of words in the process data area that SIMOREG expects to receive after a request from the master (consumed data). The following options can be selected:
U712 = 120 ... 4 PZD (control word and setpoints)
U712 = $121 \ldots 8$ PZD (control word and setpoints)
U712 = 122 ... 16 PZD (control word and setpoints)
U711 and U712 can be parameterized independently of one another. The first 4 PZD words (produced data) are always sent after a request from the master.

- -U720 CB parameter10

Definition of the DeviceNet transmission rate. The following options can be selected:
U720 = 0 125kbaud
U720 = 1 250kbaud
U720 $=2$....... 500kbaud

- U722 CB/TB telegram failure time

Definition of the time period within which at least 1 telegram with PZDs must be exchanged before a fault message is generated.
This parameter should be set to " 0 " first (monitoring function deactivated). Once the network is operating correctly, a time value can be set within which PZDs are normally exchanged.

- P918 Bus address

Definition of DeviceNet MAC ID for the CBD in the 0 to 63 range.

- P927 Parameterizing enable (necessary only if parameter values need to be altered via DeviceNet)
- The process data of the $1^{\text {st }}$ or $2^{\text {nd }}$ communication board are wired up by means of the appropriate connectors or binectors (see Section 8, function diagrams Z110 and Z111). For meaning of the control and status word bits, see Section 8, Sheets G180 to G183.

4 Switch the electronics power supply off and on again or set U710.001 or U710.002 to "0" to transfer the values of parameters U712, U720, U722 and P918 to the supplementary board.

WARNING

This initialization process will interrupt the communication of any supplementary board that has already been started up.

The CBD board supports "DeviceNet Explicit Messages" for the transfer of process data, as well as "DeviceNet I/O Messages" for the transmission of parameter data. The meaning of the data within an I/O message is determined by the corresponding "Connection ID".

The CBD supports the "Predefined Master/Slave Connection Set" defined in the DeviceNet Specification. Both "poll" and "bit strobe I/O messages" are supported.

The CBD adheres to the "DeviceNet Device Profile for Communication Adapter" (Device Type 12). This profile has been selected to allow the DeviceNetMaster to utilize all the options and extended functions provided by the SIMOREG.

DeviceNet messages can be divided roughly into 3 groups:

- DeviceNet configuration data, e.g. channel assignment, timeouts and I/O messages, for which explicit messages are used
- Process data, e.g. control/status word and setpoints/actual values, for which I/O messages are used
- Parameter data, for which manufacturer-specific PKW objects and explicit messages are used, to read or modify drive parameter settings

The drive is controlled by process data. The number of process data words is determined either by the value of particular CB parameters (U711 and U712) after booting, or dynamically by the DeviceNet.

The master uses a manufacturer-specific PKW object to read or modify drive parameters via DeviceNet, utilizing the explicit messaging channel. The user thus has access via DeviceNet to all SIMOREG parameters and any installed technology board (e.g. detailed diagnostic information and fault messages).

DeviceNet specifies a shielded cable with 2 individually screened two-wire conductors for signal transmission and power supply. 2 types of different cross-sections may be used, i.e. "Thin Cable" and "Thick Cable".
Thick cables are used in networks of $>100 \mathrm{~m}$ in length and thin cables for spur lines and networks of <100m.
The following cable types are recommended for use as DeviceNet bus cables:
Thin cable:Belden 3084A
Thick cable:Belden 3082A, 3083A or 3085A
Pin assignment and color coding are defined as follows:

Pin	Function	Color of wire in DeviceNet cable
X438.1	V-	Black (power supply ground)
X438.2	CAN-	Blue
X438.3	Shield	
X438.4	CAN+	White
X438.5	V+	Red (+24V supply $+/-1 \%$)

Recommended bus connector:Phoenix Combicon MSTB 2.5/5-ST-5.08-AU

Transmission rates and bus cable lengths:

Transmission rate	Max. cable length (thick cable)	Spur line length (thin cable) Maximum	
	500 m	6 m	Cumulative
250 kbaud	250 m	6 m	156 m
500 kbaud	100 m	6 m	78 m

To ensure proper functioning, both ends of the bus cable must be terminated by a terminating resistor (121Ω metal film resistor, $+/-1 \%, 0.25 \mathrm{~W}$).

The DeviceNet cable screen should be earthed at ONE point (e.g. at the power supply). Earthing the screen at several locations can produce ground loops and cause malfunctions.

Telegrams transmitted via DeviceNet have the same useful data structure as those used in CAN Bus communication

A CAN telegram comprises the protocol header, CAN identifier, up to 8 bytes of useful data and the protocol trailer.

The methods applied for DeviceNet transmissions allow useful data of any length to be transferred. Data which are longer than 8 bytes can be transmitted in fragmented form (in several consecutive telegrams).

PZD object (process data)

Both control words and setpoints as well as status words and actual values (process data) are transmitted by means of DeviceNet I/O message connections. The number of process data to be transferred (4, 8 or 16) depends on which DeviceNet I/O assembly instance has been selected. The quantity of process data transmitted by the drive can differ from the quantity received.
Options for defining the number of PZD:

- "Consumed Connection Path" with "Poll I/O" (direction: Master -> drive)

U712 = 120 ... 4 PZD (control word and setpoints)
U712 = $121 \ldots 8$ PZD (control word and setpoints)
U712 = 122 ... 16 PZD (control word and setpoints)

- "Produced Connection Path" with "Poll I/O" (direction: Drive -> master)

U711 = 170 ... 4 PZD (status word and actual values)
U711 = $171 \ldots 8$ PZD (status word and actual values)
U711 = 172 ... 16 PZD (status word and actual values)

- "Produced Connection Path" with "Bit Strobe I/O" U711 = 170 ... 4 PZD (status word and actual values); cannot be changed

The meaning of each process data word is determined by the assignment of connectors parameterized in the drive (see function diagrams in Section 8, particularly "Data exchange with $1^{\text {st }}$ and $2^{\text {nd }} \mathrm{CB}$ "). Process data can be exchanged between the SIMOREG and CBD $6 x$ per line period, i.e. every 3.3 ms at 50 Hz , but is dependent on the data exchange mode via DeviceNet. For further details, see also "Information about PZD transmission" in Section 7, "Sequence of operations for starting up CAN Bus boards".

Information about PZD transmission:

The low-order byte or word is always transferred before the high-order byte or word.
Control word 1 must always be sent as the first PZD word. If control word 2 is also used, this must always be sent as the $4^{\text {th }}$ PZD word.

Bit10 in control word 1 ("control requested") must always be set or else no new setpoints will be accepted from the drive.

The second PZD word should normally contain the main setpoint.

The consistency of a block of data words is guaranteed within a DeviceNet I/O message connection even in cases where more than 4 PZD words are used and the transmission data is distributed among several telegrams. The data are not transferred from the CBD to the drive until all data words have been received.

PKW object (parameter data)

The manufacturer-specific PKW object (class 100) is used to read and modify parameters of the drive or a technology board by means of the DeviceNet master (PKW = parameter identifier value). Explicit messaging mode is used for this purpose.

Only two instances are implemented for the PKW object: Instance 0 permits access to class attributes and instance 1 (always set to "1") access to all parameter numbers (see DeviceNet objects below).
Apart from the protocol header and trailer specific to DeviceNet, the structure of a telegram is follows:

Parameter identifier	Parameter index	Parameter value1	Parameter value2
PKE	IND	PWE1	PWE2

For details about this telegram area, see also Section 7.7.9, Structure of request/response telegrams. The useful data area of PROFIBUS, CAN Bus and DeviceNet telegrams is structured identically.

DeviceNet GET Single

This object is used to read parameter values and 9 bytes in length.

Byte	DeviceNet identification		
1	$[F R A G][$ IDID [SRC/DST MAC ID]		
2	$[R / R][$ Service]	$0 x 0 \mathrm{E}$	[Get_Attribute_Single]
3	Class	100	[PKW object] manufacturer-specific
4	Instance	1	[Instance number] always set to 1
5	Attribute	1	[Attribute number] always set to 1
6	PKE		Parameter ID, L byte
7			Parameter ID, H byte
8	IND		Parameter index, L byte
9			Parameter index, H byte

DeviceNet SET Single

This object is used to modify parameter values and 14 bytes in length

Byte DeviceNet identification			
1	[FRAG] [XID] [SRC/DST MAC ID]		
2	[Fragmentation Protocol]		
3	[R/R] [Service]	0x10	[Set_Attribute_Single]
4	Class	100	[PKW object] manufacturer-specific
5	Instance	1	[Instance number] always set to 1
6	Attribute	1	[Attribute number] always set to 1
7	PKE		Parameter ID, L byte
8	PKE		Parameter ID, H byte
9	IND		Parameter index, L byte
10	IND		Parameter index, H byte
11	PWE1		Parameter value, L word, L byte
12	PWE1		Parameter value, L word, H byte
13	PWE2		Parameter value, H word, L byte
14	PWE2		Parameter value, H word, H byte

DeviceNet Response

This object is used to respond to requests of the above type and 8 bytes in length.

Byte	DeviceNet identification		
1	[FRAG] [XID] [SRC/DST MAC ID]	$\begin{aligned} & 0 \times 8 E \\ & 0 \times 90 \end{aligned}$	
2	[R/R] [Service]		[Get/Set_Attribute_Single]
3	KE		Parameter ID, L byte
4	KE		Parameter ID, H byte
5	PWE1		Parameter value, L word, L byte
6	PWE1		Parameter value, L word, H byte
7	PWE2		Parameter value, H word, L byte
8	PWE2		Parameter value, H word, H byte

Examples

Read parameter P101.004 using GET Single (for details in the shaded data area, see also Section 7, Starting up PROFIBUS boards):

Byte	DeviceNet identification		
1	$[F R A G][$ [XID] [SRC/DST MAC ID]		
2	[R/R] [Service]	$0 \times 0 \mathrm{E}$	[Get_Attribute_Single]
3	Class	100	[PKW object] manufacturer-specific
4	Instance	1	[Instance number] always set to 1
5	Attribute	1	[Attribute number] always set to 1
6	PKE	0×65	Parameter ID, L byte
7		$0 x 60$	Parameter ID, H byte
8	IND	4	Parameter index, L byte
9		0	Parameter index, H byte

Request identifier = 0x6065 (request parameter value (array) P101), Index = 0004h = 4d

Response by SIMOREG:

Byte	DeviceNet identification		
1	$[$ FRAG $[\mathrm{XID}][$ SRC/DST MAC ID]		
2	$[R / R][$ Service $]$	$0 \times 8 \mathrm{E}$	[Get_Attribute_Single]
3	PKE	0×65	Parameter ID, L byte
4		0×40	Parameter ID, H byte
5	PWE1	0×90	Parameter value, L word, L byte
6		0×01	Parameter value, L word, H byte
7	PWE2	0×00	Parameter value, H word, L byte
8		0×00	Parameter value, H word, H byte

Response identifier $=0 \times 4065$, value of P101.004 $=0190 \mathrm{~h}=400 \mathrm{~d}(\mathrm{PWE} 2$ remains unused because it is not a double word parameter)

Modify parameter U099.001 using SET Single (for details in the shaded data area, see also Section 7, Starting up PROFIBUS boards):

Byte	DeviceNet identification		
1	$[F R A G][$ XID $][$ SRC/DST MAC ID]		
2	$[$ [Fragmentation Protocol]		
3	$[R / R][$ Service $]$	0×10	[Set_Attribute_Single]
4	Class	100	[PKW object] manufacturer-specific
5	Instance	1	[Instance number] always set to 1
6	Attribute	1	[Attribute number] always set to 1
7	PKE	0×63	Parameter ID, L byte
8		0×70	Parameter ID, H byte
9	IND	0×01	Parameter Index, L byte
10		0×80	Parameter Index, H byte
11	PWE1	$0 \times C 8$	Parameter value, L word, L byte
12		0×00	Parameter value, L word, H byte
13		0×00	Parameter value, H word, L byte
14		0×00	Parameter value, H word, H byte

Request identifier $=7063 \mathrm{~h}$ (modify parameter value (array) U099), index $=0001 \mathrm{~h}=1 \mathrm{~d}$ (bit 15 is also set in the H byte in order to address the parameter number range from 2000 to 4000), value $=$ 00C8h = 200d

Response by SIMOREG:

Byte	DeviceNet identification		
1	$[$ FRAG] [XID] [SRC/DST MAC ID]		
2	$[R / R][$ Service	0×90	[Set_Attribute_Single]
3	PKE	0×63	Parameter ID, L byte
4		0×40	Parameter ID, H byte
5	PWE1	$0 \times C 8$	Parameter value, L word, L byte
6		0×00	Parameter value, L word, H byte
7	PWE2	0×00	Parameter value, H word, L byte
8		0×00	Parameter value, H word, H byte

Response identifier $=0 x 4063$, value of U099.001 $=00 C 8 h=200 d$ (PWE2 remains unused because SIMOREG 6RA70 has no double word parameters)

Information about PKW transmission:

The length of a request from the master is two words (for GET Single) or 4 words (SET Single). The length of a SIMOREG response is always 3 words.

The low-order byte or word is always sent before the high-order byte or word.
The master may generate a new PKW request only after it has received a response from the slave to the previous request.

The master identifies the response to the transmitted request by
evaluating the response identifier
evaluating the parameter number
evaluating the parameter value (if further identification is needed)
The CBD slave does not respond to a parameter request until it has received the relevant data from the drive. The time delay depends on the type of request, but is at least 20 ms . During the initialization phase after Power ON or a re-initialization operation due to a change in a CB parameter setting, requests may not be processed at all, in which case the ensuing delay could be as much as 40 s .

7.7.7.1 Diagnostic tools:

LED displays on the CBD (steadily flashing LEDs indicate normal operation):

Red	Status of CBD (software working correctly)
Yellow	Communication between SIMOREG and CBD
Green	PZD data exchange between CBD and DeviceNet

LED			
red	yellow	green	
flashing	flashing	flashing	Normal operation
flashing	off	on	CBD waiting for commencement of initialization by SIMOREG
flashing	on	off	CBD waiting for end of initialization by SIMOREG
flashing	flashing	off	No PZD data exchange via DeviceNet
flashing	on	on	CBD defective

Diagnostic parameter n732:
Indices i001 to i032 apply to a CBD as the first communication board, while indices i033 to i064 apply to a CBD as the second communication board.

	Value	Meaning
n732.027 or n 732.059	Software identifier (extended software version identifier, see also r065)	
n 732.028 or n 732.060	Date of generation of CBD software (day and month) (e.g. "2508" $=25^{\text {th }}$ August)	
n 732.029 or n 732.061	Date of generation of CBD software (year)	

Fault and alarm messages:

For details about fault messages, see Section 10.

Fault F080

An error occurred as board CBD was being initialized, e.g. incorrect value of a CB parameter, incorrect bus address or defective board.

Fault F081

The heartbeat counter (counter on CBD) which is monitored by SIMOREG for "signs of life" from the board has not changed for at least 800 ms .

Fault F082

Failure of PZD telegrams or a fault in the transmission channel.

Alarm A081

Idle condition alarm; a PZD telegram of length $=0$ has been received either in the "poll" or "bit strobe I/O message channel". The alarm is reset when a PZD telegram of normal length is received.
Faulty CAN messages of this type are ignored. The last transmitted data remain valid.
Alarm A083 (error alarm)
Telegrams containing errors are being received or transmitted and the error counter on the supplementary board has exceeded the alarm limit.
The faulty telegrams are ignored. The last transmitted data remain valid. If the faulty telegrams contain process data, fault message F082 with fault value 10 may be generated as a function of the telegram failure time set in U722.

Alarm A084

Faulty DeviceNet CAN telegrams have been received or transmitted, causing the internal error counter to overrun.
Faulty CAN messages of this type are ignored. The last transmitted data remain valid.

7.7.8 Sequence of operations for starting up the serial I/O board (SCB1):

1 With the power supply disconnected, insert the SCB1 board into slot 2 (or, if you have installed a technology board, into slot 3).

2 Set bus address on SCI using DIP-Fix switch S1 (each SCI slave requires its own address number):

	Slave 1	Slave 2
Address number	1	2
Switch setting S1	open	closed

3 Mount the interface boards) on the rail, make the connection to the 24 V power supply and the fiber optic connection between SCB1 and SCI.

4 The SCB1 board is used in conjunction with the SIMOREG DC master only as the master for SCI slaves.
Depending on the type of SCI slaves used and the functions required, the following parameters are relevant with respect to board operation (for details, see function diagrams in Section 7, and parameter list in Section 11):

- U690 Configuration of analog inputs of SCl1

The type of input signal for each input is parameterized via the indices.

- U691 Smoothing time constant of analog inputs of SCI1

Filtering of the input signal for each input is parameterized via the indices.

- U692 Zero calibration of analog inputs of SCI1

The input signal for each input is zero calibrated via the indices.

- U693 Actual value output via analog outputs of SCI1

A connector number is selected via the indices to define the output quantity at each output.

- U694 Gain of analog outputs of SCI

The gain for each output is parameterized via the indices.

- U695 Zero calibration of analog outputs of SCI1

The output signal for each output is zero calibrated via the indices.

- U698 Binector selection for binary outputs of SCI1

Selection of binectors whose states are output via the binary outputs of the SCIs.

- Display parameters n697 (diagnostic information) and n699 (display of input/output data) facilitate troubleshooting during start-up.

5 Switch the electronics power supply off and on again or set U710.001 or U710.002 to "0" to transfer the values of parameters U690 to U698 to the supplementary board.
Note: This initialization process will interrupt the communication of any supplementary board that has already been started up.

Option board SCB1 (Serial Communication Board 1) is used to link the 6RA70 SIMOREG DC master to board SCl1 or SCl2 (Serial Communication Interface) using a fiber optic connection (recommendation: Siemens plastic fiber optic cable, CA-1V2YP980/1000,200A or Siemens glassfiber cable, CLY-1V01S200/230,10A). These boards can be used if the CUD2 terminal expansion module is not large enough or safe electrical isolation via fiber optics is an absolute necessity. This board only allows the SCB1 master to exchange data with the SCl slaves. Data cannot be exchanged between the SCl slaves themselves.

A maximum of 2 SCIs, of either the same or different types, can be connected to the SCB1.
SCI1 or SCI2 are terminal expansion boards which are mounted on a rail outside the SIMOREG DC master and supplied with 24 V DC voltage $(-17 \%+25 \%, 1 \mathrm{~A})$ from an external source.

The interface boards extend the converter by the following additional inputs/outputs:

SCl1	SCl 2
10 binary inputs	16 binary inputs
8 binary outputs	12 binary outputs
3 analog inputs	
3 analog outputs	

Reception of SCI data by the SCB1 or transmission to the SCIs is synchronized, i.e. the data of two slaves is received simultaneously or transmitted simultaneously.

Details about the functions and connections of inputs and outputs are shown in the function diagrams in Section 8.

CAUTION

SCI boards have no external enclosure to protect them against direct contact or ingress of pollutants. To protect them against damage, they must be installed in a housing or in the control cabinet of a higher-level system.
The maximum permissible length of fiber optic cables is 10 m .
An input filter must be fitted for the external power supply of the interface boards.
Ground SCI at X80 using a short lead.
Analog inputs on SCI1: Only the voltage input or the current input may be used for each channel.

Analog outputs on SCI1: Only the voltage input or the current input may be used for each channel. The outputs are short-circuit-proof.
The binary driver outputs are short-circuit-proof. Relays may only be connected to these outputs in conjunction with an external power supply.

The binary relay outputs are not designed for protective separation.
To protect them against static discharge, the boards may only be placed on conductive surfaces.

Recommended circuit for connecting SCB1 to SCI1 and SCI2 using fiber optic cables:

WARNING

If the 24 V voltage supply for an SCl slave fails which data are being exchanged between the SCB1 and an SCI, then the "1" signal applied at a binary input is sent to the SCB1 or SIMOREG as an " 0 " shortly before the power finally fails.
In contrast, the "1" remains applied in the SIMOREG in the event of an interruption in the fiber optic connection.

If an external voltage (logical "1") has already been applied to a binary input when the electronics supply voltage is switched on, this status will not be registered until the external voltage is disconnected and reconnected again.

7.7.8.1 Diagnostic tools:

LED display on SCB1:

LED on	Reset state
LED flashing	Normal operation
LED off	Error

LED display on SCI1 or SCI2 slave:

LED on		
LED flashing	Reset state 12 Hz frequency	No telegram traffic (e.g. fiber optic cable not connected)
	5 Hz frequency Faulty telegram traffic (e.g. fiber optic ring interrupted or other slave has no supply voltage) LED off 0.5 Hz frequency ErrorNormal operation	

Details about fault or alarm messages which may occur in relation to SCB1 or SCI (F070 to F079 and A049 and A050) can be found in Section 10.

7.7.9 Structure of request/response telegrams

There is no basic difference between the useful data area in the request and response telegrams for PROFIBUS and CAN Bus. There are differences, for example, in the protocol frame and in the sequence in which H and L bytes are transmitted. The structures shown here are those of a SIMOREG DC Master, i.e. the values are displayed in the same way as they would be for parameters n733 and n735, for example. The structure of the protocol frame and the transmission sequence of bytes are therefore described where necessary in the sections containing the start-up description for the appropriate board.

Each request and each response basically comprises three areas apart from the telegram frame with header and trailer:

Header	Parameter identifier PKE	Index IND	Parameter value PWE	Trailer

The parameter identifier (PKE) contains a request or response identifier (i.e. type of request or response) and the number of the addressed parameter. The spontaneous signaling bit SPM (bit11) is not used on the SIMOREG DC master.

Bits 0 to 10 contain the number of the parameter specified in the request.
Owing to the length restriction of the bit field (11 bits), a parameter number (PNU) higher than 1999 must be converted to another code for use in the parameter identifier; the Page Select Bit in the index is used for this purpose:

Parameter area	Displayed number	Input on OP1S	PNU in parameter identifier	Page Select Bit (index bit 15)
Basic unit	Pxxx, rxxx	$0-999$	$0-999$	0
	Uxxx, nxxx	$2000-2999$	$0-999$	1
Technology board	Hxxx, dxxx	$1000-1999$	$1000-1999$	0
	Lxxx, $\mathbf{c x x x}$	$3000-3999$	$1000-1999$	1

In the case of a request, for example, which specifies parameter U280 (2280), therefore, PNU = 280 must be entered in the parameter identifier and bit 15 set in the index.

Bits 12 to 15 contain the request identifier or the associated response identifier as shown in the following list:

Request identifier	Meaning	Response identifier	
		positive	negative
0	No request	0	7 or 8
1	Request parameter value (word or double word)	1 or 2	
2	Modify parameter value (word)	1	
3	Modify parameter value (double word)	2	
4	Request descriptive element	3	
5	Reserved	-	
6	Request parameter value (array) (word or double word)	4 or 5	
7	Modify parameter value (array - word)	4	
8	Modify parameter value (array-double word)	5	
9	Request number of array elements	6	
10	Reserved	-	
11	Modify parameter value (array-double word) and store in EEPROM	5	
12	Modify parameter value (array-word) and store in EEPROM	4	
13	Modify parameter value (double word) and store in EEPROM	2	
14	Modify parameter value (word) and store in EEPROM	1	
15	Request text	15	

If the drive has been unable to process the request, it does not return the associated response identifier, but error identifier 7 (or 8) instead.
In this case, an error code defining the error in more detail as shown in the following list is returned as a parameter value:

Error code	Meaning	
0	Illegal parameter number (PNU)	No PNU specified
1	Parameter value cannot be modified	Visualization parameter
2	Lower or upper value limit violated	
3	Faulty subindex	
4	Parameter is not indexed (no array)	
5	Incorrect data type	
6	Parameter value can only be reset	
7	Descriptive element cannot be modified	
8	PPO Write (acc. to "Information Report") is not available	
9	Parameter description is not available	
10	Incorrect access level	
11	No parameterizing enable (P927)	
12	Keyword missing	Key parameter P051 incorrectly set
13	Text cannot be read cyclically	
15	No text	
16	PPO Write missing	
17	Incorrect operating state	
19	Value cannot be read cyclically	
101	Parameter number currently deactivated	
102	Channel not wide enough	

Error code	PKW number incorrect	Meaning
103	Illegal parameter value	Applies only to serial interfaces BiCo selection parameters
104	Indexed parameter	
105	Request not implemented in drive	
106	Text cannot be modified	
107	Incorrect number of parameter values	Applies to "Change all indices" request
108		

The index IND contains a " 0 " for non-indexed parameters; a 8 -bit long index value is entered (in the low-order byte) for indexed parameters.
Bit 15 (Page Select bit) has a special function. This is used to identify parameter numbers higher than 1999 (see above for details of recoding parameter numbers).
Exception: In the case of cyclical PROFIBUS services, the L and H byte sequence is reversed (see "Start-up of PROFIBUS boards").

An index value of 255 means that the request applies to all indices of the relevant parameter. In the case of a modification request, the parameter values for all indices of the parameter must be transferred. Conversely, the drive supplies all index values in its response to a read request.

The parameter value PWE is treated like a double word (PWE1 and PWE2). The high word is set to 0 when a single word is transferred.

7.7.10 Transmission of double-word connectors for technology and communication modules

In the receive direction, the values of two adjacent connectors (K) are combined to form a single double-word connector (KK) (e.g. K3002 and K3003 to KK3032). These double-word connectors can themselves be connected to other function blocks in the usual way. For details of how to connect double-word connectors, see Section 9.1, subsection, " The following rules apply to the selection of double-word connectors ".
In the transmit direction, a double-word connector is applied by entering the same double-word connector in two contiguous indices of the selection parameter.
Example:

$2 x$ the same KK - number

2 different KKs !

8 Function diagrams

General Page
Key to symbols 8-5
Basic functions
G100 Overview 8-6
G101 Hardware configuration 8-7
Inputs and outputs
G110 Binary inputs terminals 36 to 39 (CUD1) 8-8
G111 Binary inputs terminals 40 to 43 (CUD2) 8-9
G112 Binary outputs terminals 46/47 and 48/54 (CUD1) 8-10
Binary outputs terminals 50/51 and 52/53 (CUD2) 8-10
G113 Analog inputs terminals 4/5, 6/7 (CUD2), and 103/104 (power interface) 8-11
G114 Analog inputs terminals $8 / 9$ and 10/11 (CUD2) 8-12
G115 Analog outputs terminals 12/13, 14/15, and 16/17 (CUD1) 8-13
G116 Analog outputs terminals 18/19 and 20/21 (CUD2) 8-14
G117 E-Stop, Relay output line contactor (power interface) 8-15
Setpoint generation
G120 Fixed values 8-16
Fixed control bits 8-16
Constant fixed values and control bits 8-16
G121 Connector and binector displays 8-17
G124 Connector selector switch 8-18
G125 Evaluation of a 4-step master switch 8-19
G126 Motorized potentiometer. 8-20
G127 Fixed setpoint 8-21
G128 Oscillation / square-wave generator 8-22
G129 Inching setpoint 8-23
G130 Crawling setpoint / terminal 37 8-24
G135 Setpoint processing 8-25
G136 Ramp-function generator 8-26
Internal control
G140 Brake control 8-27
Actual speed value
G145 Pulse generator evaluation 8-28
Controllers
G150 Starting pulse - speed controller 8-29
G151 Speed controller (1) 8-30
G152 Speed controller (2) 8-31
G153 Friction compensation 8-32
Compensation of moment of inertia (dv/dt injection) 8-32
G160 Torque limitation, speed limit controller 8-33
G161 Current limitation 8-34
G162 Closed-loop armature current control 8-35
G163 Auto-reversing stage, armature gating unit 8-36
G165 Closed-loop EMF control 8-37
G166 Closed-loop field current control, field gating unit 8-38
G167 Field current monitoring 8-39
Serial interfaces
G169 Serial interfaces: connector-type converters 8-40
G170 USS interface 1 (PMU) 8-41
G171 USS interface 2 (CUD1) 8-42
G172 USS interface 3 (CUD2) 8-43
G173 Peer-to-peer interface 2 (CUD1) 8-44
G174 Peer-to-peer interface 3 (CUD2) 8-45
Function diagrams
Page
Program structure
G175 Data sets 8-46
Control words, status words
G180 Control word 1 8-47
G181 Control word 2 8-48
G182 Status word 1 8-49
G183 Status word 2 8-50
Miscellaneous
G185 Motor interface (1) 8-51
G186 Motor interface (2) / binary inputs, terminals 211 to 214 8-52
G187 Messages (1) 8-53
G188 Messages (2) 8-54
G189 Fault memory 8-55
G195 Paralleling interface 8-56
G200 Field reversal with SIMOREG single-quadrant device 8-5701.02

Freely assignable function blocks

(Technology software in the basic converter, S00 option) Page
B100 Table of contents ... 8-59
B101 Startup of the technology software (option S00).. 8-60

Monitoring

B110 Voltage monitor for electronics power supply ... 8-61
Fixed values
B110 100 Fixed values... 8-61
Alarm, fault messages
B115 32 Fault message triggers .. 8-62
8 Alarm message triggers.. 8-62
Connector / binector converters
B120 3 Connector / binector converters... 8-63
B121 3 Binector / connector converters .. 8-64
Mathematical functions
B125 15 Adders / subtracters... 8-65
4 Sign inverters .. 8-65
2 Switchable sign inverters ... 8-65
B130 12 Multipliers... 8-66
B131 6 Dividers .. 8-67
3 High-resolution multipliers / dividers ... 8-67
B135 4 Absolute-value generators with filter.. 8-69
Limiters, limit-value monitors
B134 3 Limiters ... 8-68
B135 3 Limiters .. 8-69
B136 3 Limit-value monitors with filter.. 8-70
B137,B138 7 Limit-value monitors without filter.. 8- 71,72
Processing of connectors
B139 4 Averagers.. 8-73
B140 4 Maximum selections .. 8-74
4 Minimum selections ... 8-74
B145 2 Tracking / storage elements .. 8-75
2 Connector memories ... 8-75
B150 15 Connector changeover switches..8-76
High-resolution blocks
B151 2 limit-value monitors (for double-word connectors).. 8-77
2 connector-type converters ... 8-77
2 adders/subtracters (for double-word connectors)... 8-77
Position/positional deviation acquisition, Root extractor
B152 1 Position/positional deviation acquisition... 8-78
B153 1 Root extractor ... 8-79
Control elements
B155 3 Integrators... 8-80
3 DT1 elements ... 8-80
B156... 10 Derivative / delay elements (LEAD / LAG blocks).. 8-81... 83
B158
Characteristics
B160 9 Characteristic blocks... 8-84
B161 3 Dead zones.. 8-85
1 Setpoint branching ... 8-85
Ramp-function generator
B165 1 Simple ramp-function generator ... 8-86
Controllers
B170 1 Technology controller... 8-87
B180... 10 Pl controllers .. 8-88... 97
B189

Velocity / speed calculators, variable inertia

B190 1 Velocity / speed calculator 8-98
1 Speed / velocity calculator 8-98
B191 1 Calculation variable inertia 8-99
Multiplexers for connectors
B195 3 Multiplexer 8-100
Counter
B196 1 16-bit software counter 8-101
Logical functions
B200 2 Decoders / demultiplexers, binary to 1 of 8 8-102
B205 28 AND elements with 3 inputs each 8-103
B206 20 OR elements with 3 inputs each 8-104
4 EXCLUSIVE OR elements with 2 inputs each 8-104
B207 16 Inverters 8-105
12 NAND elements with 3 inputs each 8-105
B210 14 RS flipflops 8-106
B211 4 D flipflops 8-107
B215 6 Timers (0.000...60.000s) 8-108
B216 4 Timers (0.00...600.00s) 8-109
5 Binary signal selector switches 8-109

NOTE

Freely assignable function blocks are enabled in parameter U977. For enabling instructions, please refer to Section 11, Parameter List, description of parameters U977 and n978.
Optional supplementary boards Page
Z100 Table of contents 8-110
Z110 Data exchange with a technology board (TB) or the $1^{\text {st }}$ communications board (CB) 8-111
Z111 Data exchange with the $2^{\text {nd }}$ communications board (CB) 8-112
Z112 $1^{\text {st }}$ EB1: Analog inputs 8-113
Z113 $\quad 1^{\text {st }}$ EB1: Analog outputs 8-114
Z114 $1^{\text {st }}$ EB1: 4 bidirectional inputs- / outputs, 3 digital inputs 8-115
Z115 $2^{\text {nd }} E B 1$: Analog inputs 8-116
Z116 $2^{\text {nd }} E B 1$: Analog outputs 8-117
Z117 $2^{\text {nd }} E B 1: 4$ bidirectional inputs- / outputs, 3 digital inputs 8-118
Z118 $1^{\text {st }}$ EB2: Analog input, Analog output, 2 digital inputs, 4 relay outputs 8-119
Z119 $2^{\text {nd }}$ EB2: Analog input, Analog output, 2 digital inputs, 4 relay outputs 8-120
Z120 SBP pulse encoder evaluation 8-121
Z121 SIMOLINK board: Configuration, diagnosis. 8-122
Z122 SIMOLINK board: Receiving, transmitting 8-123
Z123 OP1S operator panel 8-124
Z124 Interfaces: connector-type converters 8-125
Z130 SCB1 with SCl1: SCl1 binary inputs slave 1 8-126
Z131 SCB1 with SCI1: SCI1 binary inputs slave 2 8-127
Z135 SCB1 with SCI1: SCI1 binary outputs slave 1 8-128
Z136 SCB1 with SCI1: SCI1 binary outputs slave 2 8-129
Z140 SCB1 with SCI2: SCI2 binary inputs slave 1 8-130
Z141 SCB1 with SCI2: SCI2 binary inputs slave 2 8-131
Z145 SCB1 with SCI2: SCI2 binary outputs slave 1 8-132
Z146 SCB1 with SCI2: SCI2 binary outputs slave 2 8-133
Z150 SCB1 with SCI1: SCI1 analog inputs slave 1 8-134
Z151 SCB1 with SCl1: SCl1 analog inputs slave 2 8-135
Z155 SCB1 with SCI1: SCI1 analog outputs slave 1 8-136
Z156 SCB1 with SCI1: SCl1 analog outputs slave 2 8-137

Sheet G124 Connector selector switch

USS interface 3 (G172)
 Peer-to-peer interface 3 (G174)

Parameters for peer-to-peer interface

P800 (0)	Peer-to-peer On/Off
P807 (0,000s)	Telegram monitoring time
P803 (13)	Baud rate
P801 (2)	No. of Words (1...5)
r809	Peer-to-peer diagnostic parameter

Note:
The applicable parameters
are identified by the
code ".F

(

Free function blocks Sheets B100 to B216

Technology software in the basic converter, S00 option

NOTE

Freely assignable function blocks are enabled in parameter U977.
For enabling instructions, please refer to Section 11, Parameter List, description of parameters U977 and n978.

The setting for the sequence in which these function blocks are executed is made using parameters U960, U961, U962, and U963.

1	2	3	4
Function diagram SIMOREG 6RA70 - Contents			
Content			
Startup of the technology software (option S00)	She	B1	

Startup of the technology software (option S00)
B101
Fixed values
100 Fixed values
B110

Monitoring

1 Voltage monitor for electronics power supply B110
Alarm, fault messages
8 Alarm message triggers B115
32 Fault message triggers
Connector/binector converter
3 Connector/binector converter
B120
3 Binector/connector converter
B121
Mathematical functions
15 Adders/subtracters
B125
4 Sign inverters B125
2 Switchable sign inverters
12 Multipliers
B125
B131
3 High-resolution multipliers/dividers B131
4 Absolute-value generator with filtering \quad B135
Limiters, limit-value monitors
3 Limiters
B134
3 Limiters B135
3 Limit-value monitors with filtering
4 Limit-value monitors without filtering
3 Limit-value monitors without filtering
B136
B137
B138

Processing of connectors

4 Averagers B139

B139
4 Maximum selections
B140
4 Minimum selections
2 Tracking/storage elements
2 Connector memories
B140

15 Connector changeover switches

High-resolution blocks

B150

2 limit-value monitors (for double connectors)
B151
2 connector-type converters
2 adders/subtracters (for double connectors)

B151 B151
\qquad
Conten
Sheet
1 Position/positional deviation acquisition B152
1 Root extractor
B153
Control elements
3 Integrators
B155
3 DT1 element B155
10 Derivative/delay elements (LEAD / LAG blocks) B156-B158

Characteristics

9	Characteristic blocks	B160
3	Dead zones	B161

3 Dead zones B161
1 Setpoint branching
B161
Ramp function generator
1 Simple ramp function generator B165

Controllers

1 Technology controller B170
10 Pl controllers B180-B189
Velocity/speed controller,
variable moment of inertia

1	Velocity/speed calculator	B190
1	Speed/velocity calculator	B190

1 Speed/velocity calculator B190
1 Calculation of variable inertia B191
Multiplexer for connectors
3 Multiplexers B195

Counter
1 16-bit software counter B196
Logic functions
2 Decoders/demultiplexers binary to 1 from 8 B200
28 AND elements with 3 inputs each B205
20 OR elements with 3 inputs each B206
4 EXCLUSIVE OR elements with 2 inputs each B206
$\begin{array}{ll}16 & \text { Inverters } \\ 12 & \text { B207 } \\ \text { NAND elements with } 3 \text { inputs each } & \text { B207 }\end{array}$
$\begin{array}{ll}12 \text { NAND elements with } 3 \text { inputs each } \\ 14 \text { RS flipflop } & \text { B210 }\end{array}$
flipflop
B211
B216
10 Timers
5 Binary signal selector switches

1	2
Startup of the technology	
1. Enabling	
2. Setting and activating the sampling times	

Permanent enabling	Temporary enabling
U977 $=$ PIN number	U977 $=1500$
n978 $=2000$	$n 978=1 \times x x \quad(x x x=$ hours remaining $)$

For each function block, it is necessary to define in which "time slice" (i.e. with which sampling time) it is processed.
(Note: In the factory setting of the parameters, all existing function blocks are activated)
5 time slices are available:

Time slice	Sampling time	Function block No.	Setting with parameter
1	1 * T0 (firing-pulse-synchronous time slice) < 1>	1	U950.01
2	2* T0 (firing-pulse-synchronous time slice) < 1>	2	U950.02
4	4* T0 (firing-pulse-synchronous time slice) < 1>		
10	20 ms (not firing-pulse-synchronous)	99	U950.99
20	Block is not calculated <2>	100	U950.100
		101	U951.01
		102	U951.02
T0 $=3.33 \mathrm{~ms}$ at 50 Hz line frequency		199	U951.99
T0 $=2.78 \mathrm{~ms}$ at 60 Hz line frequency		200	U951.100
<2> All function blocks for which a time slice < 20 is set are activated		201	U952.01
		202	U952.02
287) function block number		299	U952.99
		300	U952.100

The sampling times must be chosen in such a way that the maximum processor load (n009.02) is indicated on average as $<90 \%$.
3. Execution sequence
4. Automatic setting

The execution sequence of the function blocks can be defined with parameters U960, U961, and U962.

The execution sequence of the function blocks and their activation can also be made automatic:
U969 = 1: Restore standard sequence U960, U961, and U962 are set to the factory setting
= 2: Set optimum sequence U960, U961, and U962 are set in such a way that as few deadtimes as possible occur
$=3$: Set standard setting of the sampling times. U950, U951, and U952 are set to the factory setting!
= 4: Automatic activation/deactivation
U950, U951, and U952 are set in such a way that the unwired function blocks are deselected and the wired function blocks are selected (activated), if they are not yet selected. The time slice 10 (sampling time 20 ms) is set for all function blocks not previously activated, unchanged for all previously activated function blocks.

<1> disable PI-controller: P component $=0$ output = 0
<2> set output:
P component active I component = setting value -P component output $=$ setting value
$<3>\frac{\text { freeze output: }}{\text { P component }}$ component active component $=$ frozen output -P component
<4> set I component:
P component active
component = setting value
output $=P$ component $+I$ component
$<5>\frac{\text { freeze I component: }}{\text { P component active }}$ I component active output $=\mathrm{P}$ component +I component
<6> freeze | component in pos. direction: P component active
if controller input (X) is positive, if controller input (X) is component is frozen output $=\mathrm{P}$ component $+I$ component
<7> freeze I component in neg. direction: component active
if controller input (X) is negative, component is frozen output $=$ P component +I component
$\frac{\text { Priority: }}{\text { 1. disable }}$

1. disable PI-controller
2. set output
3. freeze output
4. set I component
5. set I component
6. freeze I component
7. freeze I component in pos. direction
8. freeze I component in neg. direction

Set PI-controlle
$\square 553$ (0)

$<1>\frac{\text { disable PI-controller }}{\mathrm{P} \text { 佰 }}$
Pcomponent $=0$ component $=$
output $=0$
<2> set output:
component $=$ setting value -P component output $=$ setting value
$<3>\frac{\text { freeze output: }}{\mathrm{P} \text { component }}$
P component active
I component = frozen output -P component
output is frozen
<4> set I component:
component = setting value output $=$ P component + I component
<5> freeze I component: P component active output $=\mathrm{P}$ component +I component
<6> freeze I component in pos. direction P component active is positive if controller input (X) component is frozen output $=\mathrm{P}$ component +I componen
$<7>\frac{\text { freeze I component in neg. direction }}{\mathrm{P}}$ component active
controller input (X) is negative
I component is frozen
output $=$ P component + I component

Priority:

1. disable PI-controlle
2. set output
3. freeze output
4. set I component
5. freeze I component in pos. direction
6. freeze I component in neg. directio
©

Set PI-controlle

U532 (0)
B $\quad .051=$ set 1 component < $4>$
B $\quad 15 \quad 1=$ set output $<2>$

05 setting value for I component $\sum K$ 15 setting value for PI-controller output
<1> disable PI-controller: P component $=0$ output $=0$
<2> set output:
P component active I component = setting value -P component output $=$ setting value
$<3>\frac{\text { freeze output: }}{\text { P component }}$ component active component $=$ frozen output -P component
<4> set I component:
P component active
component = setting value
output $=P$ component $+I$ component

Priority:

1. disable PI-controller
2. set output
3. freeze output
4. set I component
5. set I component
6. freeze I component
7. freeze I component
8. freeze I component in pos. direction
9. freeze I component in neg. direction
$<5>\frac{\text { freeze I component: }}{\text { P component active }}$ I component is froze output $=\mathrm{P}$ component +I componen
$<6>$ treeze l component in pos. direction: if controller input (X) is positive component is frozen output $=\mathrm{P}$ component +I component
$<7>$ freeze I component in neg. direction: component active
if controller input (X) is negative, I component is frozen output $=\mathrm{P}$ component +I component

$<1>\frac{\text { disable PI-controller }}{\mathrm{P} \text { a }}$
P component $=0$
output = 0
set output:
$<2>\frac{\text { set output: }}{\text { P component active }}$
component $=$ setting value -P component output $=$ setting value
$<3>\frac{\text { freeze output: }}{\mathrm{P}}$ P component active I component = frozen output - P component output is frozen
<4> Set I component:
| component = setting value
output $=$ P component +I component
<5> freeze I component: component active output $=P$ component $+I$ componen
$<6>$ freeze I component in pos. direction: P component active , controller input (X) component is frozen output $=\mathrm{P}$ component $+I$ component
$<7>\frac{\text { freeze I component in neg. direction }}{\mathrm{P} \text {. }}$ component active
controller input (X) is negative,
I component is frozen
output $=\mathrm{P}$ component +I componen

Priority:

1. disable PI-controlle
2. set output
3. freeze output
4. set I compone
5. freeze I compone
6. freeze I component in pos. direction
7. freeze I component in neg. directio

Set PI-controller

1 = set I component <4>

.07 setting value for I component
\qquad 17 setting value for PI-controller outpu
<1> disable PI-controller P component $=0$ component
output $=0$
<2> set output:
P component active I component = setting value -P component output $=$ setting value
$<3>\frac{\text { freeze output: }}{\mathrm{P}}$
P component active
component $=$ frozen output -P component
output is frozen
Pomponent active
component = setting value
output $=P$ component $+I$ component
<5> freeze I component: P component active output $=\mathrm{P}$ component +I componen
<6> freeze I component in pos. direction P component active controller input (X) is positive component is frozen output $=\mathrm{P}$ component +I component
<7> freeze I component in neg. direction component active
if controller input (X) is negativ component is frozen output $=$ P component +I component

Priority:

1. disable PI-controller
2. set output
3. freeze output
4. set I component
5. freeze I component
6. freeze I component in pos. direction
7. freeze I component in neg. direction

$<1>\frac{\text { disable PI-controller }}{\mathrm{P} \text { ampent }}$ P component $=0$ output = 0
set output:
<2> set output:
component = setting value - P component output = setting value
<3> freeze output: P component active I component = frozen output -P component output is frozen
<4> set I component:
component = setting value output $=\mathrm{P}$ component +I component
<5> freeze I component: component active output = P component $+I$ componen
<6> freeze I component in pos. direction: P component active controller input (X) component is frozen
output $=\mathrm{P}$ component $+I$ componen
$<7>$ freeze I component in neg. direction P component active
controller input (X) is negative
I component is frozen
output $=$ P component + I component

Priority

1. disable PI-controlle
2. set output
3. freeze output
4. set I compone
5. freeze I componen
6. freeze I component in pos. direction
7. freeze I component in neg. directio

$$
\begin{array}{ccc|c}
\text { B3 } & \text { B2 } & \text { B1 } & \mathrm{Y} \\
\hline 0 & 0 & 0 & \mathrm{X0} \\
0 & 0 & 1 & \mathrm{X} 1 \\
0 & 1 & 0 & \mathrm{X} 2 \\
0 & 1 & 1 & \mathrm{X} 3 \\
1 & 0 & 0 & \mathrm{X} 4 \\
1 & 0 & 1 & \mathrm{X} 5 \\
1 & 1 & 0 & \text { X6 } \\
1 & 1 & 1 & \text { X7 }
\end{array}
$$

i2-i1-i0	Q0	Q1	Q2 Q		Q3	Q5		Q6 Q								
000	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	
001	0	1	0	0	0	0	0	0	1	0	1	1	1	1	1	1
010	0	0	1	0	0	0	0	0	1	1	0	1	1	1	1	1
011	0	0	0	1	0	0	0	0	1	1	1	0	1	1	1	1
100	0	0	0	0	1	0	0	0	1	1	1	1	0	1	1	1
101	0	0	0	0	0	1	0	0	1	1	1	1	1	0	1	1
110	0	0	0	0	0	0		0		1	1	1	1	1	0	
111	0	0	0	0	0	0	0	1	1		1	1				0

Parameters for the $1^{\text {st }} \mathrm{CB}$ board

[^8]-2 CBs (for CB with the higher slot letter)

```
Valid for the following configurations:
Valid for the following configurations:








Sheet \(\mathrm{Z} 1192^{\text {nd }}\) EB2: Analog input, Analog output, 2 digital inputs, 4 relay outputs


SLB diagnosis



For transmission of double－word connectors see Section 7．7．4＂Procedure for starting up SIMOLINK boards＂
See also connector type converter on sheet Z124

(











\section*{9 Function descriptions}

\section*{NOTE}

The available scope of converter functions is shown in the function diagrams (block diagrams) in Section 8.
Section 9 does not attempt to provide a complete description of all these functions, but to explain in further detail certain individual features, which cannot be adequately illustrated in graphic form, and provide examples of their application.

\subsection*{9.1 General explanations of terms and functionality}

\section*{Function blocks}

Although the illustrated function blocks have been implemented in digital form (as software modules), the function diagrams can be "read" in a similar way to the circuit diagrams of analog equipment.

\section*{Configurability}

The converter is characterized by the optional configurability of the function blocks provided. "Optional configurability" means that the connections between individual function blocks can be selected by means of parameters.

\section*{Connectors}

All output variables and important computation quantities within the function blocks are available in the form of "connectors" (e.g. for further processing as input signals to other function blocks). The quantities accessed via connectors correspond to output signals or measuring points in an analog circuit and are identified by their "connector number" (e.g. K0003 = connector 3).

Special cases: K0000 to K0008 are fixed values with signal levels corresponding to 0, 100, 200, -100 , \(-200,50,150,-50\) and \(-150 \%\). K0009 is assigned to different signal quantities. Which signal quantity it actually refers to is dependent on the selector switch (parameter) at which connector number 9 is set. A description can be found under the relevant parameter number in the Parameter List. If the Parameter List or block diagram does not contain any reference to a special function in relation to selection of connector K0009, then the selector switch (parameter) concerned must not be set to "9".

The internal numerical representation of connectors in the software is generally as follows:
\(100 \%\) corresponds to 4000 hexadecimal \(=16384\) decimal. The resolution is \(0.006 \%\) (step change).
Connectors have a value range of \(-200 \%\) to \(+199.99 \%\).
For a list of available connectors, please refer to Section 12.
Example: The data received via peer-to-peer 2 are available at connectors K6001 to K6005 (Section 8, Sheet G173)


\section*{Double-word connectors (SW 1.9 and later)}

Double-word connectors are connectors with a 32-bit value range (i.e. LOW word and HIGH word with a double-word value range of 00000000 Hex to FFFFFFFFFHex ).
\(-100 \%\) to +100 \% corresponds to connector values of C0000000 Hex to 40000000 Hex
( \(=-1073741824\) to +1073741824 decimal). This means that the value range in the upper 16 bits (HIGH word) of a double-word connector is the same as for a "normal" connector (C000 Hex to 4000 Hex or 16384 to +16384 decimal for \(-100 \%\) to \(+100 \%\). The extra 16 bits in the LOW word as compared to a "normal connector" afford, therefore, an improved resolution of the connector value by a factor of 65536. For information about how to use double-word connectors see also the section in "The following rules apply to the selection of double-word connectors" below.

Double-word connector symbol in function diagrams:
```

KK\498

```

\section*{Binectors}

All binary output quantities and important binary output signals of the function blocks are available as "Binectors" (connectors for binary signals). Binectors can assume states log. "0" and log."1". The quantities accessed via binectors correspond to output signals or measuring points in a digital circuit and are identified by their "Binector number" (e. g. B0003 = binector 3).
Special cases: B0000 = Fixed value log."0"
B0001 = Fixed value log."1"
A list of available binectors can be found in Section 12.
Example: The status of terminal 36 is available at B 0010 and, in inverted form, at binector B0011 (Section 8, Sheet G110)


\section*{Selection switches, connections}
(see also Section "Data sets")
The inputs of function blocks are defined at "selection switches" by setting the appropriate selection parameters. The input is defined by entering the number of the connector or binector to be applied as the input quantity in the parameter for the relevant selection switch.
Representation in function diagrams (examples):


Selection of a connector
Parameter number \(=\) P750, factory setting \(=0\) (i. e. fixed value \(0 \%\) )


Selection of a binector
Parameter number \(=\) P704, factory setting \(=0\) (i. e. fixed value 0)


Selection of connectors ("indexed" parameter with 4 indices)
Parameter number = P613, factory setting = 1 (i. e. fixed value \(100 \%\); this factory setting applies to all the indices of P613)


Selection of connectors ("indexed" parameter with 4 indices)
Parameter number = P611
Factory setting for index \(.01=277\) (i. e. connection with connector K0277)
Factory setting for indices .02 to \(.04=0\) (i. e. fixed value \(0 \%\) )


Selection of binectors ("indexed" parameter with 4 indices)
Parameter number \(=\) P046, factory setting \(=0\) (i. e. fixed value 0 , this factory setting applies to all the indices of P046)

Selection of a double-word connector (SW 1.9 and later)
Parameter number \(=\mathrm{U} 181\), factory setting \(=0\) (i.e. fixed value \(0 \%\) )

The selected setting can be entered in the empty field (fields). The value in brackets next to the parameter number is the factory setting of the selection parameter.

The following rules apply to the selection of double-word connectors (SW 1.9 and later):


Double-word connector to double-word connector selection:
The double word for subsequent processing comprises:
LOW word = LOW word of double-word connector (KK9498)
HIGH word = HIGH word of double-word connector (KK9498)


Connector to double-word connector selection:
The double word for subsequent processing comprises:
LOW word = 0
HIGH word = selected connector (K0401)


Double-word connector to connector selection:
HIGH word of the double-word connector (KK9498) is connected to another block, the LOW word of the double-word connector (KK9498) is not used

There are exceptions in the selection of transmission data for the serial interfaces and in the transmission of optional expansion modules (technology and communications modules, SIMOLINK module): If the same double-word connector is entered in two contiguous indices of the selection parameter, the entire value (the LOW and HIGH word) will be used.

If different double-word connectors are entered in two contiguous indices of the selection parameter, in both cases only the HIGH word of the two double-word connectors will be used.

Examples: Some examples of how to handle connectors and binectors are given below.
Example 1: As a function of the status of terminal 36 (B0010-see Section 8, Sheet G110), analog selectable input 1 (terminals 6 and 7 ) must be made available, either with the correct sign or inverted sign, at the function block output (= connector K0015). This output value must then be injected as an additional setpoint and output simultaneously at analog output terminal 14.

The following settings need to be made to create the correct links:
1. P714 = 10: Selects binector B0010 (status of terminal 36) as the control signal for sign reversal. Parameter P716 remains set at 1 (= fixed value 1, delivery state), thereby ensuring that the analog input is switched in continuously.

Section 8, Sheet G113:

2. P645 = 15: Applies connector K0015 to the additional setpoint input when the setpoint is processed Section 8, Sheet G135:

3. \(\mathrm{P} 750=15\) : Applies connector K0015 to the input of the function block for the analog output terminal 14. This example of K0015 illustrates how it is possible to apply a connector as an input signal to any number of function blocks.
Section 8, Sheet G115:


Example 2: The contents of connectors K0401 and K0402 must be output on the connector displays (parameter r043)

The following settings need to be made to create the correct links:
P044.index01 = 401: Links connector K0401 to the \(1^{\text {st }}\) connector display
P044.index02 \(=402\) : Links connector K0402 to the \(2^{\text {nd }}\) connector display
Section 8, Sheet G121:


The following values are now displayed in parameter r043:
```

r043.index01: Contents of connector K0401
r043.index02: Contents of connector K0402
r043.index03

```
    to
r043.index07: Parameter P044.index. 03 to 07 remain at the works setting (0) (value in brackets next to parameter number) in this example, i. e. the contents of connector K0000 (=fixed value 0) are displayed on r043.index. 03 to . 07.

\section*{Setting parameters}
(see also Section "Data sets")
In addition to the parameters that are used to select a signal (connector, binector), there are also parameters which define an operating mode or the parameter value of some function.
Representation in function diagrams:
Apart from parameter numbers, the function diagrams may also contain the factory setting, function and value range of parameters as supplementary information.
\begin{tabular}{|c|c|}
\hline P109 (0) & Setting parameter \\
\hline \(\downarrow\) & Parameter number \(=\) P109, factory setting \(=0\) \\
\hline
\end{tabular}

P462.F(10.00s)
(0.01...300.00s) Ramp-up time

Setting parameter in function parameter set (".F" after parameter number)
Parameter number \(=P 462\), factory setting \(=10.00\) s
Value range \(=0.01 \ldots 300.00\) s
Parameter for setting ramp-up time

Examples: P700 in Section 8, Sheet G113 defines the signal type of the analog input (voltage input \(\pm 10 \mathrm{~V}\), current input \(0 . . .20 \mathrm{~mA}\), current input \(4 \ldots 20 \mathrm{~mA}\) ).

P705 in Section 8, Sheet G113 defines the filter time for the analog input (adjustable in ms).

Parameters P520 to P530 in Section 8, Sheet G153 determine the shape of the friction characteristic.

P465 in Section 8, Sheet G126 determine whether the time settings must be multiplied by a factor of 1 or 60 .

\section*{Data sets}

See also Section "Switch over parameter sets"
Switch over function parameters (function data sets):
4 different sets of some parameters (function parameters) are available and can be selected by means of the "Switch over function parameters" function. The switchover operation is controlled by control word 2 (bits 16 and 17, see Section 8, Sheets G181 and G175). Index \(.01, .02, .03\) or .04 of these parameters is operative depending on the status of the control bit.
The parameters of this parameter set are identified by an ".F" next to the parameter number in the function diagrams and by "FDS" under the parameter number in the tabulated parameter list. The parameters belonging to the function parameter set must not be confused with other parameters which, by chance, also have 4 indices. The latter parameters are not affected by the "Switch over function parameters" function.

\section*{Switch over binector and connector parameters (Bico data sets):}

2 different sets of some selection switches are available and can be selected by means of the "Switch over binector and connector parameters" function. The switchover function is controlled by control word 2 (bit 30, see Section 8, Sheets G181 and G175). The status of the control bit determines whether index. 01 or index .02 of the parameter is operative.
The parameters of the Bico data set are identified by a ".B" next to the parameter number in the function diagrams and by "BDS" under the parameter number in the tabulated parameter list. The parameters belonging to the Bico data set must not be confused with other parameters which, by chance, also have 2 indices. The latter parameters are not affected by the "Switch over binector and connector parameters" function.

\section*{Display parameters}

The values of certain signals can be output using display parameters (r parameters, \(n\) parameters). Connector displays (Section 8, Sheet G121) can be used to link all connectors with display parameters so that they can be displayed.
Representation in function diagrams:
Apart from the parameter number, the function diagrams may also include a function description for the parameter as supplementary information.
\begin{tabular}{cl}
\begin{tabular}{c} 
RFG status \\
\(\frac{\text { r316 }}{4}\)
\end{tabular} & Display parameter \\
4 & Parameter number \(=r 316\)
\end{tabular}

Display of RFG (ramp-function generator) status

\subsection*{9.2 Computation cycles, time delay}

Functions associated with analog inputs, analog outputs, binary inputs, binary outputs and interfaces, as well as function blocks associated with the motorized potentiometer, setpoint generation, rampfunction generator and closed-loop speed and armature current controls, are called up and calculated in synchronism with the armature firing pulses (i.e. every 3.333 ms at a line frequency of 50 Hz ).

Function blocks associated with the closed-loop EMF and field current controls (shown in Section 8, Sheets G165 and G166) are called and calculated in synchronism with the field firing pulses (i.e. every 10 ms at a line frequency of 50 Hz ).

The parameter settings are processed in a further computation cycle with a cycle time of 20 ms . The execution of optimization runs is also controlled from this cycle.
With regard to the transfer of parameter values via interfaces, it is important to remember that some transferred parameters must be converted to this 20 ms cycle before they can be applied, for example, in the armature firing pulse cycle.

\subsection*{9.3 Switch-on, shutdown, enabling}

\subsection*{9.3.1 OFF2 (voltage disconnection) - control word 1, bit 1}

The OFF2 signal is low active (log."0" state = voltage disconnection).
The following operating modes are possible:
P648 = 9: The control bits in control word 1 are input bit-serially. OFF2 is generated from the AND operation between the binectors selected with P655, P656 and P657 (see Section 8, Sheet G180).
P648 \(\neq 9\) : The connector selected via P648 is used as control word 1 . Bit 1 of this word then controls the OFF2 function.

\section*{Sequence of operations for "Disconnect voltage":}
1. Input "Disconnect voltage" command
2. Disable technology controller, ramp-function generator, n and I controllers
3. \(I_{\text {set }}=0\) is applied
4. The pulses are disabled when \(\mathrm{I}=0\)
5. Output signal "Close operating brake" (binector B0250 \(=0\), when \(\mathrm{P} 080=2\) )
6. Converter reaches operating state 010.0 or higher
7. An "older" actual field current value (K0265) is input as the field current setpoint upper limit (function is "released" in operating states of \(\leq 05\) )
8. The "Line contactor closed" relay drops out
9. Drive coasts to a standstill (or is braked by the operating brake)
10. Parameterizable delay time (P258) runs down
11. The field is reduced to a parameterizable value (P257)
12. When \(\mathrm{n}<\mathrm{n}_{\min }(\mathrm{P} 370, \mathrm{P} 371)\) has been reached, the "Close holding brake" signal is output (binector \(\mathrm{B} 0250=0\), when \(\mathrm{P} 080=1\) )

\subsection*{9.3.2 OFF3 (Fast stop) - control word 1, bit 2}

The OFF3 signal is LOW active (log."0" state = fast stop).
The following operating modes are possible:
P648 = 9: \(\quad\) The control bits in control word 1 are input bit-serially. OFF3 is generated from the AND operation between the binectors selected with P658, P659 and P660 (see Section 8, Sheet G180).
\(\mathrm{P} 648 \neq 9\) : The connector selected via P648 is used as control word 1. Bit 2 of this word then controls the OFF3 function.

\section*{Sequence of operations for "Fast stop":}
1. Input "Fast stop" command (e.g. binary input wired up to "Fast stop")
2. Technology controller and ramp-function generator are disabled
3. Enter \(\mathrm{n}_{\text {set }}=0\)
4. up to SW 1.84: Decelerate along current limit from SW 1.90: Decelerate along reversal ramp acc. to P296, P297, P298
5. Wait until \(n<\eta_{\min }\) (P370, P371)
6. Output signal "Close operating or holding brake" (binector B0250=0)
7. Wait for brake closing time (P088) to run down
8. Enter \(I_{\text {set }}=0\)
9. Ramp-function generator and \(n\) controller are disabled
10. The pulses are disabled when \(I=0\)
11. The "Line contactor closed" relay drops out
12. Converter reaches operating state 09.0 or higher
13. Delay time for field current reduction (P087) runs down
14. The field is reduced to a parameterizable value in P257

\section*{Sequence of operations for cancellation of "Fast stop":}
1. Stop applying "Fast stop" command
2. Enter "Standstill" command (e.g. via "Switch-on/shutdown" terminal)
3. Converter exits operating state 08


P087 Brake release time (positive in this example)
P088 Brake closing time
P258 Delay for automatic field current reduction
- The "Fast stop" command need only be applied as a short pulse (> 10 ms ). It is then stored internally. The memory can be reset only by applying the "Shutdown" command.
- All "Fast stop" commands are ANDed by the SIMOREG converter, i.e. all commands must be set to "No fast stop" before the function can be deactivated.
- When \(\mathrm{n}<\eta_{\min }\) (P370, P371) is reached for the first time, an internal interlock is activated which prevents the drive from attempting to brake again if the motor is turned by external forces. The \(\mathrm{n}<\mathrm{n}_{\text {min }}\) signal then disappears again.

\subsection*{9.3.3 Switch-on / shutdown (ON / OFF) terminal 37 - control word 1, bit 0}

The "Switch-on / shutdown" (ON / OFF) function is controlled via the "Switch-on command of ON / OFF1" (= ANDing between signal from terminal 37 and binector selected in parameter P654, level- or edge-triggered, see below) and bit 0 of connector selected as the control word in P648.

The following operating modes are possible:
P648 = 9: \(\quad\) The control bits in control word 1 are input bit-serially. "ON / OFF" is controlled via the "Switch-on command of ON / OFF1".
\(\mathrm{P} 648 \neq 9\) : \(\quad\) The connector selected in P648 is used as control word 1 . Bit 0 of the control word is ANDed with the "Switch-on command of ON / OFF1" to produce the "ON / OFF" command (ON only if both signals are log. "1").
\(\mathrm{P} 445=0\) : The "Switch-on command of ON / OFF1" is generated as an AND operation between the signal from terminal 37 and the binector selected in P654 (level-triggered, \(0=\) shutdown, 1 = switch-on).

P445 = 1: \(\quad\) Edge triggering of "Switch-on command of ON / OFF1":
The switch-on command is stored on the \(0 \rightarrow 1\) transition (see Section 8, Sheet G130). The binector selected in P444 must be in the log. "1" state. The memory is reset when this binector switches to the log. "0" state.

In the following example circuit, the ON key (NO contact) is connected to terminal 37 and the shutdown key (NC contact) to terminal 36. Connector 3003 (= word 3 of DPRAM interface on board in slot 2 ) is used as control word 1.

The following parameter values must be set:
P444=10 Connects binector 10 (= status of terminal 36) to the reset input of the memory for the ON signal (and to the reset input of the memory for the CRAWL command)
P445=1 Selects edge triggering of "Switch-on command of ON / OFF1" (and injection of the crawling setpoint)

P648=3003 Connector K3003 is assigned status of control word 1.
The combination of the control bit for ON/OFF from the DPRAM control word (K3003.bit0 in this example) and the switch-on command from the converter terminal is shown in the boxes with dot-dash line borders.


\section*{Sequence of operations for switching on drive:}
1. Enter the "Switch-on" command (e.g. via terminal "Switch-on/shutdown")
2. The converter exits operating state 07
3. The "Line contactor closed" relay picks up
4. The field current reduction command is cancelled

If "Enable operation" signal is applied:
5. With a positive brake release time (P087), output signal "Release holding or operating brake" (binector B0250 = 1) and wait for P087 in operating state 01.0, with a negative brake release time (PO87 negative), go to step 6 immediately, brake remains closed (binector B0250 = 0)
6. Technology controller, ramp-function generator, n controller and I controller are enabled
7. When a negative brake release time (P087) has run down, output signal "Release holding or operating brake" (binector B0250 = 1).

\section*{Sequence of operations for shutting down drive:}
1. Enter the "Shutdown" command (e.g. via terminal "Switch-on / shutdown")
2. Decelerate along ramp-function generator ramp
3. Wait until \(\mathrm{n}<\eta_{\text {min }}\) (P370, P371)
4. Output signal "Close holding or operating brake" (binector B0250 = 0)
5. Wait for brake closing time (P088) to run down
6. Input \(\mathrm{i}_{\text {set }}=0\)
7. Technology controller, ramp-function generator and n controller are disabled
8. The pulses are disabled when \(\mathrm{I}=0\)
9. The "Line contactor closed" relay drops out
10. The converter reaches operating state o7.0 or higher
11. Delay for field current reduction (P258) runs down
12. The field is reduced to a parameterizable value (P257)


P087 Brake release time (positive in this example)
P088 Brake closing time
P258 Delay for automatic field current reduction
- When \(\mathrm{n}<\eta_{\text {min }}(P 370\), P371) is reached for the first time, an internal interlock is activated which prevents the drive from attempting to brake again if the motor is turned by external forces. The \(\mathrm{n}<\eta_{\min }\) signal then disappears again.
- Changing the parameter setting between level and edge triggering affects the "Switch-on", "Shutdown" and "Crawl" commands.
- The "Switch-on" and "Crawl" commands are applied alternately when edge triggering is selected, i.e. a "Switch-on" edge at terminal 37 cancels a "Crawl" function triggered beforehand, and a "Crawl" edge at a binector selected in P440 cancels an active "Switch-on" edge.
- The converter cannot be restarted automatically after a brief failure of the electronics power supply when edge triggering is selected.
- In order to ensure that "Shutdown" still works after "rewiring of parameters", if lower current or torque limits are applied or when additional setpoints are injected, certain functions are automatically deactivated when the "Shutdown" command is entered.
All torque limits are made inoperative while the drive brakes down to \(n<\eta_{\min }\). Of all the current limits, only the system current limit (P171 and P172), the speed-dependent current limit and the limit derived from \(\mathrm{I}^{2} \mathrm{t}\) monitoring of the power section remain operative.

\subsection*{9.3.4 Operating enable (enable) terminal 38 - control word 1, bit 3}

The Enable signal is HIGH active (log."1" state = Enable).
The following operating modes are possible:
P648 = 9: The control bits in control word 1 are input bit-serially. The operating enable command is generated from the AND operation between the enable signal from terminal 38 and the binector selected in P661 (see Section 8, Sheet G180).
\(\mathrm{P} 648 \neq 9\) : The connector selected in P648 is used as control word 1 . Bit 3 of this connector is ANDed with the signal that is generated as for \(\mathrm{P} 648=9\) to produce the operating enable signal.
To ensure that the "Operating enable" function can be activated, the conditions defined in the following diagram must be fulfilled:


\section*{Sequence of operations for enabling operation (if a switch-on command is applied):}
1. Enter the "Enable operation" command
2. With a positive brake release time (P087), output a "Release holding or operating brake" signal (binector \(\mathrm{B} 0250=1\) ) and wait for P 087 to run down in operating state 01.0 , with a negative brake release time (P087 negative), go to step 3 immediately, brake remains closed (binector B0250 = 0)
3. Technology controller, ramp-function generator, n and I controllers are enabled
4. Converter reaches operating state I, II or - -
5. When a negative brake release time (P087) has run down, output signal "Release holding or operating brake" (binector B0250 = 1).

\section*{Sequence of operations for cancellation of operating enable:}
1. Cancel "Enable operation" command
2. Disable technology controller, ramp-function generator, \(n\) and I controllers
3. Enter \(\mathrm{I}_{\text {set }}=0\)
4. The pulses are disabled when \(I=0\)
5. Output signal "Close operating brake" (binector B0250 \(=0\), when \(\mathrm{P} 080=2\) )
6. The converter reaches operating state 0.10 or higher
7. Drive coasts to a standstill (or is braked by the operating brake)
8. When \(\mathrm{n}<\eta_{\min }(\mathrm{P} 370, \mathrm{P} 371)\) is reached, the signal "Close holding brake" is output (binector \(B 0250\), when \(P 080=1\) )

\subsection*{9.4 Ramp-function generator}

See also Section 8, Sheet G136

\section*{NOTICE}

The following conditions must be fulfilled for the ramp-function generator to work:
- Ramp-function generator enable \(=1 \quad\) (control word 1.bit \(4=1\) )
- Enable setpoint =1
(control word 1.bit \(6=1\) )

\subsection*{9.4.1 Definitions}

Ramp-up \(=\) Acceleration from low, positive to high, positive speeds (e.g. from \(10 \%\) to \(90 \%\) ) or from low, negative to high, negative speeds (e.g. from -10\% to -90\%)

Ramp-down \(=\) Deceleration from high, positive to low, positive speeds (e.g. from \(90 \%\) to \(10 \%\) ) or from high, negative to low, negative speeds (e.g. from -90\% to -10\%)

On transition from negative to positive speeds, e.g. \(-10 \%\) to \(+50 \%\) :
From \(-10 \%\) to \(0=\) ramp-down and
From 0 to \(+50 \%=\) ramp-up and vice versa
Ramp-up time refers to the time required by the ramp-function generator to reach the \(100 \%\) output value, with a lower and upper transition rounding of 0 and a step change in the input quantity from 0 to \(100 \%\) or from 0 to \(-100 \%\). The rate of rise at the output is the same in response to smaller step changes in the input quantity.

Ramp-down time refers to the time required by the ramp-function generator to reach the \(100 \%\) output value, with a lower and upper transition rounding of 0 and a step change in the input quantity from \(100 \%\) to 0 or from \(-100 \%\) to 0 . The rate of rise at the output is the same in response to smaller step changes in the input quantity.

\subsection*{9.4.2 Operating principle of ramp-function generator}


HLZ ... Ramp-up time (H303, H307, H311),
RLZ ... Ramp-down time (H304, H308, H312)
AR ... Lower transition rounding (H305, H309, H313), ER ... Upper transition rounding (H306, H310, H314)
1) Transition from ramp-down gradient to ramp-up gradient
2) The lower rounding switches to the upper rounding before the maximum ramp-down gradient is reached
3) Due to the input step change, only the last part of the upper transition rounding is executed here

\subsection*{9.4.3 Control signals for ramp-function generator}

The ramp-function generator operating mode can be preset by the following control signals:
Ramp-function generator start (control word 1.bit 5):
\(1=\) Setpoint is injected at ramp-function generator input
\(0=\) Ramp-function generator is stopped at current value (generator output is injected as generator input).
Enable setpoint (control word 1.bit 6):
\(1=\) Setpoint enabled at ramp-function generator input
\(0=\) Ramp-function generator setting 1 is activated and 0 applied at the input (generator output is reduced to 0)

Set ramp-function generator:
\(1=\) The ramp-function generator output is set to the setting value (selected in P639)
Enable ramp-function generator (control word 1.bit 4):
\(0=\) Ramp generator disabled, generator output is set to 0
\(1=\) Ramp-function generator enabled
Ramp-up integrator operation (parameter P302):
See below and Section 11, Parameter List, parameter P302
Enable switchover of ramp-up integrator (select via P646):
See below
Ramp-function generator settings 2 and 3
See below
Ramp-function generator tracking ON (parameter P317):
See below and Section 11, Parameter List, parameter P317
Set ramp-function generator on shutdown (parameter P318):
See Section 11, Parameter List, parameter P318
Bypass ramp-function generator:
\(1=\) Ramp-function generator operates with ramp-up/ramp-down time of 0
The function is controlled via the binector selected in P641.
The ramp generator can also be bypassed in INCHING, CRAWLING and INJECTION OF FIXED SETPOINT modes.
9.4.4 Ramp-function generator settings 1, 2 and 3

Selection via binectors selected in parameters P637 and P638
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Status of binector Selected via parameter} & \multirow[t]{2}{*}{R-F generator setting} & \multirow[t]{2}{*}{\begin{tabular}{l}
Effective \\
ramp-up \\
time
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Effective \\
rampdown time
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Effective \\
lower rounding
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Effective \\
upper rounding
\end{tabular}} \\
\hline P637 & P638 & & & & & \\
\hline 0 & 0 & 1 & P303 & P304 & P305 & P306 \\
\hline 1 & 0 & 2 & P307 & P308 & P309 & P310 \\
\hline 0 & 1 & 3 & P311 & P312 & P313 & P314 \\
\hline 1 & 1 & \multicolumn{5}{|l|}{Not permitted, activates fault message F041 (selection not clear)} \\
\hline
\end{tabular}

The ramp-function generator settings preset via the binectors selected in P637 and P638 have priority over the generator setting specified via the ramp-up integrator.

\subsection*{9.4.5 Ramp-up integrator}

The ramp-up integrator is activated by setting P302 = 1, 2 or 3. After an "ON" command ("Switch-on", "Inching", "Crawling"), ramp-function generator setting 1 (P303 to P306) is applied until the rampfunction generator output reaches the required setpoint for the first time.

The remaining sequence of operations is controlled by the "Enable switchover of ramp-up integrator" function (binector selected in P646).
Enable switchover of ramp-up integrator = 1 :
As soon as the ramp-function generator output reaches the required setpoint for the first time after the "ON" command, the ramp generator setting selected in P302 is activated automatically.
Enable switchover of ramp-up integrator \(=0\) :
Ramp-function generator setting 1 (P303 to P306) remains active after the generator output has reached its setpoint until the "Enable switchover of ramp-up integrator" function is switched to 1. The ramp-function generator setting selected in P302 is then activated.

When the enable signal for ramp-up integrator switchover is cancelled ( \(\rightarrow 0\) ), ramp-function generator setting 1 is activated again and, with a new enable command \((\rightarrow 1)\), this setting continues to remain active until the generator output has reached its setpoint again. The ramp generator setting selected in P302 is then activated again.
When a "Shutdown" command is given, the drive is shut down according to setting 1.
Note:
Activation of "Ramp-function generator setting 2" (P307 to P310, selected in P637), or "Ramp-function generator setting 3" (P311 to P314, selected in P368), has priority over the generator setting selected by means of the "Ramp-up integrator" function.

\subsection*{9.4.6 Ramp-function generator tracking}

The ramp-function generator output (K0190) is limited to the following values when ramp-function generator tracking is activated:
\[
\frac{-M \text { lim it } * 1.25}{K p}+\text { nact }<R F G \text { output }<\frac{+M \text { limit } * 1.25}{K p}+\text { nact }
\]

When P170 = 1 (torque control), the following equation applies:
\[
\frac{-I A, \text { lim it } * \Phi \text { motor } * 1.25}{K p}+\text { nact }<R F G \text { output }<\frac{+I A, \text { lim it } * \Phi m o t o r * 1.25}{K p}+\text { nact }
\]

When P170 \(=0\) (current control), the following equation applies:
\[
\frac{-I A, \text { lim it * } 1.25}{K p}+\text { nact }<\text { RFG output }<\frac{+I A, \text { lim it } * 1.25}{K p}+\text { nist }
\]
\begin{tabular}{ll} 
Tmotor & Normalized motor flux (1 at rated field current) \\
\(\mathrm{n}_{\text {act }}\) & Actual speed value (K0167) \\
+ Mlimit & Lowest positive torque limit (K0143) \\
- Mimit & Lower negative torque limit (K0144) \\
+ IA, limit & Lowest positive current limit (K0131) \\
-A, limit & Lowest negative current limit (K0132) \\
\(\mathrm{K}_{\mathrm{p}}\) & Effective speed controller gain
\end{tabular}

However, if the value added to nact were to correspond to less than \(1 \%\), then \(+1 \%\) or \(-1 \%\) would be added.

The purpose of the "Ramp-function generator tracking" function is to ensure that the ramp generator value cannot deviate excessively from the actual speed value once the torque or current limit has been reached.

Note:
When ramp-function generator tracking is selected, the filter time for the speed setpoint should be set to a low value in P228 (preferably to 0).

\subsection*{9.4.7 Limitation after ramp-function generator}

Since the input signal can be freely selected, this limiter stage can be used completely independently of the ramp-function generator.
A special feature of this limiter is that the lower limit can also be set to positive values and the upper limit to negative values (see P300 and P301). This type of limit setting then acts as a lower limit (minimum value) for the ramp generator output signal in the other sign direction.
Example: P632.01-04=1 (= 100.00\%)
P300 = 100.00 (\%)
P301 = 10.00 (\%)
P633.01-04 = 9 (= -100.00\%)
results in a limitation of the value range for K0170 to between \(+10.00 \%\) and \(+100.00 \%\)

\subsection*{9.4.8 Velocity signal dv/dt (K0191)}

This signal specifies the change in the ramp-function generator output K0190 in the time period set in P542.

\subsection*{9.5 Inching}

See also Section 8, Sheet G129
The INCHING function can be preset via the binectors selected with indices .01 to .08 of parameter P435 or via bits 8 and 9 of control word 1 (logic operation, see function diagram in Section 8).
When the control word option is used, the following operating modes are possible (see also Section 8, Sheet 33):

P648 = 9: The control bits in control word 1 are input bit-serially. The binectors selected in P668 and P669 determine bits 8 and 9 of control word 1 and thus the input of the INCH command.
\(\mathrm{P} 648 \neq 9\) : The connector selected in P 648 is used as control word 1. Bits 8 and 9 of this word control the input of the INCH command.

The "Inching" function can be executed only if "Shutdown" and "Operating enable" are applied.
The "Inch" command is input when one or several of the named sources (binectors, bits in control word) change to the log. "1" state. In this case, a setpoint selected in parameter P436 is assigned to each source.
An inching setpoint of 0 is applied if the inch command is input by two or more sources simultaneously.
Parameter P437 can be set to define for each possible inch command source (binector, bit in control word - logic operation, see block diagram in Section 8) whether or not the ramp-function generator must be bypassed. When the ramp generator is bypassed, it operates with ramp-up/down times of 0 .

\section*{Sequence of operations for entering Inching command:}

If the "Inch" command is entered, the line contactor is energized via the "Line contactor closed" relay and the inching setpoint applied via the ramp-function generator (for exact sequence, see the description of "Switch-on / Shutdown" in Section 9.3.3).

\section*{Sequence of operations for cancellation of Inching:}

After the "Inch" command has been cancelled, the sequence of operations commences in the same way as for "Shutdown" (see Section 9.3.3). After \(n<\eta_{\text {min }}\) has been reached, the controllers are disabled and the line contactor opened after a parameterizable delay (P085) of between 0 and 60 s (operating state 07.0 or higher). The drive remains in operating state 01.3 while the parameterizable delay period (max. 60.0 s) runs down.

\subsection*{9.6 Crawling}

\section*{See also Section 8, Sheet G130}

The "Crawling" function can be activated in operating state o7 and, with "Operation enabled", in the Run state.

The "Crawl" command is entered when one or several of the binectors selected in P440 switches to the log. "1" state. A setpoint selected in parameter P441 is assigned to each binector. If the "Crawl" command is entered via several binectors, the setpoint values are added (limited to \(\pm 200 \%\) ).
Parameter P442 can be set to define for each possible crawl command source (binector) whether or not the ramp-function generator must be bypassed. When the ramp generator is bypassed, it operates with ramp-up/down times of 0 .

\section*{Level / edge}
```

P445 = 0: Level-triggered
Binector selected in P440 = 0: No crawl
Binector selected in P440=1: Crawl
P445 = 1: Edge-triggered

```
    The input of "Crawl" is stored when the binector state changes from \(0 \rightarrow 1\) (see Section 8,
    Sheet G130). The binector selected in P444 must be in the log. "1" state at the same time.
    The memory is reset when the latter binector changes state to log. " 0 " (see also example
    circuit in Section 9.3.3, Switch-on / Shutdown).

\section*{Sequence of operations for entering Crawl command:}

If the "Crawl" command is entered in operating state 07, the line contactor is energized via the "Line contactor closed" relay and the crawling setpoint applied via the ramp-function generator. If the "Crawl" command is entered in the "Run" state, the drive decelerates from the operating speed to the crawling setpoint via the ramp-function generator.

\section*{Sequence of operations for cancellation of Crawling:}

With "Crawling" active, but no "Switch-on" command applied: If all bits which activate the "Crawling" function switch to log. "0", the controllers are disabled after \(\mathrm{n}<\mathrm{n}_{\text {min }}\) is reached and the line contactor de-energized (operating state 07.0 or higher).

With "Crawling" active from "Run" operating state:
If all bits which activate the "Crawling" function switch to log. "0" and if the conditions for the "Run" operating state are still fulfilled, then the drive accelerates from the set crawling speed to the operating speed via the ramp-function generator.

See also Section 9.3 .3 (switch-on / shutdown) with regard to edge triggering, automatic restart and the effect of the current and torque limits during braking.

\subsection*{9.7 Fixed setpoint}

\section*{See also Section 8, Sheet G127}

The "Fixed setpoint" function can be activated in the "Run" state with the "Enable controllers" signal applied.
The "Fixed setpoint" function can be input via the binectors selected via indices .01 to .08 of parameter P430 and via bits 4 and 5 of control word 2 (= bits 20 and 21 of complete control word) (see function diagram in Section 8 for logic operation).

When the control word method is used, the following operating modes are possible (see also Section 8, Sheet G181):

P649 = 9: The control bits in control word 2 are input bit-serially. The binectors selected via P680 and P681 determine bits 4 and 5 of control word 2 ( \(=\) bits 20 and 21 of complete control word), and thus input of the "Fixed setpoint" function.
\(\mathrm{P} 649 \neq 9\) : The connector selected via P649 is used as control word 2. Bits 4 and 5 of this word control the input of "Fixed setpoint" .

The "Fixed setpoint" function is input when one or several of the named sources (binectors, bits in control word) switch to the log. "1" state. In this case, a setpoint selected in parameter P431 is assigned to each source. If "Fixed setpoint" is input via several sources simultaneously, the associated setpoints are added (limited to \(\pm 200 \%\) ).

Parameter P432 can be set to define for each possible fixed setpoint source (binector, bit in control word - logic operation, see block diagram in Section 8) whether or not the ramp-function generator must be bypassed. When the ramp generator is bypassed, it operates with ramp-up/down times of 0 .

\section*{Sequence for entering Fixed Setpoint function:}

The fixed setpoint is injected instead of the main setpoint.

\section*{Sequence for cancellation of Fixed Setpoint function:}

When all the possible sources for injecting the fixed setpoint (binectors, bits in control word) have changed back to log. " 0 ", the setpoint selected in parameter P433 (main setpoint) is switched through again.

\subsection*{9.8 Safety shutdown (E-Stop)}

\section*{- Switch operation}
(switch between terminals XS-105 and XS-106; XS-107 open; XS-108 open)
Opening this switch activates the safety shutdown operation.
- Pushbutton operation
(Stop pushbutton with NC contact between terminals XS-107 and XS-106; Reset pushbutton with NO contact between terminals XS-108 and XS-106; XS-105 open)
Stop pushbutton pressed: Safety shutdown is executed and stored
Reset pushbutton pressed: Storage of safety shutdown is cancelled

\section*{Sequence of operations for entering E-STOP command:}
1. Enter "E-STOP" command
2. Disable ramp-function generator, n and I controllers
3. \(\mathrm{I}_{\text {set }}=0\) is applied
4. a) \(\mathrm{U} 616=0\) : E-Stop has same effect as OFF2 (as soon as \(\mathrm{I}=0\), the firing pulses are disabled)
b) \(\mathrm{U} 616=1\) : E-Stop disables the output of firing pulses immediately (without waiting for \(\mathrm{I}=0\) )
5. Output signal "Close operating brake" (binector B0250 = 0, when P080 = 2)
6. Converter reaches operating state 010.0 or higher
7. An "older" actual field current value (K0265) is input as the field current setpoint upper limit (function is "released" in operating states of \(\leq 05\) )
8. Relay " Power contactor on" (terminal 109/110) drops out
9. Drive coasts to a standstill (or is braked by the operating brake)
10. Parameterizable delay time (P258) runs down
11. The field is reduced to a parameterizable value (P257)
12. When \(\mathrm{n}<\eta_{\text {min }}\) (P370, P371) has been reached, the "Close holding brake" signal is output (binector B0250 = 0, when P080 = 1)

Note:
15 ms after entry of "E Stop" the hardware causes relay "Power contactor on" (terminal 109/110).to drop out (even if Item 8 of this sequence has not yet been reached).

\subsection*{9.9 Activation command for holding or operating brake (low active)}

The signal for controlling the brake is available at binector B0250:
log. "0" state = Close brake
log. "1" state = Release brake
In order to drive a brake, this binector must be "wired up" to a binary output, e.g. by setting P771 to 250 for connection to output terminals \(46 / 47\) (see Section 8, Sheet G112, for other possible settings).

The following parameters influence the action of the brake control signal:
\begin{tabular}{|c|c|}
\hline \(\mathrm{P} 080=1\) & The brake is a holding brake: "Close brake" command is entered only when n < \(\eta_{\text {min }}\) (P370, P371) \\
\hline P080 = 2 & \begin{tabular}{l}
The brake is an operating brake: \\
The "Close brake" command is entered even when the motor is running
\end{tabular} \\
\hline P087 & \begin{tabular}{l}
Brake release time: \\
A positive value prevents the motor from acting against the brake as it is released A negative value causes the motor to act against the brake while it is still closed in order to prevent the occurrence of a brief, torque-free interval
\end{tabular} \\
\hline P088 & \begin{tabular}{l}
Brake closing time: \\
Causes the motor to produce a torque while the brake is closing
\end{tabular} \\
\hline P319 & Delay time for enabling ramp-function generator After the controllers have been enabled, a setpoint of 0 is input for the time set here. This time should be set such that the brake has actually been released when the timer runs down. This is of particular importance when P087 is set to a negative value. \\
\hline ollowing dia change at inp respect to th as "Switch as cancelli ommand "Cl \(=25)\). & rams illustrate the chronological sequence of the brake control function with a signal puts "Switch-on / Shutdown" (e.g. terminal 37) and "Operating enable " (terminal 38). e brake control, input commands "Inching", "Crawling" or "Fast stop" have the same on / Shutdown", and input commands "Voltage disconnection" or "E-Stop" the same g the "Operating enable" command. ose brake" is output during the optimization run for precontrol and current controller \\
\hline
\end{tabular}

Operating brake (P080 = 2), positive brake release time (P087)


Holding brake (P080 = 1), positive brake release time (P087)

*1) Drive is braked mechanically by means of operating brake
*2) Drive coasts to standstill, "Close holding brake" not output until \(n<\eta_{\text {min }}\)
*3) Time for the brake to open before the motor produces a torque (P087 positive)
*5) Time for the brake to close while the motor is still producing a torque (P088)

Operating brake (P080 = 2), negative brake release time (P087)


Holding brake (P080 = 1), negative brake release time (P087)

*1) Drive is braked mechanically by means of operating brake
*2) Drive coasts to standstill, "Close holding brake" not output until \(n<\eta_{\text {min }}\)
*4) In this case, the motor is still rotating against the closed brake (P087 negative)
*5) Time for the brake to close while the motor is still producing torque (P088)

\subsection*{9.10 Switch on auxiliaries}

The function acts as a switch-on command for auxiliaries (e.g. motor fan).
The "Switch on auxiliaries" signal is available at binector B0251:
\[
\begin{aligned}
& \text { log. "0" state = Auxiliaries OFF } \\
& \text { log. "1" state = Auxiliaries ON }
\end{aligned}
\]

To act as the auxiliaries drive signal, this binector must be "wired up" to a binary output, e.g. by setting P771 to 251 for connection to output terminals 46 / 47 (see Section 8, Sheet G112, for other possible settings).
The "Switch on auxiliaries" signal switches to "high" at the same time as the "Switch on" command. The converter then waits in operating state 06.0 for a parameterizable delay period (P093). The line contactor is closed on expiry of the delay.
When the "Shutdown" command is entered, the firing pulses are disabled when \(\mathrm{n}<\eta_{\text {min }}\) is reached and the line contactor drops out. The "Switch on auxiliaries" signal switches to "low" after a parameterizable delay period (P094). However, if the "Switch on" command is entered again before this delay has expired, then the converter does not stay in operating state 06.0, but the line contactor is closed immediately instead.

\subsection*{9.11 Switch over parameter sets}

See also in Section 9.1 under heading "Data sets"

\section*{WARNING}

Parameter sets can be switched over while the converter is in operation (online). As a result, 4 depending on the setting of the control bits when the motor is running, the configuration or functions may be altered in such a way as to produce dangerous operating conditions.
For this reason, we strongly recommend that a "basic" parameter set containing all basic parameter settings is created first and then copied into the other parameter sets. The intentional changes of the "basic" version should then be entered in each parameter set.

The "Switch over parameter sets" function affects function parameters (identified by an ".F" next to parameter number in block diagrams in Section 8) and Bico parameters (identified by a ".B" next to parameter number in block diagrams in Section 8).

The following operating modes are possible (see also Section 8, Sheet G181):
P649 = 9: The control bits in control word 2 are input bit-serially.
The binectors selected in P676 and P677 determine bits 0 and 1 of control word 2 (= bits 16 and 17 of complete control word), and thus the input of the function data set. The binector selected in P690 determines bit 14 of control word 2 (= bit 30 of complete control word), and thus the input of the Bico data set.

P649 \(\neq 9\) : The connector selected in P649 is used as control word 2.
Bits 0 and 1 of control word 2 (bits 16 and 17 of complete control word) control the input of the function data set. Bit 14 (= bit 30 of complete control word) controls the input of the Bico data set.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Control word } & \(\begin{array}{c}\text { Active function data set } \\
\text { Bit } 16\end{array}\) \\
Bit17
\end{tabular}\(]\)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Control word \\
Bit30
\end{tabular} & \begin{tabular}{c} 
Active Bico data set \\
(active index)
\end{tabular} \\
\hline 0 & 1 \\
1 & 2 \\
\hline
\end{tabular}

\section*{Caution:}

The parameter set selection must not be changed while the optimization run is in progress.
Error message F041 will otherwise be output after 0.5 s .
When the "Switch over parameter sets" function is activated, a time delay of up to 25 ms may occur before the newly selected parameter set actually becomes operative.

For information about copying parameter sets, please see Section 11 (Parameter List), parameters P055 and P057.

\subsection*{9.12 Speed controller}

See also Section 8, Sheets G151 and G152

\section*{Control signals for speed controller}

The control signals for "Enable speed controller droop", "Enable speed controller" and "Switch over master/slave drive" are supplied by control word 2 . The following operating modes are possible (see also Section 8, Sheet G181):
P649 = 9: The control bits in control word 2 are input bit-serially.
The binectors selected in P684, P685 and P687 determine bits 8, 9 and 11 of control word 2 (= bits 24, 25 and 27 of complete control word), and thus the functions "Enable speed controller droop", "Enable speed controller" and "Switch over master/slave drive".

P649 \(=9\) 9: The connector selected in P649 is used as control word 2.
Bits 8, 9 and 11 control the functions "Enable speed controller droop", "Enable speed controller" and "Switch over master/slave drive".

Enable speed controller:
\[
\begin{aligned}
0= & \text { Disable controller, controller output }(\mathrm{K} 0160)=0, \mathrm{P} \text { component }(\mathrm{K} 0161)=0, \mathrm{I} \\
& \text { component }(\mathrm{K} 0162)=\text { value of connector selected in P631 } \\
1= & \text { Enable controller }
\end{aligned}
\]

Enable droop:
\(0=\) Droop is not active
\(1=\) Droop is active

Switch over master/slave drive:
0 = Master drive
1 = Slave drive
When "Slave drive" is selected, the I component of the speed controller is made to "track" such that \(M\) (set, \(n\) contr.) = M(set,limit.), the speed setpoint is set to equal the actual speed (K0179) (enable tracking with P229).

Set I component (selection of control signal via parameter P695):
When \(0 \quad 1\) signal transition of selected binector, the I component is set to the setting value (selected in parameter P631)

Stop I component (selection of control signal via parameter P696):
\(0=I\) component enabled
1 = Stop I component
Limitation active:
This signal is in the log. "1" state when the upper or lower torque limitation is violated, the speed limiting controller is active, the current limitation is active or when the firing angle for the armature circuit reaches the \(\alpha_{G}\)-limit. In this case, the I component of the speed controller is stopped.

\section*{Switch over to P controller:}

The \(P\) controller function is activated \((I\) component \(=0)\) when the speed drops to below the changeover value.

\section*{D component in actual value channel or setpoint/actual value deviation channel}

As a basis for selecting the correct derivative action time, it is necessary to calculate the maximum possible rate of rise at the derivative action element input, i.e. the period of time required by the input signal to change from 0 to \(100 \%\) at this maximum rate of rise. The derivative action time should preferably be set to a shorter value than this period.

\subsection*{9.13 Serial interfaces}

The SIMOREG 6RA70 converter is equipped with the following serial interfaces:
- G-SST1 (serial interface 1)

Connector X300 on board A7005 (operator panel) USS \({ }^{\circledR}\) protocol
provided for the purpose of connection the OP1S operator panel
- G-SST2 (serial interface 2) Terminal strip X172 (terminals 56 to 60) on board A7001 USS \({ }^{\circledR}\) and peer-to-peer protocol, parameterizable
Additionally if board A7006 (terminal expansion) is installed:
- G-SST3 (serial interface 3) Terminal strip X162 (terminals 61 to 65)
USS \({ }^{\circledR}\) and peer-to-peer protocol, parameterizable

\section*{Interface hardware}

The hardware of G-SST1 is designed to operate in RS232 and RS485 standard / two-wire mode, and G-SST2 and G-SST3 in RS485 standard / two and four-wire mode. For connectors and terminal assignments, see Section 8, Sheets G170 to G174.
The maximum cable length for a peer-to-peer connection from the transmitter to the last receiver connected to the same transmission output is 1000 m . The same maximum cable length applies to the bus cable of a USS connection. The maximum cable length is only 500 m for both types of connection if a baud rate of 187500 bd is selected.

USS:
A maximum of 32 nodes can be connected in the bus configuration (i.e. 1 master and max. 31 slaves). The bus connector must be activated on the two bus nodes which form each end of the bus circuit.

Peer-to-peer:
Up to 31 other drives can be connected in parallel to the transmit cable of one drive. With a "parallel connection", the bus connector must be activated on the last connected drive.

\subsection*{9.13.1 Serial interfaces with USS \({ }^{\circledR}\) protocol}

Specification for the USS \({ }^{\circledR}\) protocol: Order No. E20125-D0001-S302-A1
The SIEMENS USS \({ }^{\circledR}\) protocol is implemented in all digital converter devices supplied by SIEMENS. It can be used to provide a point-to-point or bus-type link to a master station. Any mixture of converter types can be connected up to the same bus line. The USS protocol makes it possible to access all relevant process data, diagnostic information and parameters of the SIMOREG converter.

The USS protocol is a pure master-slave protocol. In this case, a converter device can only ever function as slave. Converter devices will transmit a telegram to the master only if they have received one from it first. In other words, converters linked via the USS protocol cannot exchange data directly with one another (they can do this only via a peer-to-peer link).

\section*{Useful data which can be transferred via the USS protocol}

Sheets G170 to G172 in Section 8 show how useful data can be interconnected and list the parameters relevant for configuring USS interfaces.

If parameters need to be read and/or written via the USS interface, then "Parameter data length" (P782, P792, P802) must be set to 3 , 4 or 127 (select setting 4 only if double word parameters need to be transferred). If parameters do not need to be transferred, the "Parameter data length" must be set to 0 .

The number of process data words to be transferred is basically identical for the transmit and receive directions and can be set in "Process data length" (P781, P791, P801). Numeric representation "100\% equals \(4000 \mathrm{~h}=16384 \mathrm{~d}\) " applies to all connectors.

Transfer of double-word connectors:
In the receive direction, the values of any two adjacent connectors ( \(K\) ) are combined to form a doubleword connector (KK) (e.g. K2002 and K2003 to KK2032). These double-word connectors can be connected in the usual way to other function blocks. For details of how to connect with double-word connectors, see Section 9.1, subsection "The following rules apply to the selection of double-word connectors".
In the transmission direction, a double-word connector is applied by entering the same double-word connector at two contiguous indices of the selection parameter.

Examples:

\begin{tabular}{|c|c|c|c|}
\hline P784 & \multirow[b]{2}{*}{. 01} & \multirow[b]{2}{*}{Word} & \multirow[t]{3}{*}{} \\
\hline >K 32 & & & \\
\hline KK 9498 & . 02 & H-Word & \\
\hline KK 9499 & . 03 & H-Word & double-word connectors \\
\hline KK 401 & . 04 & Word & \\
\hline
\end{tabular}

\section*{Numeric representation of parameter numbers and values on serial interfaces}

The mode of numeric representation of a parameter value is determined by the parameter "type" assigned to each parameter in the Parameter List. The different types of parameter are explained at the beginning of the list. Parameters are always transmitted in the form specified in the "Value range" column of the Parameter List; any decimal point, however, is omitted (example: display value \(123.45 \rightarrow\) the number \(12345 \mathrm{~d}=3039 \mathrm{~h}\) is transferred via the serial interface).

\section*{Diagnostics and monitoring functions for USS interfaces}

All transmitted and received useful data words can be checked (directly at the internal software transfer point from/to USS driver) by means of display parameters r810 / r811, r812 / r813 or r814 / r815.

Diagnostic parameters r789, r799 or r809 provide information about the chronological distribution of errored and error-free telegrams, as well as the nature of any communication errors that have occurred.

A watchdog can be set in P787, P797 or P807 which can initiate a shutdown on faults (F011, F012 or F013) in the case of timeout. By connecting binectors B2031, B6031 or B9031 to the fault message triggers (using P788=2031 / P798=6031 / P808=9031), it is possible to acknowledge these fault messages even if the fault is active continuously, thereby ensuring that the drive can still be operated manually after the USS interface has failed.

\section*{Important !}

The serial interfaces for the USS protocol are parameterized with the same parameters used to configure the peer-to-peer protocol, although the setting ranges are different in some cases (see Notes for relevant parameters in Parameter List, Section 11).

USS protocol: Brief start-up guide for 6RA70 converters
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{gathered}
\text { G-SST1 } \\
\text { RS232 / RS485 }
\end{gathered}
\] & \begin{tabular}{l}
G-SST1
RS485 \\
for connection of an OP1S
\end{tabular} & \[
\begin{gathered}
\text { G-SST2 / G-SST3 } \\
\text { RS485 }
\end{gathered}
\] \\
\hline Select USS protocol & \(\mathrm{P} 780=2\) & P780 = 2 & P790 / P800 = 2 \\
\hline Baud rate & P783 = 1 to 13, corresponding to 300 to 187500 baud & \begin{tabular}{l}
\[
\begin{aligned}
& \mathrm{P} 783= 6(9600 \mathrm{Bd}) \text { or } \\
& 7(19200 \mathrm{Bd})
\end{aligned}
\] \\
The baud rate setting must be identical for every node in bus operation
\end{tabular} & \[
\text { P793 / P803 = } 1 \text { to 13, }
\] corresponding to 300 to 187500 baud \\
\hline No. of process data (PZD No.) (applies to Receive and Send) & P781 = 0 to 16 & P781 = 2 & P791 / P801 = 0 to 16 \\
\hline PZD assignment for control word and setpoints (received process data) & All received process data are taken to connectors and must be wired up as required & \begin{tabular}{l}
If the control bits from the OP1S are to be used: \\
Word 1 (connector K2001): \\
Wiring up of control bits from OP1S, see Sec. 7.2.2 \\
Word 2 (connector K2002): Not used
\end{tabular} & All received process data are taken to connectors and must be wired up as required \\
\hline No. of PKW & \begin{tabular}{l}
P782 = \\
0: \(\quad\) No PKW data \\
3/4: 3 / 4 PKW data words \\
127: Variable data length for slave \(\rightarrow\) master
\end{tabular} & P782 = 127 variable data length & \begin{tabular}{l}
P792 / P802 = \\
0: \(\quad\) No PKW data \\
3/4: 3 / 4 PKW data words \\
127: Variable data length for slave \(\rightarrow\) master
\end{tabular} \\
\hline \begin{tabular}{l}
PZD assignment for actual values \\
(transmitted process data)
\end{tabular} & Selection of transmitted values via P784 & \begin{tabular}{l}
Word 1: P784.i01=32 \\
(stat. word 1 K0032) \\
Word 2: P784.i02=0
\end{tabular} & Selection of transmitted values via P794 / P804 \\
\hline Node address & \(\mathrm{P} 786=0\) to 30 & \begin{tabular}{l}
\[
\text { P786 = } 0 \text { to } 30
\] \\
Every node must have its own, unique address for bus operation
\end{tabular} & P796 / P806 = 0 to 30 \\
\hline Telegram failure time & P787 \(=0.000\) to 65.000s & P787 \(=0.000 \mathrm{~s}\) & P797 / P807 = 0.000 to 65.000s \\
\hline Bus termination & \begin{tabular}{l}
P785 = 0: Bus term. OFF \\
1: Bus term. ON
\end{tabular} & \[
\begin{aligned}
\text { P785 }= & 0: \text { Bus term. OFF } \\
& 1: \text { Bus term. ON }
\end{aligned}
\] & \begin{tabular}{l}
P795 / P805 = \\
0 : Bus term. OFF \\
1: Bus term. ON
\end{tabular} \\
\hline Bus / point-to-point communication & \begin{tabular}{l}
RS232: Only point-to-point operation possible \\
RS485: Bus operation possible
\end{tabular} & Bus operation possible & Bus operation possible \\
\hline 2-wire / 4-wire transmission via RS485 interface & 2-wire operation is selected automatically & 2-wire operation is selected automatically & 2-wire operation is selected automatically \\
\hline Cable & Connector assignments, see Sect. 6.8 or Sheet G170 in Sect. 8 & See operating instructions for OP1S operator panel & Connector assignments, see Sect. 6.8 or Sheets G171, G172 in Sect. 8 \\
\hline
\end{tabular}

\section*{Connection example for a USS bus}

\section*{Master}
(Bus terminating resistors activated)


Slave 1
(Bus terminating resistors deactivated)


Slave 2
(Bus terminating resistors deactivated)


Slave \(\mathbf{n}(\mathbf{n}<=31)\) )
(Bus terminating resistors activated)

1) The interface cable shields must be connected directly on the converter with the lowest possible impedance to converter or cubicle earth (e.g. via clamp).
2) Twisted cable, e.g. LIYCY \(2 \times 0.5\) sqmm; with longer cables, an equipotential bonding conductor must be used to ensure that the difference in frame potentials between nodes stays below 7 V .

\subsection*{9.13.2 Serial interfaces with peer-to-peer protocol}

The term "Peer-to-peer link" refers to a "Link between partners of equal status". In contrast to the classic master/slave bus system (e.g. USS and PROFIBUS), the same converter can function as both the master (setpoint source) and the slave (setpoint receiver) in a peer-to-peer link.

Signals can be transferred in fully digital form from one converter to another via the peer-to-peer link, for example:
- Velocity setpoints for producing a setpoint cascade, e.g. on paper, foil and wire-drawing machines and on fiber-drawing machinery.
- Torque setpoints for closed-loop load distribution controls on drives that are coupled mechanically or via the material, e.g. longitudinal-shaft drives on printing presses or S-roll drives
- Acceleration setpoints (dv/dt) for acceleration precontrol on multi-motor drives.
- Control commands

\section*{Useful data which can be transferred via the peer-to-peer link}

Sheets G173 and G174 in Section 8 show how useful data can be interconnected and list the parameters relevant for configuring peer-to-peer links. Any connectors can be parameterized as transmit data (numeric representation: \(100 \%\) equals \(4000 \mathrm{~h}=16384 \mathrm{~d}\) ).

Parameters cannot be transferred via the peer-to-peer link.
Transfer of double-word connectors:
In the receive direction, the values of any two adjacent connectors ( \(K\) ) are combined to form a doubleword connector (KK) (e.g. K6001 and K6002 to KK6081). These double-word connectors can be connected in the usual way to other function blocks. For details of how to connect with double-word connectors, see Section 9.1, subsection "The following rules apply to the selection of double-word connectors".
In the transmission direction, a double-word connector is applied by entering the same double-word connector at two contiguous indices of the selection parameter.

Examples:


\section*{Diagnostics and monitoring functions for peer-to-peer link}

All transmitted and received useful data words can be checked (directly at the internal software transfer point from/to peer driver) by means of display parameters r812 / r813 or r814 / r815. Diagnostic parameters r799 or r809 provide information about the chronological distribution of errored and error-free telegrams, as well as the nature of any communication errors that have occurred. A watchdog can be set in P797 or P807 which can initiate a shutdown on faults (F012 or F013) in the case of timeout. By connecting binectors B6031 or B9031 to the fault message triggers (using \(P 798=6031\) / \(P 808=9031\) ), it is possible to acknowledge these fault messages even if the fault is active continuously, thereby ensuring that the drive can still be operated manually after the peer-to-peer interface has failed.

\section*{Important !}

The serial interfaces for the peer-to-peer protocol are parameterized with the same parameters used to configure the USS protocol, although the setting ranges are different in some cases (see Notes for relevant parameters in Parameter List, Section 11).

\section*{Peer-to-peer communication, 4-wire operation}

Serial linking of converter to converter (partners of equal status).
The signal flow can pass through the drives, for example, in a series connection. In this case, each drive forwards the data after processing only to the next drive (classic setpoint cascade).

Brief start-up guide for 6RA70 converters
\begin{tabular}{|c|c|c|}
\hline & \[
\begin{gathered}
\text { G-SST2 } \\
\text { RS485 }
\end{gathered}
\] & \[
\begin{gathered}
\text { G-SST3 } \\
\text { RS485 }
\end{gathered}
\] \\
\hline Select peer-to-peer protocol & \(\mathrm{P} 790=5\) & \(\mathrm{P} 800=5\) \\
\hline Baud rate & P793 = 1 to 13 corresponding to 300 to 187500 baud & P803 = 1 to 13 corresponding to 300 to 187500 baud \\
\hline No. of process data (PZD No.) (applies to Receive and Send) & \(\mathrm{P} 791=1\) to 5 & P801 = 1 to 5 \\
\hline PZD assignment for control word and setpoints (received process data) & All received process data are taken to connectors and must be wired up as required & All received process data are taken to connectors and must be wired up as required \\
\hline No. of PKW & No parameters can be transferred & No parameters can be transferred \\
\hline \begin{tabular}{l}
PZD assignment for actual values \\
(transmitted process data)
\end{tabular} & Selection of transmitted values via P794 (indices .01 to .05 ) & Selection of transmitted values via P804 (indices . 01 to .05) \\
\hline Telegram failure time & P797 \(=0.000\) to 65.000s & P807 \(=0.000\) to 65.000s \\
\hline Bus termination & \begin{tabular}{l}
P795 = 0: Bus term. OFF \\
1: Bus term. ON \\
(depending on type of link)
\end{tabular} & \begin{tabular}{l}
P805 = 0: Bus term. OFF \\
1: Bus term. ON \\
(depending on type of link)
\end{tabular} \\
\hline 2-wire / 4-wire transmission via RS485 interface & "4-wire" operation is automatically selected & "4-wire" operation is automatically selected \\
\hline Cable & Terminal assignments, see Section 6.8 or Sheet G173 in Section 8 & Terminal assignments, see Section 6.8 or Sheet G174 in Section 8 \\
\hline
\end{tabular}

\section*{Examples of peer-to-peer links}

Drive 1
(Activate bus terminating resistors when a data feedback loop is used)


Drive 2
(Bus terminating resistors activated)

Drive 3
(Bus terminating resistors activated)

Drive n
\(\mathrm{n}=\) any number
(Bus terminating resistors activated)


Data feedback loop 3)

\section*{Peer link type "Series connection"}

Each drive receives its own individual setpoint from the drive connected upstream (classic setpoint cascade)
1) The interface cable shields must be connected directly on the converter with the lowest possible impedance to converter or cubicle earth (e.g. via a clamp).
2) Twisted cable, e.g. LIYCY \(2 \times 0.5\) sqmm; with longer cables, an equipotential bonding conductor must be used to ensure that the difference in frame potentials between nodes stays below 7 V .
3) Optional data feedback loop via which drive 1 can monitor operation of the entire peer chain.

Drive 1
Drive 2
(Bus terminating resistors deactivated)


Drive 3
(Bus terminating resistors deactivated)


Drive \(\mathbf{n}\) ( \(\mathrm{n}<=32\) )
(Bus terminating
resistors activated)


\section*{Peer link type "Parallel connection"}

Up to 31 drives receive identical setpoints from drive 1
1) The interface cable shields must be connected directly on the converter with the lowest possible impedance to converter or cubicle earth (e.g. via a clamp).
2) Twisted cable, e.g. LIYCY \(2 \times 0.5\) sqmm; with longer cables, an equipotential bonding conductor must be used to ensure that the difference in frame potentials between nodes stays below 7 V .


\section*{Peer link type "Bus connection"}

Up to 31 drives receive identical setpoints from one drive. The setpoint source drive is selected with "Enable transmit" \(=1\). "Enable transmit" \(=0\) must be preset for all other drives.
1) The interface cable sheilds must be connected directly on the converter with the lowest possible impedance to converter or or cubicle earth (e.g. via a clamp).
2) Twisted cable, e.g. LIYCY \(2 \times 0.5 \mathrm{sqmm}\); with longer cables, an equipotential bonding conductor must be used to ensure that the difference in frame potentials between nodes stays below 7 V .

\subsection*{9.14 Thermal overload protection of DC motor ( 12 t monitoring of motor)}

The \(\mathrm{I}^{2} \mathrm{t}\) monitoring function is parameterized in parameters P 100 and P 114 . If these parameters are adapted correctly, the motor is protected against overloading (not all-round motor protection). This monitoring function is disabled in the factory setting of the parameters ( \(\mathrm{P} 820 \mathrm{i} 006=37\) ).

\section*{Adaptation}

P114: A time constant \(T_{\text {motor }}\) in minutes for the I 2 t monitoring function must be entered in parameter P114.

P113, P100: The permissible continuous current of the motor must be defined by parameters P100 and P113.
The permissible continuous current is the product of the calculation P113 * P100.

\section*{Warning characteristic / switch-off characteristic}

If the motor is loaded constantly, for example, with about \(125 \%\) of the permissible continuous motor current, then alarm A037 is triggered after a time constant (P114) has elapsed. If the load is not reduced, then the drive is shut down when the switch-off characteristic is reached and fault message F037 displayed.
Warning/switch-off times for other loads can be calculated from the diagram.

\section*{Alarm message triggering by motor \({ }^{12} \mathbf{t}\) monitoring function}

This diagram shows how long it takes for an alarm message to be triggered if, after a long preloading period ( \(>5\) * \(T_{-}\)th), a new constant load value is injected abruptly.

T_th = P114 .. thermal time constant of motor


\section*{Fault message triggering by motor \({ }^{2} \mathbf{t} \mathbf{t}\) monitoring function}

This diagram shows how long it takes for a fault message to be triggered if, after a long preloading period (> 5 * \(T_{\text {_ }}\) th), a new constant load value is injected abruptly.

T_th = P114 .. thermal time constant of motor


\section*{CAUTION}

When the electronics power supply fails for longer than 2 s , the calculated motor preloading value is lost. When the supply is reconnected, the system assumes that the connected motor has not been loaded at all!
If the electronics power supply fails and the converter is switched on again within 2 s (e.g. via the "Automatic restart" function), then the temperature calculation is based on the last calculated l 2 t value of the motor..
The \(\mathrm{I}^{2} \mathrm{t}\) monitoring function reproduces only a rough thermal image of the motor, i.e. it does not provide all-round motor protection.

If P 114 ( \(\mathrm{T}_{\text {motor }}\) ) is set to zero, then the \({ }^{12 \mathrm{t}}\) monitoring function is deactivated.

\section*{Calculation of thermal equivalent time constant (P114)}

It must be noted that the thermal equivalent time constant is dependent on the maximum overcurrent.
Thermal equivalent time constant of 1 G \(.5 / 1 \mathrm{H} .5\) DC motors according to Catalog DA12.

\(I_{\text {rated }} . .\). Rated motor armature current (=P100)
I ... Maximum overcurrent at which motor is operated

\section*{NOTES}
- When other motor types are connected, the manufacturer's specifications apply.
- If you are using DC motors 1G. 5 / 1H. 5 as specified in catalog DA12, parameter P113 must be set to 1.00

\subsection*{9.15 Dynamic overload capability of power section}

\subsection*{9.15.1 Overview of functions}

The converter rated DC current specified on the rating plate (= maximum permissible continuous direct current when P077 = 1.00) may be exceeded in operation. The amount and permissible duration of the overload are subject to limits which are explained in more detail below.

The absolute upper limit for the absolute value of overload currents corresponds to 1.8 times the converter rated DC current * P077 (= r072.001 * P077). The maximum overload period depends both on the time characteristic of the overload current and on the load history of the converter and differs depending on the installed power section.

Every overload must be preceded by an "underload" (load phase at load current < P077 * rated DC current). After the maximum permissible overload period has expired, the load current must be reduced to a value of at least \(\leq \mathrm{P} 077\) * converter rated DC current.

The dynamic overload period is made possible by a thermal monitoring function (l2t monitor) in the power section. This uses the time characteristic of the actual load current to calculate the time characteristic of the thyristor temperature rise over ambient temperature. When the converter is switched on, the calculation commences with the initial values that were calculated before the converter power supply was last switched off/last failed. Allowance can be made for ambient conditions (ambient temperature, installation altitude) by the setting in parameter P077.
In the delivery state, the ambient temperature is always set to the maximum permissible value (i.e. \(45^{\circ} \mathrm{C}\) for naturally cooled converters and \(35^{\circ} \mathrm{C}\) for converters with forced cooling).

The \(12 t\) monitoring function responds when the calculated thyristor temperature rises exceeds the permissible limit. Two alternative responses to the monitor can be parameterized:
\(P 075\) = 1: Alarm A039 with reduction of armature current setpoint to P077 * converter rated DC current

P075 = 2: Fault F039 followed by converter shutdown
The \(\mathrm{I}^{2} \mathrm{t}\) monitoring function can be deactivated. In this case, the armature current is limited to the setting in P077 * converter rated DC current (= P077 * r072.001).

Connector K310 contains the calculated thyristor overtemperature as a \% of the maximum permissible converter-specific thyristor overtemperature:
```

80}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ on 15A to 60A converters
85}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ on 90A to 140A converters
90}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ on converters of > 200A converter rated armature DC current.

```

\subsection*{9.15.2 Configuring for dynamic overload capability}

Section 9.15 .3 provides the following information for each converter model:
- Maximum overload period \(\mathbf{t a n}_{\text {an }}\) for starting with cold power section and specified constant overload with an overload factor of \(X\) (i.e. loading with \(X\) times the converter rated DC current * P077) (see small table at top right)
- Maximum current interval \(\mathrm{t}_{\mathrm{ab}}\) (maximum cooling time) until the power section reaches the "cold" state (see below small table at top right)
- Limit characteristics fields for calculating overload capability in thermally settled, intermittent overload operation (periodic load cycles).
(In tabulated form: Top left
As curve with logarithmic y axis: Curve at bottom left
As curve with linear y axis: Curve at bottom right)
Important:
The power section is in the "cold" state when the calculated thyristor temperature corresponds to less than \(5 \%\) of its maximum permissible value. This state can be scanned via a binary selectable output.

Note:
If load cycles are started with a cold power section at least slightly within the specified load cycle limits, then the thermally settled state can be reached without tripping the I t monitor.
If the \(\mathrm{I}^{2 \mathrm{t}}\) monitoring function is parameterized for a shutdown response ( \(\mathrm{P} 075=2\) ), the converter should not be allowed to operate too close to the limit characteristic when periodic load cycles are configured with a load cycle time of longer or slightly shorter or equal to 300 s .
In all other cases, and especially when parameterizing reduction of the armature current setpoint ( \(\mathrm{P} 075=1\) ) as the \(\mathrm{I}^{2 \mathrm{t}}\) monitoring trip response, it is possible to fully utilize the maximum overload capability defined by the limit characteristic.

\section*{Structure of limit characteristics fields for intermittent overload duty:}

Each characteristics field refers to a load cycle of intermittent overload operation with a total period of 300 s.
This type of load cycle consists of two periods,
i.e. the base-load duty period (armature actual current \(\leq\) P077 * converter rated DC current) and the overload period (actual armature current \(\geq\) P077 * converter rated DC current).

Each limit characteristic displays the maximum permissible overload period Tp over the maximum base-load current lg for a specific overload factor \(X\) for each converter model. For the remainder of the load cycle, the current may not exceed the base-load current as defined by the overload factor.
If no limit characteristic is specified for a particular overload factor, then the characteristic for the nexthigher overload factor must be applied.
The limit characteristics fields apply to a load cycle time of 300s.
For load cycle times of < 300s, the overload period must be reduced proportionally (load cycle/300s).
For load cycle times of \(>300 \mathrm{~s}\), the overload period is the same as that for a cycle time of 300s, but the base-load period is correspondingly longer.

The limit characteristics fields apply for a setting of P077 = 1.00. If P077 is set to \(\leq 1.00\), i.e. in the case of thermal derating, the currents which actually flow must be weighted with a factor of 1/P077:

Overload factor \(X\) for characteristic \(=\frac{\text { Actual overload current }}{P 077 * \text { converter rated DC current }}\)
Actual maximum base-load current \(=\quad \mathrm{P} 077\) * max. base-load current acc. to characteristic in \% of converter rated DC current

\section*{Basic tasks for configuring periodic overload operation}

Terms: \(\quad\) Base-load duty period \(300=\) min. base-load duty period for 300 s cycle time Overload period \(300=\) max. overload period for 300 s cycle time

\section*{Basic task 1:}

Known quantities: Converter type, cycle time, overload factor, overload period
Quantities to be found: Minimum base-load duty period and maximum base-load current
Solution: Selection of limit characteristic for specified converter type and overload factor
Cycle time < 300s: Overload perio \({ }_{300}=(300 \mathrm{~s} / \text { cycle time })^{*}\) overload period
Cycle time \(\geq 300\) s: Overload period \(300=\) Overload period
If: Overload period \(300>\) overload period \(_{300}\) for base-load current \(=0\)
Then: Required load cycle cannot be configured,
Otherwise: Determine the maximum base-load current for overload period 300 from the limit characteristic

\section*{Example 1:}

Known quantities: 30A/4Q converter; cycle time 113.2s; overload factor \(=1.45\); overload period \(=20\) s
Quantities to be found: Minimum base-load period and maximum base-load current
Solution: Limit characteristic for 30A/4Q converter, overload factor 1.5
Overload period \(_{300}=(300 \mathrm{~s} / 113.2 \mathrm{~s})\) * 20s \(=53 \mathrm{~s}\)
Base-load period \(_{300}=300 \mathrm{~s}-53 \mathrm{~s}=247 \mathrm{~s} \rightarrow\)
Maximum base-load current \(=\) approx. \(45 \%\) of \(I_{\text {rated }}=13.5 \mathrm{~A}\)

\section*{Basic task 2:}

Known quantities: Converter type, cycle time, overload factor, base-load current
Quantities to be found: Minimum base-load period and maximum overload period
Solution: Selection of limit characteristic for specified converter type and overload factor Determine overload period 300 for base-load current from limit characteristic
Cycle time < 300s:
Max. overload period \(=(\) cycle time/300s) * overload periogoc
Min. base-load period \(=\) cycle time - max. overload period
Cycle time \(\geq 300\) s:
Max. overload period \(=\) overload period 300
Min. base-load period = cycle time - max. overload period

\section*{Example 2:}

Known quantities: 30A/4Q converter; cycle time 140s; current overload factor = 1.15; base-load current \(=0.6^{*}\) لated \(=18 \mathrm{~A}\)
Quantities to be found: Minimum base-load period and maximum overload period
Solution: Limit characteristic for 30A/4Q converter, overload factor 1.2
Base-load current \(=60 \%\) of \(I_{\text {rated }} \rightarrow\) overload period \(300=126.35 \mathrm{~s}\)
Max. overload period \(=(140 \mathrm{~s} / 300 \mathrm{~s})^{*}\) 126.35s \(=\) approx. 58 s
Min. base-load period \(=140 \mathrm{~s}-58 \mathrm{~s}=82 \mathrm{~s}\)

\subsection*{9.15.3 Characteristics for determining the dynamic overload capability for intermittent overload operation}

\section*{6RA7013-6DV62}
\begin{tabular}{rrcrccc} 
& \(T p(s)\) \\
\(\lg (\%)\) & \(X=1.8\) & \multicolumn{1}{c}{\(\mathrm{X}=1.5\)} & \multicolumn{1}{c}{\(\mathrm{X}=1.4\)} & \(\mathrm{X}=1.3\) & \(\mathrm{X}=1.2\) & \(\mathrm{X}=1.1\) \\
\hline 0 & 95.420 & 152.660 & 179.100 & 211.080 & 250.440 & 300.000 \\
10 & 88.298 & 145.785 & 172.818 & 205.833 & 247.077 & 300.000 \\
20 & 80.245 & 137.837 & 165.438 & 199.620 & 243.106 & 300.000 \\
30 & 71.148 & 128.570 & 156.707 & 192.183 & 238.150 & 300.000 \\
40 & 60.760 & 117.657 & 146.280 & 183.060 & 231.964 & 300.000 \\
50 & 48.911 & 104.704 & 133.676 & 171.763 & 224.061 & 300.000 \\
\hline 60 & 35.280 & 89.040 & 118.105 & 157.453 & 213.554 & 300.000 \\
70 & 19.600 & 69.916 & 98.440 & 138.528 & 199.098 & 300.000 \\
80 & 5.512 & 46.107 & 72.987 & 112.909 & 177.737 & 300.000 \\
90 & 0.838 & 15.990 & 38.903 & 76.140 & 143.360 & 300.000 \\
94 & 0.670 & 5.590 & 22.080 & 56.520 & 120.320 & 300.000 \\
98 & 0.503 & 2.651 & 8.750 & 31.800 & 93.013 & 300.000 \\
100 & 0.419 & 1.182 & 2.085 & 19.440 & 79.360 & 300.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \multicolumn{1}{|c|}{\(\mathrm{tan}(\mathrm{s})\)} \\
\hline 1.1 & \(\infty\) \\
1.2 & 1633 \\
1.3 & 1112 \\
1.4 & 833 \\
1.5 & 651 \\
1.8 & 382 \\
\hline
\end{tabular}
\(\mathrm{t}_{\mathrm{ab}}(\mathrm{s})=2281\)


\section*{6RA7018-6DS22 and 6RA7018-6FS22.}

6RA7018-6DV62 and 6RA7018-6FV62
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (\%) & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.8
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.5
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& \mathrm{X}=1.4
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& \mathrm{X}=1.3
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& X=1.2
\end{aligned}
\] & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1.1
\end{gathered}
\] \\
\hline 0 & 45.520 & 97.480 & 122.400 & 153.020 & 191.300 & 240.300 \\
\hline 10 & 39.447 & 90.410 & 115.380 & 146.357 & 185.582 & 236.594 \\
\hline 20 & 32.616 & 82.061 & 106.977 & 138.295 & 178.589 & 231.970 \\
\hline 30 & 25.093 & 72.179 & 96.909 & 128.483 & 169.899 & 226.113 \\
\hline 40 & 17.093 & 60.500 & 84.768 & 116.423 & 158.923 & 218.466 \\
\hline 50 & 9.069 & 46.750 & 70.012 & 101.402 & 144.877 & 208.253 \\
\hline 60 & 2.993 & 30.889 & 51.992 & 82.375 & 126.350 & 194.047 \\
\hline 70 & 0.466 & 13.944 & 30.536 & 57.809 & 101.038 & 173.048 \\
\hline 80 & 0.314 & 1.750 & 8.127 & 26.755 & 64.820 & 139.207 \\
\hline 90 & 0.162 & 0.554 & 0.880 & 1.491 & 14.255 & 76.260 \\
\hline 94 & 0.101 & 0.346 & 0.550 & 0.932 & 1.758 & 34.440 \\
\hline 98 & 0.041 & 0.138 & 0.220 & 0.373 & 0.703 & 11.787 \\
\hline 100 & 0.010 & 0.035 & 0.055 & 0.093 & 0.176 & 0.460 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline\(X\) & \(\tan (\mathrm{~s})\) \\
\hline 1.1 & 1439 \\
1.2 & 906 \\
1.3 & 631 \\
1.4 & 456 \\
1.5 & 333 \\
1.8 & 123 \\
\hline
\end{tabular}
\(t_{a b}(s)=2169\)


\section*{6RA7025-6DS22. 6RA7025-6FS22 and 6RA7025-6GS22}
\begin{tabular}{rrrrrrr} 
& \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \multicolumn{1}{c}{\(\operatorname{Tp}(\mathrm{s})\)} \\
\(\lg (\%)\) & \(\mathrm{X}=1.8\) & \multicolumn{1}{c}{\(\mathrm{X}=1.5\)} & \multicolumn{1}{c}{\(\mathrm{X}=1.4\)} & \(\mathrm{X}=1.3\) & \(\mathrm{X}=1.2\) & \(\mathrm{X}=1.1\) \\
\hline 0 & 70.600 & 122.800 & 146.660 & 175.280 & 210.100 & 253.320 \\
10 & 63.372 & 115.270 & 139.406 & 168.624 & 204.640 & 250.030 \\
20 & 55.152 & 106.462 & 131.198 & 160.650 & 198.004 & 245.968 \\
30 & 45.796 & 96.080 & 120.544 & 151.002 & 189.831 & 240.862 \\
40 & 35.187 & 83.785 & 108.182 & 139.149 & 179.545 & 234.267 \\
50 & 23.257 & 69.086 & 93.111 & 124.364 & 166.345 & 225.415 \\
\hline 60 & 10.164 & 51.369 & 74.442 & 105.480 & 148.834 & 213.073 \\
70 & 2.022 & 30.087 & 51.000 & 80.716 & 124.642 & 194.690 \\
80 & 0.620 & 6.095 & 21.643 & 47.267 & 89.280 & 164.645 \\
90 & 0.330 & 0.876 & 1.097 & 4.671 & 33.840 & 106.744 \\
94 & 0.213 & 0.568 & 0.711 & 1.362 & 5.483 & 65.650 \\
98 & 0.097 & 0.259 & 0.324 & 0.621 & 2.083 & 22.677 \\
100 & 0.039 & 0.104 & 0.131 & 0.250 & 0.383 & 1.190 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \multicolumn{1}{|c|}{\(\mathrm{tan}_{\mathrm{an}}(\mathrm{s})\)} \\
\hline 1.1 & 2071 \\
1.2 & 1352 \\
1.3 & 988 \\
1.4 & 756 \\
1.5 & 592 \\
1.8 & 296 \\
\hline
\end{tabular}
\(t_{a b}(s)=2169\)



6RA7025-6DV62. 6RA7025-6FV62 and 6RA7025-6GV62
\begin{tabular}{rrccccc} 
& \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) \\
\(\lg (\%)\) & \(\mathrm{X}=1.8\) & \(\mathrm{X}=1.5\) & \(\mathrm{X}=1.4\) & \(\mathrm{X}=1.3\) & \(\mathrm{X}=1.2\) & \(\mathrm{X}=1.1\) \\
\hline 0 & 72.980 & 130.400 & 156.740 & 188.460 & 227.300 & 275.940 \\
10 & 65.811 & 123.227 & 149.957 & 182.498 & 222.876 & 274.175 \\
20 & 57.585 & 114.814 & 141.930 & 175.350 & 217.469 & 272.034 \\
30 & 48.150 & 104.895 & 132.360 & 166.711 & 210.816 & 269.379 \\
40 & 37.259 & 93.130 & 120.832 & 156.101 & 202.443 & 265.933 \\
50 & 24.678 & 79.007 & 106.735 & 142.839 & 191.669 & 261.301 \\
\hline 60 & 10.683 & 61.827 & 89.233 & 125.906 & 177.370 & 254.787 \\
70 & 2.634 & 40.555 & 66.989 & 103.596 & 157.563 & 245.064 \\
80 & 0.716 & 14.001 & 37.903 & 72.993 & 128.433 & 228.970 \\
90 & 0.439 & 1.241 & 4.225 & 28.730 & 81.603 & 197.474 \\
94 & 0.328 & 0.927 & 1.420 & 7.154 & 53.876 & 174.472 \\
98 & 0.217 & 0.614 & 0.940 & 3.179 & 20.823 & 130.537 \\
100 & 0.162 & 0.457 & 0.700 & 1.191 & 4.296 & 108.570 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline\(X\) & \(\tan (\mathrm{~s})\) \\
\hline 1.1 & 2535 \\
1.2 & 1446 \\
1.3 & 1016 \\
1.4 & 761 \\
1.5 & 587 \\
1.8 & 283 \\
\hline
\end{tabular}
\(t_{\text {ab }}(\mathrm{s})=2522\)



\section*{6RA7028-6DS22 and 6RA7028-6FS22}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline lg (\%) & Tp (s) & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
\mathrm{X}=1.5
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& \mathrm{X}=1.4
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& \mathrm{X}=1.3
\end{aligned}
\] & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
X=1.2
\end{gathered}
\] & Tp (s) & & \\
\hline \(\lg\) (\%) & & & & & & & & \\
\hline 0 & 44.040 & 99.800 & 126.140 & 157.960 & 196.940 & 245.560 & & \\
\hline 10 & 36.508 & 91.356 & 117.870 & 150.323 & 190.607 & 241.690 & & \\
\hline 20 & 28.138 & 81.553 & 108.144 & 141.179 & 182.942 & 236.930 & & \\
\hline 30 & 18.933 & 70.135 & 96.619 & 130.216 & 173.518 & 230.885 & & \\
\hline 40 & 9.535 & 56.833 & 82.883 & 116.804 & 161.716 & 223.119 & X & \(\mathrm{tan}_{\text {an }}(\mathrm{s})\) \\
\hline 50 & 3.430 & 41.356 & 66.380 & 100.170 & 146.594 & 212.760 & 1.1 & 1879 \\
\hline 60 & 1.190 & 23.503 & 46.481 & 79.223 & 126.664 & 198.343 & 1.2 & 1186 \\
\hline 70 & 0.432 & 5.814 & 22.736 & 52.448 & 99.405 & 176.957 & 1.3 & 831 \\
\hline 80 & 0.293 & 0.954 & 2.778 & 18.590 & 60.445 & 142.178 & 1.4 & 604 \\
\hline 90 & 0.154 & 0.502 & 0.790 & 1.309 & 6.765 & 76.545 & 1.5 & 443 \\
\hline 94 & 0.099 & 0.321 & 0.506 & 0.837 & 1.579 & 32.480 & 1.8 & 151 \\
\hline 98 & 0.043 & 0.141 & 0.221 & 0.366 & 0.691 & 11.259 & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\mathrm{tab}_{\mathrm{ab}}(\mathrm{s})=2668\)}} \\
\hline 100 & 0.015 & 0.050 & 0.079 & 0.131 & 0.247 & 0.648 & & \\
\hline
\end{tabular}



\section*{6RA7028-6DV62 and 6RA7028-6FV62}
\begin{tabular}{rrccccr} 
& \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) \\
\(\lg (\%)\) & \(\mathrm{X}=1.8\) & \(\mathrm{X}=1.5\) & \(\mathrm{X}=1.4\) & \(\mathrm{X}=1.3\) & \(\mathrm{X}=1.2\) & \(\mathrm{X}=1.1\) \\
\hline 0 & 94.460 & 141.260 & 162.280 & 187.240 & 217.380 & 254.460 \\
10 & 86.466 & 133.232 & 154.580 & 180.222 & 211.582 & 250.787 \\
20 & 77.462 & 123.966 & 145.592 & 171.911 & 204.624 & 246.336 \\
30 & 67.269 & 113.195 & 135.009 & 161.976 & 196.128 & 240.743 \\
40 & 55.667 & 100.540 & 122.390 & 149.907 & 185.555 & 233.598 \\
50 & 42.361 & 85.483 & 107.108 & 134.954 & 172.084 & 224.091 \\
\hline 60 & 27.004 & 67.315 & 88.261 & 115.992 & 154.347 & 210.906 \\
70 & 9.972 & 44.985 & 64.499 & 91.200 & 129.983 & 191.381 \\
80 & 1.781 & 17.079 & 33.595 & 57.466 & 94.473 & 159.668 \\
90 & 0.581 & 1.302 & 2.533 & 9.867 & 37.987 & 99.089 \\
94 & 0.354 & 0.792 & 1.108 & 1.680 & 7.117 & 56.044 \\
98 & 0.126 & 0.283 & 0.396 & 0.600 & 2.441 & 18.841 \\
100 & 0.013 & 0.028 & 0.040 & 0.060 & 0.103 & 0.239 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline\(X\) & \(\tan _{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 1911 \\
1.2 & 1320 \\
1.3 & 1007 \\
1.4 & 804 \\
1.5 & 659 \\
1.8 & 391 \\
\hline
\end{tabular}
\(\mathrm{t}_{\mathrm{ab}}(\mathrm{s})=2658\)


\section*{6RA7031-6DS22. 6RA7031-6FS22 and 6RA7031-6GS22}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\lg\) (\%) & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& \mathrm{X}=1.8
\end{aligned}
\] & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
X=1.5
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& \mathrm{X}=1.4
\end{aligned}
\] & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
X=1.3
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& \mathrm{X}=1.2
\end{aligned}
\] & Tp (s) & & \\
\hline \(\lg\) (\%) & & & & & & & & \\
\hline 0 & 71.160 & 122.540 & 146.140 & 174.380 & 208.680 & 251.080 & & \\
\hline 10 & 63.409 & 114.371 & 138.230 & 167.128 & 202.695 & 247.413 & & \\
\hline 20 & 54.716 & 104.905 & 128.959 & 158.516 & 195.483 & 242.887 & & \\
\hline 30 & 45.000 & 93.880 & 118.003 & 148.165 & 186.653 & 237.226 & & \\
\hline 40 & 34.184 & 80.975 & 104.942 & 135.556 & 175.626 & 229.911 & X & \(\mathrm{tan}_{\text {an }}(\mathrm{s})\) \\
\hline 50 & 22.239 & 65.756 & 89.153 & 119.928 & 161.525 & 220.178 & 1.1 & 1994 \\
\hline 60 & 9.830 & 47.787 & 69.886 & 100.161 & 142.928 & 206.664 & 1.2 & 1318 \\
\hline 70 & 2.269 & 26.730 & 46.225 & 74.573 & 117.429 & 186.607 & 1.3 & 968 \\
\hline 80 & 0.655 & 5.378 & 17.613 & 40.970 & 80.571 & 153.963 & 1.4 & 743 \\
\hline 90 & 0.340 & 0.863 & 1.270 & 3.395 & 25.315 & 91.948 & 1.5 & 582 \\
\hline 94 & 0.214 & 0.544 & 0.799 & 1.258 & 3.159 & 49.218 & 1.8 & 289 \\
\hline 98 & 0.088 & 0.224 & 0.329 & 0.518 & 1.231 & 16.851 & & \\
\hline 100 & 0.025 & 0.064 & 0.094 & 0.148 & 0.267 & 0.667 & \(t_{a b}\) (s) & \(=3110\) \\
\hline
\end{tabular}



6RA7031-6DV62. 6RA7031-6FV62 and 6RA7031-6GV62
\begin{tabular}{rrrrccr} 
& \(T p(s)\) \\
\(\lg (\%)\) & \(\mathrm{X}=1.8\) & \multicolumn{1}{c}{\(\mathrm{X}=1.5\)} & \multicolumn{1}{c}{\(\mathrm{X}=1.4\)} & \multicolumn{1}{c}{\(\mathrm{X}=1.3\)} & \(\mathrm{X}=1.2\) & \(\mathrm{X}=1.1\) \\
\hline 0 & 74.560 & 125.660 & 148.680 & 176.040 & 209.100 & 249.760 \\
10 & 66.512 & 117.485 & 140.799 & 168.832 & 203.128 & 245.972 \\
20 & 57.377 & 107.974 & 131.548 & 160.259 & 195.896 & 241.303 \\
30 & 46.984 & 95.363 & 120.584 & 149.925 & 187.042 & 235.487 \\
40 & 35.141 & 83.679 & 107.433 & 137.311 & 175.983 & 227.952 \\
50 & 21.702 & 67.946 & 91.425 & 121.613 & 161.810 & 217.919 \\
\hline 60 & 6.944 & 48.910 & 71.581 & 101.600 & 143.079 & 203.951 \\
70 & 1.340 & 25.670 & 46.462 & 75.329 & 117.208 & 183.226 \\
80 & 0.603 & 2.501 & 14.468 & 39.467 & 79.328 & 149.404 \\
90 & 0.304 & 0.749 & 1.080 & 1.686 & 19.379 & 84.405 \\
94 & 0.184 & 0.454 & 0.655 & 1.022 & 1.811 & 38.066 \\
98 & 0.065 & 0.159 & 0.230 & 0.358 & 0.635 & 12.764 \\
100 & 0.005 & 0.012 & 0.017 & 0.027 & 0.047 & 0.113 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \multicolumn{1}{|c|}{\(\tan (\mathrm{s})\)} \\
\hline 1.1 & 2160 \\
1.2 & 1453 \\
1.3 & 1079 \\
1.4 & 836 \\
1.5 & 662 \\
1.8 & 344 \\
\hline
\end{tabular}
\(\mathrm{t}_{\mathrm{ab}}(\mathrm{s})=3112\)



\section*{6RA7075-6DS22. 6RA7075-6FS22 and 6RA7075-6GS22}

6RA7075-6DV62. 6RA7075-6FV62 and 6RA7075-6GV62
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\lg\) (\%) & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
X=1.8
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.5
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.4
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1.3
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.2
\end{gathered}
\] & \[
\begin{aligned}
& \operatorname{Tp}(\mathrm{s}) \\
& \mathrm{X}=1.1
\end{aligned}
\] & & \\
\hline 0 & 1.080 & 21.600 & 50.720 & 91.660 & 149.600 & 235.560 & & \\
\hline 10 & 0.902 & 14.843 & 43.009 & 83.652 & 142.448 & 231.608 & & \\
\hline 20 & 0.733 & 8.313 & 34.150 & 74.216 & 133.825 & 226.741 & & \\
\hline 30 & 0.585 & 4.428 & 24.068 & 63.100 & 123.347 & 220.628 & & \\
\hline 40 & 0.456 & 2.419 & 12.873 & 50.001 & 110.490 & 212.789 & X & \(\mathrm{tan}_{\text {an }}(\mathrm{s})\) \\
\hline 50 & 0.344 & 1.369 & 4.870 & 34.589 & 94.498 & 202.443 & 1.1 & 680.00 \\
\hline 60 & 0.246 & 0.826 & 1.995 & 16.667 & 74.278 & 188.324 & 1.2 & 318.00 \\
\hline 70 & 0.160 & 0.486 & 0.947 & 3.749 & 48.370 & 167.990 & 1.3 & 167.00 \\
\hline 80 & 0.085 & 0.264 & 0.480 & 1.081 & 15.400 & 136.377 & 1.4 & 78.00 \\
\hline 90 & 0.024 & 0.150 & 0.286 & 0.581 & 1.407 & 80.999 & 1.5 & 25.00 \\
\hline 94 & 0.015 & 0.109 & 0.209 & 0.424 & 1.025 & 45.980 & 1.8 & 0.96 \\
\hline 98 & 0.010 & 0.069 & 0.131 & 0.266 & 0.644 & 16.631 & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\mathrm{tab}_{\mathrm{ab}}(\mathrm{s})=766\)}} \\
\hline 100 & 0.007 & 0.048 & 0.092 & 0.187 & 0.454 & 1.956 & & \\
\hline
\end{tabular}



\section*{6RA7078-6DS22 and 6RA7078-6FS22}

6RA7078-6DV62 and 6RA7078-6FV62
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\lg\) (\%) & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
\mathrm{X}=1.8
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
X=1.5
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1.4
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
X=1.3
\end{gathered}
\] & \[
\begin{aligned}
& \operatorname{Tp}(\mathrm{s}) \\
& \mathrm{X}=1.2
\end{aligned}
\] & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
\mathrm{X}=1.1
\end{gathered}
\] & & \\
\hline 0 & 21.300 & 65.680 & 90.400 & 123.700 & 169.960 & 237.500 & & \\
\hline 10 & 16.768 & 58.584 & 82.846 & 116.025 & 163.015 & 233.249 & & \\
\hline 20 & 12.534 & 50.641 & 74.247 & 107.139 & 154.795 & 228.092 & & \\
\hline 30 & 8.923 & 41.770 & 64.461 & 96.798 & 144.953 & 221.708 & & \\
\hline 40 & 6.091 & 31.938 & 53.316 & 84.699 & 133.042 & 213.585 & X & \(\mathrm{tan}_{\text {an }}(\mathrm{s})\) \\
\hline 50 & 4.023 & 21.435 & 40.632 & 70.460 & 118.418 & 203.028 & 1.1 & 729 \\
\hline 60 & 2.540 & 11.925 & 26.420 & 53.609 & 100.127 & 188.753 & 1.2 & 381 \\
\hline 70 & 1.437 & 5.650 & 12.725 & 33.714 & 76.841 & 168.506 & 1.3 & 237 \\
\hline 80 & 0.638 & 2.410 & 4.605 & 12.943 & 46.698 & 137.624 & 1.4 & 155 \\
\hline 90 & 0.202 & 0.673 & 1.290 & 2.842 & 11.433 & 85.548 & 1.5 & 103 \\
\hline 94 & 0.142 & 0.474 & 0.748 & 1.265 & 4.192 & 53.870 & 1.8 & 24 \\
\hline 98 & 0.083 & 0.276 & 0.435 & 0.736 & 2.017 & 20.682 & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\mathrm{tab}_{\mathrm{ab}}(\mathrm{s})=840\)}} \\
\hline 100 & 0.053 & 0.177 & 0.279 & 0.472 & 0.930 & 4.088 & & \\
\hline
\end{tabular}


\section*{6RA7081-6DS22 and 6RA7081-6GS22}
\begin{tabular}{rrrrrrr} 
& \(T p(s)\) & \(T p(s)\) & \(T p(s)\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \multicolumn{1}{c}{\(\operatorname{Tp}(\mathrm{s})\)} \\
\(\lg (\%)\) & \(\mathrm{X}=1.8\) & \multicolumn{1}{c}{\(\mathrm{X}=1.5\)} & \multicolumn{1}{c}{\(\mathrm{X}=1.4\)} & \(\mathrm{X}=1.3\) & \(\mathrm{X}=1.2\) & \(\mathrm{X}=1.1\) \\
\hline 0 & 0.820 & 4.500 & 10.140 & 23.420 & 54.060 & 121.080 \\
10 & 0.680 & 3.657 & 8.318 & 20.184 & 49.209 & 115.906 \\
20 & 0.555 & 2.859 & 6.478 & 16.703 & 43.560 & 109.708 \\
30 & 0.447 & 2.141 & 4.767 & 13.079 & 37.094 & 102.254 \\
40 & 0.355 & 1.507 & 3.309 & 9.437 & 29.872 & 93.218 \\
50 & 0.276 & 0.969 & 2.145 & 6.057 & 22.145 & 82.116 \\
\hline 60 & 0.207 & 0.584 & 1.237 & 3.414 & 14.378 & 68.216 \\
70 & 0.146 & 0.352 & 0.617 & 1.658 & 7.250 & 50.437 \\
80 & 0.090 & 0.201 & 0.309 & 0.621 & 2.518 & 28.154 \\
90 & 0.039 & 0.090 & 0.131 & 0.221 & 0.532 & 6.682 \\
94 & 0.020 & 0.054 & 0.086 & 0.150 & 0.361 & 2.134 \\
98 & 0.010 & 0.029 & 0.046 & 0.079 & 0.191 & 1.000 \\
100 & 0.006 & 0.016 & 0.025 & 0.044 & 0.106 & 0.434 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \multicolumn{1}{|c|}{\(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\)} \\
\hline 1.1 & 130.40 \\
1.2 & 53.90 \\
1.3 & 21.70 \\
1.4 & 8.90 \\
1.5 & 3.80 \\
1.8 & 0.72 \\
\hline
\end{tabular}
\(t_{\mathrm{ab}}(\mathrm{s})=198\)



\section*{6RA7081-6DV62 and 6RA7081-6GV62}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\lg (\%)\) & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.8
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
X=1.5
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.4
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
X=1.3
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1.2
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1.1
\end{gathered}
\] & & \\
\hline 0 & 1.640 & 5.320 & 13.720 & 42.460 & 90.020 & 179.460 & & \\
\hline 10 & 1.446 & 4.438 & 10.202 & 36.010 & 83.305 & 173.786 & & \\
\hline 20 & 1.235 & 3.666 & 7.483 & 28.596 & 75.421 & 166.961 & & \\
\hline 30 & 1.023 & 2.985 & 5.525 & 20.318 & 66.139 & 158.672 & & \\
\hline 40 & 0.814 & 2.372 & 4.105 & 12.433 & 55.130 & 148.477 & X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 50 & 0.617 & 1.812 & 3.019 & 7.189 & 41.929 & 135.711 & 1.1 & 282.0 \\
\hline 60 & 0.437 & 1.296 & 2.136 & 4.358 & 25.980 & 119.321 & 1.2 & 112.0 \\
\hline 70 & 0.277 & 0.829 & 1.382 & 2.660 & 10.258 & 97.514 & 1.3 & 47.0 \\
\hline 80 & 0.137 & 0.443 & 0.743 & 1.449 & 3.915 & 66.912 & 1.4 & 13.0 \\
\hline 90 & 0.036 & 0.155 & 0.275 & 0.549 & 1.454 & 20.405 & 1.5 & 4.9 \\
\hline 94 & 0.018 & 0.068 & 0.148 & 0.349 & 0.832 & 5.925 & 1.8 & 1.5 \\
\hline 98 & 0.011 & 0.039 & 0.089 & 0.210 & 0.499 & 2.825 & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\mathrm{tab}_{\mathrm{ab}}(\mathrm{s})=338\)}} \\
\hline 100 & 0.007 & 0.025 & 0.059 & 0.140 & 0.333 & 1.276 & & \\
\hline
\end{tabular}



\section*{6RA7082-6FS22 and 6RA7082-6FV62}
\begin{tabular}{rrrrrrr} 
& \(T p(s)\) & \multicolumn{1}{c}{\begin{tabular}{c}
\(T p(s)\) \\
\(\lg (\%)\)
\end{tabular}} \\
\(X=1.8\) & \multicolumn{1}{c}{\(X=1.5\)} & \multicolumn{1}{c}{\(X=1.4\)} & \multicolumn{1}{c}{\(X=1.3\)} & \multicolumn{1}{c}{\(X=1.2\)} & \multicolumn{1}{c}{\(X=1.1\)} \\
\hline 0 & 1.460 & 6.560 & 12.320 & 23.900 & 49.460 & 103.620 \\
10 & 1.248 & 5.412 & 10.423 & 20.816 & 44.704 & 98.249 \\
20 & 1.039 & 4.266 & 8.442 & 17.528 & 39.262 & 91.829 \\
30 & 0.844 & 3.189 & 6.455 & 14.096 & 33.181 & 84.141 \\
40 & 0.663 & 2.248 & 4.583 & 10.599 & 26.601 & 74.867 \\
50 & 0.495 & 1.512 & 2.959 & 7.189 & 19.783 & 63.575 \\
\hline 60 & 0.344 & 0.980 & 1.736 & 4.192 & 13.053 & 49.724 \\
70 & 0.213 & 0.587 & 0.959 & 2.008 & 6.836 & 33.160 \\
80 & 0.110 & 0.289 & 0.460 & 0.847 & 2.353 & 15.936 \\
90 & 0.032 & 0.090 & 0.138 & 0.248 & 0.542 & 2.830 \\
94 & 0.014 & 0.051 & 0.083 & 0.149 & 0.320 & 0.947 \\
98 & 0.005 & 0.018 & 0.029 & 0.051 & 0.110 & 0.325 \\
100 & 0.000 & 0.001 & 0.001 & 0.002 & 0.005 & 0.014 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 109.8 \\
1.2 & 49.0 \\
1.3 & 22.4 \\
1.4 & 11.1 \\
1.5 & 5.7 \\
1.8 & 1.3 \\
\hline
\end{tabular}
\(t_{a b}(s)=206\)


6RA7085-6DS22. 6RA7085-6FS22 and 6RA7085-6GS22
\begin{tabular}{rrcrccc} 
& \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) \\
\(\lg (\%)\) & \(\mathrm{X}=1.8\) & \(\mathrm{X}=1.5\) & \(\mathrm{X}=1.4\) & \(\mathrm{X}=1.3\) & \(\mathrm{X}=1.2\) & \(\mathrm{X}=1.1\) \\
\hline 0 & 8.020 & 28.640 & 43.300 & 67.520 & 111.260 & 202.240 \\
10 & 6.452 & 25.538 & 39.388 & 62.591 & 105.453 & 197.543 \\
20 & 4.806 & 22.113 & 35.022 & 56.979 & 98.665 & 191.802 \\
30 & 3.158 & 18.383 & 30.202 & 50.655 & 90.734 & 184.774 \\
40 & 1.837 & 14.378 & 24.930 & 43.582 & 81.467 & 176.031 \\
50 & 1.118 & 10.177 & 19.228 & 35.738 & 70.653 & 164.977 \\
\hline 60 & 0.704 & 5.955 & 13.179 & 27.126 & 58.067 & 150.647 \\
70 & 0.422 & 2.214 & 7.058 & 17.825 & 43.557 & 131.462 \\
80 & 0.222 & 0.792 & 1.876 & 8.028 & 27.146 & 104.647 \\
90 & 0.094 & 0.281 & 0.479 & 1.235 & 9.525 & 65.500 \\
94 & 0.069 & 0.206 & 0.342 & 0.626 & 3.179 & 45.238 \\
98 & 0.044 & 0.131 & 0.218 & 0.398 & 1.504 & 22.342 \\
100 & 0.031 & 0.094 & 0.156 & 0.285 & 0.666 & 10.894 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 331.0 \\
1.2 & 137.0 \\
1.3 & 74.0 \\
1.4 & 44.0 \\
1.5 & 28.0 \\
1.8 & 6.9 \\
\hline
\end{tabular}
\(t_{a b}(s)=381\)



\section*{6RA7085-6DV62. 6RA7085-6FV62 and 6RA7085-6GV62}
\begin{tabular}{rrrrrrr} 
& \begin{tabular}{c}
\(\operatorname{Tp}(\mathrm{s})\) \\
\(\lg (\%)\)
\end{tabular} & \begin{tabular}{c}
\(\operatorname{Tp}(\mathrm{s})\) \\
\(\mathrm{X}=1.8\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{Tp}(\mathrm{s})\) \\
\(\mathrm{X}=1.5\)
\end{tabular} & \begin{tabular}{c}
\(\operatorname{Tp}(\mathrm{s})\) \\
\(\mathrm{X}=1.4\)
\end{tabular} & \begin{tabular}{c}
\(\operatorname{Tp}(\mathrm{s})\) \\
\(\mathrm{X}=1.3\)
\end{tabular} & \begin{tabular}{c}
\(\operatorname{Tp}(\mathrm{s})\) \\
\(\mathrm{X}=1.2\)
\end{tabular} \\
\hline 0 & 6.320 & 34.420 & 55.620 & 86.300 & 133.680 & 219.660 \\
10 & 4.768 & 29.728 & 50.173 & 80.420 & 127.741 & 215.465 \\
20 & 3.249 & 24.577 & 43.899 & 73.524 & 120.691 & 210.355 \\
30 & 2.016 & 19.130 & 36.764 & 65.460 & 112.287 & 203.997 \\
40 & 1.293 & 13.684 & 28.809 & 56.012 & 102.199 & 196.025 \\
50 & 0.868 & 8.632 & 20.340 & 44.942 & 89.953 & 185.803 \\
\hline 60 & 0.575 & 4.294 & 12.167 & 32.342 & 74.877 & 172.318 \\
70 & 0.354 & 1.497 & 5.361 & 18.343 & 55.975 & 153.824 \\
80 & 0.192 & 0.645 & 1.347 & 6.565 & 32.161 & 126.914 \\
90 & 0.079 & 0.283 & 0.483 & 0.911 & 7.922 & 83.908 \\
94 & 0.058 & 0.208 & 0.355 & 0.662 & 2.177 & 58.269 \\
98 & 0.037 & 0.132 & 0.226 & 0.421 & 0.852 & 25.724 \\
100 & 0.026 & 0.094 & 0.161 & 0.301 & 0.190 & 9.452 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 423.0 \\
1.2 & 183.0 \\
1.3 & 105.0 \\
1.4 & 63.0 \\
1.5 & 36.0 \\
1.8 & 5.2 \\
\hline
\end{tabular}
\(t_{\mathrm{ab}}(\mathrm{s})=452\)



\section*{6RA7087-6DS22. 6RA7087-6FS22. 6RA7087-6GS22 and 6RA7086-6KS22}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline lg (\%) & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.8
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.5
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.4
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
X=1.3
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
X=1.2
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1.1
\end{gathered}
\] \\
\hline 0 & 19.240 & 45.900 & 61.540 & 84.160 & 119.400 & 180.060 \\
\hline 10 & 15.940 & 40.913 & 55.837 & 77.668 & 112.234 & 173.376 \\
\hline 20 & 12.583 & 35.472 & 49.571 & 70.427 & 104.059 & 165.491 \\
\hline 30 & 9.370 & 29.557 & 42.685 & 62.357 & 94.724 & 156.078 \\
\hline 40 & 6.534 & 23.164 & 35.118 & 53.350 & 84.017 & 144.712 \\
\hline 50 & 4.195 & 16.405 & 26.816 & 43.272 & 71.675 & 130.776 \\
\hline 60 & 2.356 & 9.869 & 17.861 & 31.981 & 57.378 & 113.369 \\
\hline 70 & 1.101 & 4.796 & 9.197 & 19.447 & 40.710 & 91.195 \\
\hline 80 & 0.392 & 1.619 & 3.225 & 7.482 & 21.279 & 62.331 \\
\hline 90 & 0.132 & 0.383 & 0.585 & 1.209 & 3.936 & 23.947 \\
\hline 94 & 0.080 & 0.234 & 0.357 & 0.586 & 1.125 & 7.453 \\
\hline 98 & 0.029 & 0.084 & 0.128 & 0.211 & 0.405 & 2.565 \\
\hline 100 & 0.003 & 0.009 & 0.014 & 0.023 & 0.045 & 0.122 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline\(X\) & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 296 \\
1.2 & 161 \\
1.3 & 102 \\
1.4 & 70 \\
1.5 & 50 \\
1.8 & 19 \\
\hline
\end{tabular}
\(t_{a b}(s)=516\)



\section*{6RA7087-6DV62. 6RA7087-6FV62. 6RA7087-6GV62 and 6RA7086-6KV62}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\lg\) (\%) & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1.8
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
X=1.5
\end{gathered}
\] & \[
\begin{aligned}
& \operatorname{Tp}(\mathrm{s}) \\
& \mathrm{X}=1.4
\end{aligned}
\] & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1.3
\end{gathered}
\] & \[
\begin{aligned}
& \operatorname{Tp}(\mathrm{s}) \\
& \mathrm{X}=1.2
\end{aligned}
\] & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
\mathrm{X}=1.1
\end{gathered}
\] \\
\hline 0 & 13.760 & 53.220 & 74.980 & 103.760 & 143.740 & 203.660 \\
\hline 10 & 10.426 & 46.039 & 67.417 & 95.971 & 136.188 & 197.687 \\
\hline 20 & 7.840 & 37.973 & 58.820 & 87.013 & 127.352 & 190.507 \\
\hline 30 & 5.681 & 28.968 & 49.019 & 76.651 & 116.928 & 181.775 \\
\hline 40 & 4.005 & 19.373 & 37.798 & 64.573 & 104.480 & 170.947 \\
\hline 50 & 2.631 & 11.176 & 25.080 & 50.350 & 89.409 & 157.197 \\
\hline 60 & 1.548 & 6.126 & 12.836 & 33.449 & 70.819 & 139.217 \\
\hline 70 & 0.787 & 3.058 & 5.774 & 14.946 & 47.335 & 114.694 \\
\hline 80 & 0.303 & 1.132 & 2.146 & 4.802 & 17.887 & 79.242 \\
\hline 90 & 0.106 & 0.382 & 0.596 & 0.981 & 2.723 & 23.486 \\
\hline 94 & 0.066 & 0.236 & 0.368 & 0.606 & 1.150 & 5.393 \\
\hline 98 & 0.025 & 0.090 & 0.141 & 0.232 & 0.439 & 1.942 \\
\hline 100 & 0.005 & 0.017 & 0.027 & 0.044 & 0.084 & 0.217 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 382.0 \\
1.2 & 228.0 \\
1.3 & 150.0 \\
1.4 & 102.0 \\
1.5 & 68.0 \\
1.8 & 13.5 \\
\hline
\end{tabular}
\(t_{a b}(\mathrm{~s})=582\)



6RA7090-6GS22. 6RA7088-6KS22 and 6RA7088-6LS22
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\lg (\%)\) & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
X=1.8
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.5
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
X=1.4
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
X=1.3
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& \mathrm{X}=1.2
\end{aligned}
\] & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1.1
\end{gathered}
\] \\
\hline 0 & 5.200 & 17.360 & 27.520 & 44.980 & 78.220 & 148.060 \\
\hline 10 & 4.317 & 14.787 & 24.058 & 40.280 & 72.007 & 141.537 \\
\hline 20 & 3.462 & 12.144 & 20.380 & 35.203 & 65.028 & 133.879 \\
\hline 30 & 2.652 & 9.551 & 16.541 & 29.781 & 57.253 & 124.828 \\
\hline 40 & 1.916 & 7.132 & 12.653 & 24.043 & 48.664 & 114.020 \\
\hline 50 & 1.296 & 4.984 & 8.952 & 18.058 & 39.296 & 100.938 \\
\hline 60 & 0.807 & 3.136 & 5.740 & 12.075 & 29.251 & 84.905 \\
\hline 70 & 0.436 & 1.655 & 3.148 & 6.812 & 18.728 & 65.123 \\
\hline 80 & 0.183 & 0.689 & 1.282 & 2.925 & 8.727 & 41.287 \\
\hline 90 & 0.052 & 0.173 & 0.301 & 0.692 & 2.145 & 15.025 \\
\hline 94 & 0.035 & 0.115 & 0.200 & 0.359 & 0.793 & 6.128 \\
\hline 98 & 0.017 & 0.058 & 0.100 & 0.179 & 0.397 & 2.491 \\
\hline 100 & 0.009 & 0.029 & 0.050 & 0.090 & 0.198 & 0.672 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 185.0 \\
1.2 & 86.0 \\
1.3 & 46.0 \\
1.4 & 26.0 \\
1.5 & 16.0 \\
1.8 & 4.6 \\
\hline
\end{tabular}
\(t_{a b}(s)=296\)



\section*{6RA7090-6KV62 and 6RA7088-6LV62}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \%) & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1.8
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1.5
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
X=1.4
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& X=1.3
\end{aligned}
\] & Tp (s)
\(\mathrm{X}=1.2\) & \(\mathrm{Tp}(\mathrm{s})\)
\(\mathrm{X}=1.1\) \\
\hline 0 & 4.080 & 14.280 & 25.460 & 46.360 & 82.600 & 152.260 \\
\hline 10 & 3.442 & 12.036 & 21.667 & 41.114 & 76.322 & 145.782 \\
\hline 20 & 2.794 & 9.811 & 17.755 & 35.237 & 69.058 & 138.048 \\
\hline 30 & 2.164 & 7.746 & 13.929 & 28.803 & 60.682 & 128.752 \\
\hline 40 & 1.586 & 5.854 & 10.403 & 22.049 & 51.032 & 117.487 \\
\hline 50 & 1.093 & 4.142 & 7.334 & 15.493 & 39.973 & 103.686 \\
\hline 60 & 0.693 & 2.616 & 4.748 & 9.849 & 27.665 & 86.554 \\
\hline 70 & 0.378 & 1.385 & 2.597 & 5.516 & 15.554 & 64.950 \\
\hline 80 & 0.160 & 0.581 & 1.049 & 2.324 & 6.650 & 37.418 \\
\hline 90 & 0.048 & 0.147 & 0.250 & 0.516 & 1.525 & 9.360 \\
\hline 94 & 0.030 & 0.093 & 0.159 & 0.313 & 0.690 & 3.399 \\
\hline 98 & 0.013 & 0.040 & 0.068 & 0.134 & 0.296 & 1.337 \\
\hline 100 & 0.004 & 0.013 & 0.023 & 0.045 & 0.099 & 0.305 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 218.0 \\
1.2 & 99.0 \\
1.3 & 50.0 \\
1.4 & 25.0 \\
1.5 & 13.0 \\
1.8 & 3.6 \\
\hline
\end{tabular}
\(t_{\mathrm{ab}}(\mathrm{s})=373\)


\section*{6RA7090-6GV62}
\begin{tabular}{rrrrrrr} 
& \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \begin{tabular}{c}
\(\operatorname{Tp}(\mathrm{s})\) \\
\(\lg (\%)\)
\end{tabular} \\
\(\mathrm{X}=1.8\) & \multicolumn{1}{c}{\(\mathrm{X}=1.5\)} & \(\mathrm{X}=1.4\) & \(\mathrm{X}=1.3\) & \(\mathrm{X}=1.2\) & \(\mathrm{X}=1.1\) \\
\hline 0 & 3.220 & 11.460 & 21.200 & 41.120 & 77.020 & 146.840 \\
10 & 2.667 & 9.464 & 17.531 & 35.592 & 70.260 & 139.763 \\
20 & 2.126 & 7.683 & 13.963 & 29.586 & 62.571 & 131.415 \\
30 & 1.627 & 5.916 & 10.688 & 23.294 & 53.843 & 121.518 \\
40 & 1.190 & 4.393 & 7.839 & 17.098 & 43.959 & 109.666 \\
50 & 0.820 & 3.030 & 5.441 & 11.577 & 32.922 & 95.330 \\
\hline 60 & 0.514 & 1.864 & 3.435 & 7.202 & 21.337 & 77.776 \\
70 & 0.276 & 0.992 & 1.817 & 3.943 & 11.248 & 55.976 \\
80 & 0.116 & 0.412 & 0.746 & 1.595 & 4.679 & 29.109 \\
90 & 0.032 & 0.107 & 0.194 & 0.388 & 1.042 & 6.405 \\
94 & 0.020 & 0.068 & 0.123 & 0.246 & 0.559 & 2.255 \\
98 & 0.008 & 0.029 & 0.052 & 0.104 & 0.235 & 0.905 \\
100 & 0.003 & 0.009 & 0.016 & 0.032 & 0.074 & 0.230 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 208.0 \\
1.2 & 91.0 \\
1.3 & 43.6 \\
1.4 & 20.5 \\
1.5 & 10.5 \\
1.8 & 2.9 \\
\hline
\end{tabular}
\(t_{a b}(s)=366\)



\section*{6RA7091-6DS22 and 6RA7091-6FS22}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\lg\) (\%) & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.8
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1.5
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.4
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1.3
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& X=1.2
\end{aligned}
\] & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1.1
\end{gathered}
\] & & \\
\hline 0 & 6.700 & 20.140 & 30.440 & 47.720 & 79.460 & 143.340 & & \\
\hline 10 & 5.627 & 17.447 & 26.910 & 42.992 & 73.349 & 136.839 & & \\
\hline 20 & 4.569 & 14.613 & 23.126 & 37.864 & 66.463 & 129.216 & & \\
\hline 30 & 3.550 & 11.728 & 19.129 & 32.352 & 58.749 & 120.198 & & \\
\hline 40 & 2.589 & 8.916 & 14.988 & 26.479 & 50.180 & 109.427 & X & \(\mathrm{tan}_{\text {an }}(\mathrm{s})\) \\
\hline 50 & 1.737 & 6.321 & 10.873 & 20.297 & 40.779 & 96.405 & 1.1 & 180 \\
\hline 60 & 1.061 & 4.043 & 7.101 & 13.974 & 30.640 & 80.494 & 1.2 & 88 \\
\hline 70 & 0.568 & 2.139 & 3.952 & 8.086 & 19.951 & 61.016 & 1.3 & 49 \\
\hline 80 & 0.231 & 0.850 & 1.571 & 3.492 & 9.534 & 37.886 & 1.4 & 30 \\
\hline 90 & 0.066 & 0.204 & 0.340 & 0.754 & 2.231 & 12.898 & 1.5 & 19 \\
\hline 94 & 0.042 & 0.130 & 0.208 & 0.373 & 0.780 & 4.891 & 1.8 & 6 \\
\hline 98 & 0.018 & 0.056 & 0.089 & 0.160 & 0.334 & 1.859 & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\mathrm{tab}_{\mathrm{ab}}(\mathrm{s})=312\)}} \\
\hline 100 & 0.006 & 0.019 & 0.030 & 0.053 & 0.111 & 0.344 & & \\
\hline
\end{tabular}



\section*{6RA7091-6DV62 and 6RA7091-6FV62}
\begin{tabular}{rrccccr} 
& \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \begin{tabular}{c}
\(\operatorname{Tp}(\mathrm{s})\) \\
\(\lg (\%)\)
\end{tabular} \\
\(\mathrm{X}=1.8\) & \multicolumn{1}{c}{\(\mathrm{X}=1.5\)} & \(\mathrm{X}=1.4\) & \(\mathrm{X}=1.3\) & \(\mathrm{X}=1.2\) & \(\mathrm{X}=1.1\) \\
\hline 0 & 4.720 & 16.220 & 28.320 & 49.780 & 86.080 & 154.620 \\
10 & 3.939 & 13.465 & 23.936 & 43.976 & 79.248 & 147.678 \\
20 & 3.170 & 10.843 & 19.451 & 37.560 & 71.456 & 139.481 \\
30 & 2.433 & 8.442 & 15.098 & 30.588 & 62.575 & 129.727 \\
40 & 1.761 & 6.301 & 11.133 & 23.292 & 52.441 & 118.002 \\
50 & 1.194 & 4.415 & 7.745 & 16.227 & 40.916 & 103.748 \\
\hline 60 & 0.747 & 2.766 & 4.958 & 10.189 & 28.161 & 86.175 \\
70 & 0.403 & 1.445 & 2.686 & 5.632 & 15.673 & 64.163 \\
80 & 0.167 & 0.596 & 1.074 & 2.344 & 6.604 & 36.340 \\
90 & 0.048 & 0.157 & 0.270 & 0.511 & 1.482 & 8.816 \\
94 & 0.030 & 0.099 & 0.170 & 0.323 & 0.682 & 3.100 \\
98 & 0.013 & 0.041 & 0.071 & 0.134 & 0.283 & 1.202 \\
100 & 0.004 & 0.012 & 0.021 & 0.039 & 0.083 & 0.253 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{tan}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 223 \\
1.2 & 104 \\
1.3 & 54 \\
1.4 & 28 \\
1.5 & 15 \\
1.8 & 4 \\
\hline
\end{tabular}
\(t_{a b}(s)=383\)



\section*{6RA7093-4KS22 and 6RA7093-4LS22}
\begin{tabular}{rrrrrrr} 
& \(T p(s)\) & \(T p(s)\) & \(T p(s)\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \multicolumn{1}{c}{\(\operatorname{Tp}(\mathrm{s})\)} \\
\(\lg (\%)\) & \(\mathrm{X}=1.8\) & \(\mathrm{X}=1.5\) & \multicolumn{1}{c}{\(\mathrm{X}=1.4\)} & \(\mathrm{X}=1.3\) & \multicolumn{1}{c}{\(\mathrm{X}=1.2\)} & \(\mathrm{X}=1.1\) \\
\hline 0 & 11.960 & 33.580 & 51.120 & 78.920 & 123.920 & 203.840 \\
10 & 10.354 & 29.516 & 45.777 & 72.560 & 117.063 & 198.463 \\
20 & 8.711 & 25.272 & 39.920 & 65.342 & 109.063 & 191.954 \\
30 & 7.058 & 20.967 & 33.657 & 57.190 & 99.707 & 183.973 \\
40 & 5.420 & 16.716 & 27.174 & 48.056 & 88.721 & 174.045 \\
50 & 3.850 & 12.626 & 20.753 & 38.057 & 75.770 & 161.434 \\
\hline 60 & 2.466 & 8.783 & 14.690 & 27.663 & 60.472 & 145.020 \\
70 & 1.400 & 5.269 & 9.208 & 17.798 & 42.676 & 122.948 \\
80 & 0.640 & 2.374 & 4.467 & 9.313 & 23.903 & 92.099 \\
90 & 0.175 & 0.674 & 1.251 & 2.786 & 8.505 & 47.471 \\
94 & 0.107 & 0.324 & 0.360 & 1.251 & 3.933 & 26.380 \\
98 & 0.061 & 0.185 & 0.206 & 0.649 & 1.802 & 9.232 \\
100 & 0.038 & 0.116 & 0.128 & 0.347 & 0.736 & 2.516 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 407 \\
1.2 & 183 \\
1.3 & 100 \\
1.4 & 59 \\
1.5 & 35 \\
1.8 & 11 \\
\hline
\end{tabular}
\(t_{a b}(s)=565\)



\section*{6RA7093-4KV62 and 6RA7093-4LV62}
\begin{tabular}{rrrrrrr} 
& \(T p(s)\) \\
\(\lg (\%)\) & \(\mathrm{X}=1.8\) & \(\mathrm{X}=1.5\) & \(\mathrm{X}=1.4\) & \(\mathrm{X}=1.3\) & \(\mathrm{X}=1.2\) & \(\mathrm{X}=1.1\) \\
\hline 0 & 8.440 & 26.800 & 42.880 & 73.260 & 130.180 & 238.580 \\
10 & 7.298 & 23.608 & 38.359 & 66.907 & 123.241 & 234.844 \\
20 & 6.151 & 20.256 & 33.532 & 59.860 & 115.099 & 230.280 \\
30 & 5.028 & 16.808 & 28.460 & 52.162 & 105.514 & 224.637 \\
40 & 3.954 & 13.363 & 23.204 & 43.906 & 94.199 & 217.465 \\
50 & 2.959 & 10.070 & 17.875 & 35.241 & 80.852 & 208.159 \\
\hline 60 & 2.080 & 7.079 & 12.713 & 26.356 & 65.306 & 196.012 \\
70 & 1.339 & 4.489 & 8.111 & 17.545 & 47.882 & 178.187 \\
80 & 0.729 & 2.403 & 4.373 & 9.623 & 29.713 & 151.885 \\
90 & 0.265 & 0.975 & 1.724 & 3.773 & 12.681 & 108.266 \\
94 & 0.150 & 0.550 & 1.013 & 2.173 & 7.327 & 82.134 \\
98 & 0.092 & 0.316 & 0.565 & 1.174 & 3.792 & 49.566 \\
100 & 0.063 & 0.198 & 0.341 & 0.675 & 2.025 & 33.283 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 546.0 \\
1.2 & 195.0 \\
1.3 & 92.0 \\
1.4 & 47.0 \\
1.5 & 27.0 \\
1.8 & 7.8 \\
\hline
\end{tabular}
\(\mathrm{t}_{\mathrm{ab}}(\mathrm{s})=480\)


\section*{6RA7093-4DS22 and 6RA7093-4GS22 \\ 6RA7093-4DV62 and 6RA7093-4GV62}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\lg\) (\%) & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
X=1.8
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.5
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& \mathrm{X}=1.4
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
X=1.3
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
X=1.2
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
X=1.1
\end{gathered}
\] \\
\hline 0 & 15.040 & 41.340 & 61.280 & 91.820 & 140.780 & 227.360 \\
\hline 10 & 12.954 & 36.316 & 55.103 & 84.796 & 133.569 & 222.650 \\
\hline 20 & 10.869 & 31.083 & 48.348 & 76.885 & 125.211 & 216.969 \\
\hline 30 & 8.805 & 25.773 & 41.070 & 67.986 & 115.478 & 210.017 \\
\hline 40 & 6.830 & 20.551 & 33.418 & 57.998 & 104.075 & 201.343 \\
\hline 50 & 4.928 & 15.577 & 25.708 & 46.892 & 90.612 & 190.226 \\
\hline 60 & 3.200 & 10.975 & 18.373 & 34.932 & 74.597 & 175.591 \\
\hline 70 & 1.825 & 6.826 & 11.783 & 23.052 & 55.559 & 155.476 \\
\hline 80 & 0.871 & 3.283 & 6.134 & 12.641 & 33.675 & 127.036 \\
\hline 90 & 0.264 & 1.028 & 1.905 & 4.482 & 13.555 & 81.104 \\
\hline 94 & 0.144 & 0.496 & 0.964 & 2.176 & 7.393 & 55.811 \\
\hline 98 & 0.091 & 0.304 & 0.550 & 1.133 & 3.350 & 28.291 \\
\hline 100 & 0.065 & 0.208 & 0.342 & 0.612 & 1.328 & 14.530 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 518.0 \\
1.2 & 219.0 \\
1.3 & 122.0 \\
1.4 & 73.0 \\
1.5 & 45.0 \\
1.8 & 14.5 \\
\hline
\end{tabular}
\(t_{a b}(s)=548\)



6RA7095-4LS22 and 6RA7095-4LV62
\begin{tabular}{rrrrrrr} 
& \(T p(s)\) & \(T p(s)\) & \(T p(s)\) & \multicolumn{1}{c}{\(T p(s)\)} & \(T p(s)\) & \(T p(s)\) \\
\(\lg (\%)\) & \(X=1.8\) & \multicolumn{1}{c}{\(\mathrm{X}=1.5\)} & \multicolumn{1}{c}{\(\mathrm{X}=1.4\)} & \multicolumn{1}{c}{\(\mathrm{X}=1.3\)} & \multicolumn{1}{c}{\(\mathrm{X}=1.2\)} & \(\mathrm{X}=1.1\) \\
\hline 0 & 27.940 & 59.320 & 77.240 & 103.320 & 141.420 & 200.360 \\
10 & 24.487 & 53.864 & 71.061 & 96.528 & 134.447 & 194.568 \\
20 & 20.784 & 47.829 & 64.114 & 88.735 & 126.266 & 187.592 \\
30 & 16.870 & 41.224 & 56.347 & 79.809 & 116.633 & 179.035 \\
40 & 12.774 & 34.075 & 47.728 & 69.588 & 105.208 & 168.391 \\
50 & 8.585 & 26.448 & 38.274 & 57.927 & 91.562 & 154.899 \\
\hline 60 & 4.759 & 18.459 & 28.103 & 44.762 & 75.176 & 137.352 \\
70 & 2.224 & 10.297 & 17.464 & 30.275 & 55.529 & 113.823 \\
80 & 0.866 & 3.403 & 6.908 & 15.091 & 32.654 & 81.138 \\
90 & 0.248 & 0.644 & 1.152 & 2.475 & 8.588 & 35.600 \\
94 & 0.151 & 0.383 & 0.561 & 0.901 & 2.175 & 14.997 \\
98 & 0.055 & 0.139 & 0.203 & 0.326 & 0.772 & 5.118 \\
100 & 0.006 & 0.016 & 0.024 & 0.038 & 0.070 & 0.179 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 513.0 \\
1.2 & 259.0 \\
1.3 & 160.0 \\
1.4 & 108.0 \\
1.5 & 76.0 \\
1.8 & 30.8 \\
\hline
\end{tabular}



\section*{6RA7095-4DS22}
\begin{tabular}{rrrrrrr} 
& \(T p(s)\) & \(T p(s)\) & \(T p(s)\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \multicolumn{1}{|c}{\((\mathrm{Tp})\)} \\
\(\lg (\%)\) & \(\mathrm{X}=1.8\) & \(\mathrm{X}=1.5\) & \(\mathrm{X}=1.4\) & \(\mathrm{X}=1.3\) & \(\mathrm{X}=1.2\) & \(\mathrm{X}=1.1\) \\
\hline 0 & 14.080 & 35.260 & 51.320 & 75.880 & 114.220 & 178.880 \\
10 & 12.164 & 30.801 & 45.618 & 69.144 & 106.834 & 172.191 \\
20 & 10.242 & 26.203 & 39.457 & 61.597 & 98.330 & 164.219 \\
30 & 8.340 & 21.590 & 32.954 & 53.180 & 88.514 & 154.610 \\
40 & 6.490 & 17.086 & 26.323 & 43.913 & 77.142 & 142.861 \\
50 & 4.731 & 12.802 & 19.857 & 34.013 & 63.949 & 128.285 \\
\hline 60 & 3.124 & 8.827 & 13.843 & 24.086 & 48.749 & 109.844 \\
70 & 1.755 & 5.256 & 8.476 & 15.005 & 32.049 & 86.007 \\
80 & 0.750 & 2.411 & 3.965 & 7.384 & 16.379 & 54.679 \\
90 & 0.150 & 0.644 & 1.059 & 1.958 & 4.647 & 18.411 \\
94 & 0.091 & 0.280 & 0.455 & 0.758 & 1.781 & 7.489 \\
98 & 0.033 & 0.101 & 0.164 & 0.273 & 0.632 & 2.595 \\
100 & 0.004 & 0.011 & 0.018 & 0.030 & 0.057 & 0.148 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 321.0 \\
1.2 & 164.0 \\
1.3 & 96.0 \\
1.4 & 59.0 \\
1.5 & 38.0 \\
1.8 & 13.7 \\
\hline
\end{tabular}
\(t_{\mathrm{ab}}(\mathrm{s})=600\)



\section*{6RA7095-4KS22}
\begin{tabular}{rcccccr} 
& \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) & \(\operatorname{Tp}(\mathrm{s})\) \\
\(\lg (\%)\) & \(\mathrm{X}=1.8\) & \(\mathrm{X}=1.5\) & \(\mathrm{X}=1.4\) & \(\mathrm{X}=1.3\) & \(\mathrm{X}=1.2\) & \(\mathrm{X}=1.1\) \\
\hline 0 & 26.880 & 59.700 & 79.780 & 108.360 & 151.120 & 220.200 \\
10 & 23.649 & 54.174 & 73.569 & 101.610 & 144.367 & 215.318 \\
20 & 20.327 & 48.089 & 66.581 & 93.882 & 136.463 & 209.406 \\
30 & 16.978 & 41.460 & 58.758 & 85.031 & 127.152 & 202.144 \\
40 & 13.665 & 34.367 & 50.050 & 74.872 & 116.097 & 193.067 \\
50 & 10.445 & 27.004 & 40.484 & 63.200 & 102.850 & 181.458 \\
\hline 60 & 7.380 & 19.715 & 30.318 & 49.860 & 86.799 & 166.159 \\
70 & 4.552 & 12.906 & 20.226 & 35.021 & 67.180 & 145.210 \\
80 & 2.097 & 6.899 & 11.149 & 20.032 & 43.331 & 114.998 \\
90 & 0.496 & 2.090 & 3.812 & 7.485 & 17.833 & 68.545 \\
94 & 0.243 & 0.828 & 1.607 & 3.608 & 9.406 & 43.196 \\
98 & 0.135 & 0.427 & 0.770 & 1.602 & 3.935 & 18.871 \\
100 & 0.081 & 0.227 & 0.351 & 0.599 & 1.200 & 6.709 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1.1 & 479.7 \\
1.2 & 248.5 \\
1.3 & 155.7 \\
1.4 & 104.8 \\
1.5 & 73.4 \\
1.8 & 28.7 \\
\hline
\end{tabular}
\(t_{a b}(s)=663\)


\section*{6RA7095-4GS22 and 6RA7095-4GV62}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \%) & Tp (s) & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
\mathrm{X}=1.5
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& \mathrm{X}=1.4
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.3
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& \mathrm{X}=1.2
\end{aligned}
\] & Tp (s) \\
\hline 0 & 39.720 & 80.060 & 103.680 & 136.840 & 185.580 & 262.160 \\
\hline 10 & 35.381 & 73.782 & 96.869 & 129.838 & 179.331 & 259.402 \\
\hline 20 & 30.789 & 66.849 & 89.218 & 121.817 & 171.987 & 256.043 \\
\hline 30 & 25.968 & 59.224 & 80.620 & 112.580 & 163.277 & 251.935 \\
\hline 40 & 20.951 & 50.876 & 70.958 & 101.897 & 152.798 & 246.641 \\
\hline 50 & 15.779 & 41.819 & 60.123 & 89.469 & 140.037 & 241.189 \\
\hline 60 & 10.524 & 32.135 & 48.069 & 74.951 & 124.224 & 230.257 \\
\hline 70 & 5.568 & 22.016 & 34.904 & 58.026 & 104.256 & 216.666 \\
\hline 80 & 2.295 & 11.757 & 21.027 & 38.670 & 78.552 & 195.547 \\
\hline 90 & 0.753 & 3.171 & 7.298 & 17.853 & 45.497 & 158.419 \\
\hline 94 & 0.411 & 1.542 & 3.225 & 9.642 & 30.440 & 134.458 \\
\hline 98 & 0.280 & 0.883 & 1.640 & 4.265 & 15.415 & 96.988 \\
\hline 100 & 0.214 & 0.553 & 0.848 & 1.576 & 7.902 & 78.254 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \multicolumn{1}{|c|}{\(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\)} \\
\hline 1.1 & 1247.5 \\
1.2 & 421.2 \\
1.3 & 241.9 \\
1.4 & 159.2 \\
1.5 & 111.9 \\
1.8 & 46.6 \\
\hline
\end{tabular}
\(t_{a b}(s)=1064\)



\section*{6RA7095-4DV62 and 6RA7095-4KV62}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\lg\) (\%) & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.8
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Tp}(\mathrm{s}) \\
\mathrm{X}=1.5
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
X=1.4
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
X=1.3
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
X=1.2
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Tp}(\mathrm{~s}) \\
\mathrm{X}=1.1
\end{gathered}
\] & & \\
\hline 0 & 8.620 & 23.520 & 35.400 & 56.300 & 94.920 & 164.420 & & \\
\hline 10 & 7.378 & 20.361 & 31.064 & 50.189 & 87.161 & 157.186 & & \\
\hline 20 & 6.169 & 17.114 & 26.540 & 43.681 & 78.348 & 148.563 & & \\
\hline 30 & 5.012 & 13.871 & 21.887 & 36.852 & 68.439 & 138.188 & & \\
\hline 40 & 3.922 & 10.752 & 17.198 & 29.797 & 57.475 & 125.541 & X & \(\mathrm{tan}_{\text {an }}(\mathrm{s})\) \\
\hline 50 & 2.910 & 7.889 & 12.663 & 22.639 & 45.671 & 109.901 & 1.1 & 274 \\
\hline 60 & 1.992 & 5.385 & 8.571 & 15.623 & 33.425 & 90.316 & 1.2 & 128 \\
\hline 70 & 1.197 & 3.281 & 5.173 & 9.344 & 21.245 & 65.970 & 1.3 & 65 \\
\hline 80 & 0.559 & 1.596 & 2.535 & 4.520 & 10.275 & 38.038 & 1.4 & 37 \\
\hline 90 & 0.107 & 0.428 & 0.709 & 1.302 & 2.929 & 11.665 & 1.5 & 23 \\
\hline 94 & 0.062 & 0.195 & 0.311 & 0.533 & 1.179 & 4.610 & 1.8 & 8 \\
\hline 98 & 0.022 & 0.070 & 0.112 & 0.192 & 0.421 & 1.613 & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\(\mathrm{t}_{\mathrm{ab}}(\mathrm{s})=493\)}} \\
\hline 100 & 0.002 & 0.008 & 0.012 & 0.021 & 0.043 & 0.115 & & \\
\hline
\end{tabular}



\section*{6RA7096-4GS22 and 6RA7096-4GV62}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
\operatorname{Tp}(s) \\
X=1,8
\end{gathered}
\] & \[
\begin{aligned}
& \operatorname{Tp}(s) \\
& X=1,5
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& X=1,4
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Tp}(\mathrm{~s}) \\
& X=1,3
\end{aligned}
\] & Tp (s)
\(\mathrm{X}=1,2\) & Tp (s) \\
\hline 0 & 39,000 & 75,480 & 96,440 & 125,460 & 167,360 & 231,500 \\
\hline 10 & 34,653 & 69,163 & 89,521 & 118,189 & 160,398 & 226,803 \\
\hline 20 & 30,048 & 62,221 & 81,784 & 109,887 & 152,267 & 221,147 \\
\hline 30 & 25,226 & 54,625 & 73,140 & 100,396 & 142,699 & 214,187 \\
\hline 40 & 20,218 & 46,366 & 63,494 & 89,496 & 131,303 & 205,444 \\
\hline 50 & 15,067 & 37,482 & 52,786 & 76,940 & 117,591 & 194,231 \\
\hline 60 & 9,838 & 28,083 & 41,038 & 62,485 & 100,872 & 179,350 \\
\hline 70 & 5,003 & 18,370 & 28,453 & 46,016 & 80,237 & 158,741 \\
\hline 80 & 2,073 & 8,650 & 15,482 & 27,901 & 54,722 & 128,525 \\
\hline 90 & 0,636 & 2,032 & 3,781 & 9,411 & 24,713 & 80,823 \\
\hline 94 & 0,341 & 0,930 & 1,630 & 3,521 & 12,433 & 54,030 \\
\hline 98 & 0,190 & 0,496 & 0,818 & 1,616 & 4,978 & 20,492 \\
\hline 100 & 0,114 & 0,279 & 0,412 & 0,663 & 1,251 & 3,722 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|}
\hline X & \(\mathrm{t}_{\mathrm{an}}(\mathrm{s})\) \\
\hline 1,1 & 753 \\
1,2 & 340 \\
1,3 & 209 \\
1,4 & 142 \\
1,5 & 102 \\
1,8 & 45 \\
\hline
\end{tabular}
\(t_{\mathrm{ab}}(\mathrm{s})=985\)



\subsection*{9.16 Speed-dependent current limitation}

The speed-dependent current limitation protects the commutator and brushes of the DC motor at high speeds.
The necessary parameter settings ( P 104 to P 107 ) can be taken from the motor rating plate.
The maximum operating speed of the motor (P108) must also be entered. This must be the same as the actual maximum operating speed.
The actual maximum operating speed is determined by:
- P143 with actual speed supplied by a pulse encoder,
- P741 with actual speed supplied by an analog tacho,
- P115 in operation without a tachometer.

Furthermore, the speed-dependent current limitation must be activated by setting P109 \(=1\) !

\section*{CAUTION}

Setting the speed-dependent current limitation function to the wrong value may cause excessive loading of the commutator and brushes, resulting in a drastic reduction in brush life!

\subsection*{9.16.1 Setting the speed-dependent current limitation for motors with commutation transition}

\(\square\) Motor rating plate data
- Permissible limit values
\[
\begin{aligned}
& \mathrm{n}_{\mathrm{E}}= \text { Point at which speed-dependent } \\
& \text { current limitation intervenes }
\end{aligned}
\]
\(n_{3}\) = Maximum operating speed
\(l_{10}=1.4 * l_{1}\)
\(\mathrm{I}_{20}=1.2 * \mathrm{I}_{2}\)
The current limitation curve is determined by \(\mathrm{n}_{1}, \mathrm{l}_{10}, \mathrm{n}_{2}\) and \(\mathrm{I}_{20}\).
Parameters:
P104 \(=\mathrm{n}_{1}\)
P105 \(=I_{1}\) (used by unit to calculate \(I_{10}\) )
P106 = \(n_{2}\)
P107 \(=\mathrm{I}_{2}\) (used by unit to calculate \(\mathrm{I}_{20}\) )
P108 \(=\mathrm{n}_{3}\) (defines speed normalization)
P109 = \(0 \ldots\) speed-dependent current limitation deactivated
1 ... speed-dependent current limitation activated
Example of a motor rating plate:


\subsection*{9.16.2 Setting of speed-dependent current limitation for motors without commutation transition}
Motor rating plate data
- Permissible limit values
\(n_{E}=\) Point at which speed-dependent current limitation intervenes
\(n_{3}=\) Maximum operating speed
\(\mathrm{I}_{20}=1.2 * \mathrm{I}_{2}\)

Example of a motor rating plate:


\subsection*{9.17 Automatic restart}

The "Automatic restart" function is controlled by the setting in parameter P086:
```

P086 = 0 No automatic restart
P086 = 0.1s to 2.0s "Automatic restart" in seconds

```

The purpose of the "Automatic restart" function is to prevent the SIMOREG converter from switching immediately to the "FAULT" state, but allow it to return to the "Run" state after the elimination of certain fault conditions such as brief failures in supply voltages, brief undervoltage or overvoltage, very high or very low line frequencies or in the case of an excessive deviation between the field current actual value and setpoint.

The appropriate fault message is output only if one of the following fault conditions prevails continuously for longer than the "Automatic restart time" set in P086 (maximum time delay within which fault condition must be eliminated for "Automatic restart"):

F001 Failure of electronics supply in operation (5U1,5W1)
F004 Armature supply phase failure (1U1, 1V1, 1W1)
F005 Fault in field circuit (field supply phase failure (3U1, 3W1) or
\(l_{\text {field act }}<50 \% l_{\text {field set }}\) )
F006 Undervoltage (armature or field supply)
F007 Overvoltage (armature or field supply)
F008 Line frequency (armature or field supply) less than 45 Hz
F009 Line frequency (armature or field supply) greater than 65 Hz
When one of the fault conditions associated with faults F003 to F006, F008, F009 is active and the automatic restart time delay is still running, the converter dwells in operating state 04.0 (with armature line voltage faults) or 05.0 (with field line voltage or field current faults).

Failures in the electronics supply lasting up to several 100 ms are bridged by the back-up power supply. With longer failures, the failure time is measured by measuring the voltage across one "discharge capacitor" and, if the failure has not lasted as long as the "Restart time" set in P086, the converter restarted again immediately provided that the corresponding control signals (e.g. "Switchon", "Operating enable") are still applied.
When the "Switch-on", "Shutdown" and "Crawl" functions are edge-triggered (see P445 = 1), the converter cannot be restarted automatically after the power supply backup has been used.

\subsection*{9.18 Field reversal (also refer to Section 8 "Function diagrams" Sheet G200)}

By reversing the current polarity in the field winding of the DC motor (i.e. through field reversal), a drive which incorporates a 6RA70 single-quadrant converter (with only a single armature conduction direction) will be able to operate in other quadrants of the speed/torque characteristic (reversal of rotational direction and braking). Two contactors in the field circuit \((1,2)\) are required to reverse the polarity of the field voltage.
The signal level of binectors B0260 ("Close field contactor 1") and B0261 ("Close field contactor 2") are defined in an internal operating sequence involving functions "Direction of rotation reversal using field reversal" and "Braking with field reversal". These binectors are used to control the two reversing contactors for changing the field polarity. A snubber circuit must be installed in the field circuit.
Level of B0260: 0 No contactor control
1 Control for one contactor for switching through positive field direction.
Level of B0261: 0 No contactor control
1 Control for one contactor for switching through negative field direction.

\subsection*{9.18.1 Direction of rotation reversal using field reversal}

This function is controlled by the binector selected in P580.
The "Direction of rotation reversal using field reversal" has a switch function and defines the field direction and, if a positive speed setpoint is applied, also the direction of rotation.

Level: \(0 \quad\) Positive field direction is selected
(" Close field contactor 1" (B0260) = 1," Close field contactor 2" ( B 0261 ) \(=0\) )

1
Negative field direction is selected
(" Close field contactor 1" (B0260) \(=0\)," Close field contactor 2" \((\mathrm{B} 0261)=1\) )
Changing the logic level of the binector controlling the "Direction of rotation reversal using field reversal" function initiates an internal sequence which brakes the motor and accelerates it in the opposite direction.
While the field reversal process is in progress, the logic level of the controlling binector is irrelevant, i.e. once the function has commenced, it is completed without interruption. Only on completion is another check made to establish whether the logic level of the controlling binector actually coincides with the currently selected field direction.

Note:
Only positive speed setpoints are meaningful.

\section*{Sequence of control operations when "Direction of rotation reversal using field reversal" is applied:}
1. Drive is rotating in rotational direction 1 (or is at standstill)
2. Logic level of binector controlling the "Direction of rotation reversal using field reversal" changes
3. Internal field reversal process takes place (only if a braking operation has not already been activated by pushbutton function "Braking with field reversal"):
3.1 Wait for armature current \(\mathrm{I}_{\mathrm{A}}=0\) and then armature pulse disable (drive then dwells in operating state \(\geq 01.4\) )
3.2 Disable field firing pulses (also causes K0268=0)
3.3 Wait for \(l_{\text {field }}\) (K0265) < lield min (P394)
3.4 Waiting time according to P092.i001 ( 0.0 to 10.0 s, factory setting 3.0 s )
3.5 Open current field contactor (B0260 = 0 or B0261 = 0)
3.6 Waiting time according to P092.i002 ( 0,0 to \(10,0 \mathrm{~s}\), factory setting 0,2 s)
3.7 Close new field contactor (B0261 = 1 or \(\mathrm{B} 0260=1\) )
3.8 Reverse polarity of actual speed value (except when P083 = 3 ... EMF as actual speed value)
3.9 Waiting time according to P092.i003 ( 0,0 to \(10,0 \mathrm{~s}\), factory setting \(0,1 \mathrm{~s}\) )
3.10 Enable field firing pulses
3.11 Wait for \(l_{\text {field }}(\mathrm{K} 0265)>\) Field set \((\mathrm{K} 0268)^{*}\) P398/100\%
3.12 Waiting time according to P092.i004 ( 0,0 to \(10,0 \mathrm{~s}\), factory setting \(3,0 \mathrm{~s}\) )
3.13 Enable armature firing pulses
(It is possible to exit operating mode o1.4)
4. Drive brakes and then accelerates in rotational direction 2 (or remains at standstill)

Note:
If the actual speed value polarity is reversed internally as a result of field reversal, P083 (but not P083=3) is supplied with inverted signal values (see Section 8, Sheet G152). When the ramp-function generator is in use, it is advisable to set P228=0 (no speed controller setpoint filtering). Otherwise, initial braking along the current limit may occur in connection with the actual speed value polarity reversal and setting of the ramp-function generator output (to (reversed) actual speed value (or to value set in P639) in operating state 01.4).

\subsection*{9.18.2 Braking with field reversal}

This function is controlled by the binector selected in P581.
"Braking with field reversal" has a pushbutton function.
If the logic level of the binector controlling the "Braking with field reversal" function \(=1\) (for at least 30 ms ) and the converter is in an operating state \(\leq 05\) (line contactor closed), an internal process is activated for braking the drive down to \(\mathrm{n}<\eta_{\text {min }}\) The original field direction is then selected.
The motor cannot accelerate again in the original rotational direction until the braking command has been cancelled (binector level \(=0\) ) and an acknowledgement given with "Shutdown" and "Switch-on".

\section*{Sequence of control operations when "Braking with field reversal" is applied:}
1. Drive rotates in direction 1
2. The binector controlling the "Braking with field reversal" function \(=1\) for more than 30 ms
3. Internal field reversal process takes place (only if the line contactor is closed (in operating state of \(\leq 05\) ) and the drive is not already in braking mode. Braking is detected by a negative internal actual speed (resulting from reversal of the real actual speed polarity in the negative field direction):
3.1 Wait for armature current \(\mathrm{I}_{\mathrm{A}}=0\) and then armature pulse disable (drive then dwells in operating state \(\geq 01.4\) )
3.2 Disable field firing pulses (also causes K0268=0)
3.3 Wait for \(l_{\text {field }}\) (K0265) < field min (P394) \(^{\text {(PO }}\)
3.4 Waiting time according to P092.i001 ( 0,0 to \(10,0 \mathrm{~s}\), factory setting \(3,0 \mathrm{~s}\) )
3.5 Open current field contactor (B0260 = 0 or B0261 = 0)
3.6 Waiting time according to P092.i002 ( 0,0 to \(10,0 \mathrm{~s}\), factory setting \(0,2 \mathrm{~s}\) )
3.7 Close new field contactor (B0261 = 1 or \(\mathrm{B} 0260=1\) )
3.8 Reverse polarity of actual speed value (except when P083 = 3 ... EMF as actual speed value)
3.9 Waiting time according to P092.i003 ( 0,0 to \(10,0 \mathrm{~s}\), factory setting \(0,1 \mathrm{~s}\) )
3.10 Enable field firing pulses
3.11 Wait for \(l_{\text {field }}(K 0265)>l_{\text {field set }}(K 0268) *\) P398/100\%
3.12 Waiting time according to P092.i004 ( 0,0 to \(10,0 \mathrm{~s}\), factory setting \(3,0 \mathrm{~s}\) )
3.13 Enable armature firing pulses (It is possible to exit operating mode o1.4)
4. Internal sequence for braking the drive:
4.1 Internal setting of \(n_{\text {set }}=0\) at the ramp function generator input, the drive brakes
4.2 Wait for \(n<\eta_{\text {min }}\) (P370)
4.3 Wait for armature current \(\mathrm{I}_{\mathrm{A}}=0\) and thus armature pulse disable (drive then switches to operating state 07.2)
4.4 Wait for cancellation of braking command through binector level \(=0\) (as long as level \(=1\), drive is held in operating state o7.2)
5. Internal sequence for switching over to original field direction (only if the current field direction is not the same as the direction requested by the "Direction of rotation reversal using field reversal" function):
5.1 Wait for armature current \(\mathrm{I}_{\mathrm{A}}=0\) and then armature pulse disable
(drive then dwells in operating state \(\geq 01.4\) )
5.2 Disable field firing pulses (also causes K0268=0)
5.3 Wait for \(I_{\text {field }}\) (K0265) < field min \(^{\text {(P394) }}\)
5.4 Waiting time according to P092.i001 ( 0,0 to \(10,0 \mathrm{~s}\), factory setting \(3,0 \mathrm{~s}\) )
5.5 Open current field contactor (B0260 = 0 or B0261 = 0)
5.6 Waiting time according to P092.i002 ( 0,0 to \(10,0 \mathrm{~s}\), factory setting \(0,2 \mathrm{~s}\) )
5.7 Close new field contactor (B0261 = 1 or \(\mathrm{B} 0260=1\) )
5.8 Reverse polarity of actual speed value (except when P083 = 3 ... EMF as actual speed value)
5.9 Waiting time according to P092.i003 ( 0,0 to \(10,0 \mathrm{~s}\), factory setting \(0,1 \mathrm{~s}\) )
5.10 Enable field firing pulses
5.11 Wait for \(l_{\text {field }}(\mathrm{K} 0265)>\) lield set \((\mathrm{K} 0268)^{*}\) P398/100\%
5.12 Waiting time according to P092.i004 ( 0,0 to \(10,0 \mathrm{~s}\), factory setting \(3,0 \mathrm{~s}\) )
5.13 Armature firing pulses are possible again
6. Drive is in operating state o7.2

Drive can be accelerated in original rotational direction after acknowledgement by an external "Shutdown" and "Switch-on" command.

Please also read the Note at the end of the section 9.18.1.

Delay times for field reversal (parameter P092)


Bild 9.18.1

\subsection*{9.19 Status description of some bits of status word ZSW1}


\section*{10 Faults and alarms}

When a fault or alarm message is activated, it is displayed both on the simple operator control panel (PMU) and on the OP1S user-friendly operator control panel (see also Section 7.2, Operator control panels).
An alarm stops being displayed immediately the cause of the alarm signal has been eliminated. A fault message must be cancelled by pressing the P key on the PMU or Reset key on the OP1S (panel must be in "Operational display" status) as soon as the cause has been eliminated.

\section*{NOTE}

Setting parameters when fault or alarm message is active

\section*{On the PMU:}

You can shift an active fault message or alarm "to the background" by pressing the \(P\) key and Higher key simultaneously on the PMU.
If you do not press any key on the PMU within a 30 s period, the fault message or active alarm in the background is automatically displayed again.
You can fetch a message back to the foreground earlier by pressing the \(P\) key and Lower key simultaneously on the PMU when the parameter number level is selected.
On the OP1S:
You can set parameters normally even if a fault message or alarm is active.

\subsection*{10.1 Fault messages}

\subsection*{10.1.1 General information about faults}

Fault message display:
On the PMU: F (fault) and a three-digit number. The red LED (Fault) lights up.
On the OP1S: On bottom line of operational display: The red LED (Fault) lights up.
Only one current fault message can be displayed at a time, i.e. other simultaneously active faults are ignored.

Many fault messages (see List of Fault Messages) can only be active in certain operating states.

The system responses to a fault are as follows:
- The armature current is reduced, the firing pulses are disabled and the SIMOREG unit switches to operating state 011.0 (fault)
- Fault message is displayed on the operator panel (PMU, OP1S)
- B0106 ( = status word 1, bit 3) is set and B0107 cancelled (see also alarm bits for special faults such as undervoltage, overtemperature, external faults, etc.)
- Parameters
r047 (fault diagnostic memory)
r049 (fault time)
r947 (fault memory, see also r947 in Section 11, Parameter List)
r949 (fault value)
P952 (number of faults)
are updated
A text is also displayed for each individual fault in parameter r951 (fault text list). These texts can, for example, be displayed on the OP1S.

If a fault is not acknowledged before the electronics supply voltage is switched off, then fault message F040 will be displayed when the supply is next switched on.

\subsection*{10.1.2 List of fault messages}

\section*{NOTE}

\section*{Further information about the causes of fault messages}

When a fault message is activated, values providing more information about the fault cause are stored in parameter r047. Where the values can be interpreted by the user, they are included in the following list of fault messages.
The value in r047.001 is referred to as the "fault value". This is also stored in r949 which also contains the fault values belonging to older fault messages. The values in r047 are overwritten when the next fault message occurs.
Values for r047 which are not included in the list below can help a SIEMENS specialist to locate a fault cause. For this reason, all indices of parameter r047 should be read out whenever a fault message occurs, even if the meaning of the individual indices of parameter r047 is not specified for every fault message listed below.

Please note: Before you contact SIEMENS with any query regarding a fault message, please make a note of the contents of all indices of parameter r047.
\begin{tabular}{|c|c|c|}
\hline Fault & \multicolumn{2}{|c|}{ Description } \\
No. & \begin{tabular}{c} 
Cause as a function of fault value \\
(r047.001, r949.001 or r949.009 with acknowledged error)
\end{tabular} & Further information (r047.002 to r047.016) \\
\hline \hline
\end{tabular}

\subsection*{10.1.2.1 Supply faults}




10.1.2.2 Interface error
\begin{tabular}{|c|c|}
\hline F011 & \begin{tabular}{l}
Telegram failure at GSST1 \\
when \(P 780=2\) : \\
USS telegram failure at G-SST1 \\
(active from the first receipt of a valid protocol in all operating states) \\
After the receipt of the first valid protocol, no further telegrams have been received within the time period set in parameter P787. \\
Possible fault causes \\
- Cable break \\
- Error in USS master
\end{tabular} \\
\hline F012 & \begin{tabular}{l}
Telegram failure at GSST2 \\
when \(\mathrm{P} 790=2\) : \\
USS telegram failure at G-SST2 \\
(active from the first receipt of a valid protocol in all operating states) \\
After the receipt of the first valid protocol, no further telegrams have been received within the time period set in parameter P797. \\
Possible fault causes \\
- Cable break \\
- Error in USS master \\
when \(\underline{P 790}=4\) or 5 and \(P 798=32\) or 33 : \\
Peer-to-peer telegram failure at G-SST2 \\
(active in operating states of \(\leq 06\) ) \\
After the receipt of the first valid protocol, no further telegrams have been received within the time period set in parameter P797. \\
Possible fault causes \\
- Interruption in connecting cable \\
- EMC interference on connecting cable \\
- P797 is set too low
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Fault \\
No.
\end{tabular} & Description \\
\hline F013 & \begin{tabular}{l}
Telegram failure at GSST3 \\
 \\
USS telegram failure to G-SST3 \\
(active from the first receipt of a valid protocol in all operating states) \\
After the receipt of the first valid protocol, no further telegrams have been received within the time period set in parameter P807. \\
Possible fault causes \\
- Cable break \\
- Error in USS master \\
when \(\underline{P 800=4 \text { or } 5: ~}\) \\
Peer-to-peer telegram failure at G-SST3 \\
(active in operating states of \(\leq 06\) ) \\
After the receipt of the first valid protocol, no further telegrams have been received within the time period set in parameter P807. \\
Possible fault causes \\
- Interruption in connecting cable \\
- EMC interference on connecting cable \\
- P807 is set too low
\end{tabular} \\
\hline F014 & \begin{tabular}{l}
Telegram failure at paralleling interface \\
(active when \(\underline{U 800}=1\) or 2 from the first receipt of a valid protocol in all operating states) \\
After the receipt of the first valid protocol, no further telegrams have been received within the time period set in parameter U807. \\
Possible fault causes \\
- Interruption in connecting cable \\
- EMC interference on connecting cable \\
- U807 is set too low
\end{tabular} \\
\hline \multirow[t]{2}{*}{F015} & \begin{tabular}{l}
Telegram failure on one SIMOLINK board \\
(active when \(\underline{\mathrm{V} 41}>0\) as soon as the first valid telegram is received) \\
After receipt of one valid telegram, no further valid telegrams have arrived within the period set in parameter U741. \\
Possible fault causes \\
- Break in connecting cable \\
- Parameter setting change during telegram exchange (for parameters see Section 11 "Configuration of SIMOLINK board) \\
- U741 is set to low \\
Fault value:
\end{tabular} \\
\hline & \begin{tabular}{l}
1 Telegram failure on \(1^{\text {st }}\) SLB \\
2 Reserved
\end{tabular} \\
\hline \multirow[t]{2}{*}{F016} & \begin{tabular}{l}
Hardware fault on expansion board EB1 \\
Fault value:
\end{tabular} \\
\hline & \[
\begin{array}{|ll}
\hline 1 & \text { Fault on first EB1 } \\
2 & \text { Fault on second EB1 }
\end{array}
\] \\
\hline \multirow[t]{2}{*}{F017} & \begin{tabular}{l}
Hardware fault on expansion board EB2 \\
Fault value:
\end{tabular} \\
\hline & \[
\begin{array}{ll}
1 & \text { Fault on first EB2 } \\
2 & \text { Fault on second EB2 }
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Fault No.} & \multicolumn{2}{|c|}{Description} \\
\hline & Cause as a function of fault value (r047.001, r949.001 or r949.009 with acknowledged error) & Further information (r047.002 to r047.016) \\
\hline \multirow[t]{3}{*}{F018} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Short circuit or overloading of binary outputs \\
(active in all operating states) \\
Possible fault causes \\
- Short circuit or overload at terminals \(46,48,50\) or 52 and 26 or 34 \\
Fault value: \\
r047 Index 002 to 016:
\end{tabular}} \\
\hline & 1 Short circuit or overload at binary outputs & \begin{tabular}{l}
i002 Bit \(8=1\) : Overload at terminal 46 \\
Bit \(9=1\) : \(\quad\) Overload at terminal 48 \\
Bit \(10=1\) : Overload at terminal 50 \\
Bit \(11=1\) : Overload at terminal 52 \\
Bit \(12=1\) : Overload at terminal 26 ( 15 V output) \\
Bit 13 =1: Overload at terminal 34, 44 and/or 210 (24 V output)
\end{tabular} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
NOTICE \\
This monitoring function is deactivated in the delivery state. It can be activated via parameter P820.
\end{tabular}} \\
\hline
\end{tabular}

\subsection*{10.1.2.3 External faults}
\begin{tabular}{|c|c|}
\hline F019 & \begin{tabular}{l}
Fault message from free function block FB286 (active in all operating states) \\
Fault value: \\
1 the binector wired via parameter U100 Index. 005 is in the state log." 1" \\
2 the binector wired via parameter U100 Index. 006 is in the state log." 1" \\
3 the binector wired via parameter U100 Index. 007 is in the state log." 1" \\
4 the binector wired via parameter U100 Index. 008 is in the state log." 1"
\end{tabular} \\
\hline F020 & \begin{tabular}{l}
Fault message from free function block FB287 \\
(active in all operating states) \\
Fault value: \\
1 the binector wired via parameter U101 Index. 005 is in the state log." 1" \\
2 the binector wired via parameter U101 Index. 006 is in the state log." 1" \\
3 the binector wired via parameter U101 Index. 007 is in the state log." 1" \\
4 the binector wired via parameter U101 Index. 008 is in the state log." 1"
\end{tabular} \\
\hline F021 & \begin{tabular}{l}
External fault 1 \\
(active in all operating states) \\
Bit 15 in control word 1 was in the log. " 0 " state for longer than the time set in P360 index 001
\end{tabular} \\
\hline F022 & \begin{tabular}{l}
External fault 2 \\
(active in all operating states) \\
Bit 26 in control word 2 was in the log. "0" state for longer than the time set in P360 index 002
\end{tabular} \\
\hline F023 & \begin{tabular}{l}
Fault message from free function block FB2 \\
(active in all operating states) \\
Fault value: \\
1 the binector wired via parameter U100 Index. 001 is in the state log." 1" \\
2 the binector wired via parameter U100 Index. 002 is in the state log." 1" \\
3 the binector wired via parameter U100 Index. 003 is in the state log." 1" \\
4 the binector wired via parameter U100 Index. 004 is in the state log." 1"
\end{tabular} \\
\hline F024 & \begin{tabular}{l}
Fault message from free function block FB3 \\
(active in all operating states) \\
Fault value: \\
1 the binector wired via parameter U101 Index. 001 is in the state log." 1" \\
2 the binector wired via parameter U101 Index. 002 is in the state log." 1" \\
3 the binector wired via parameter U101 Index. 003 is in the state log." 1" \\
4 the binector wired via parameter U101 Index. 004 is in the state log." 1"
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Fault & \multicolumn{2}{|c|}{ Description } \\
No. & Cause as a function of fault value & Further information (r047.002 to r047.016) \\
& (r047.001, r949.001 or r949.009 with acknowledged error) & \\
\hline \hline
\end{tabular}

\subsection*{10.1.2.4 Fault messages from motor sensors}
\begin{tabular}{|c|c|}
\hline F025 & \begin{tabular}{l}
Brush length too short \\
(active in operating states of \(\leq 03\) ) \\
When parameter P495=2 (binary sensing of brush length), fault message at log." 0" signal (longer than 10s) at terminal 211 \\
Possible fault causes \\
- Encoder for brush length has responded \\
- Open circuit in encoder cable
\end{tabular} \\
\hline F026 & \begin{tabular}{l}
Bearings in bad condition \\
(active in operating states of \(\leq 06\) ) \\
When parameter P496=2 (bearing condition sensing) fault message at log. "1" signal (longer than 2 s ) at terminal 212 \\
Possible fault causes \\
- Encoder for bearing condition has responded
\end{tabular} \\
\hline F027 & \begin{tabular}{l}
Air-flow monitoring of motor fan \\
(active in operating states of <06) \\
When parameter P497=2 (air-flow monitoring), fault message at log " 0 " signal (longer than 40s) at terminal 213 \\
Possible fault causes \\
- Encoder for fan monitoring has responded \\
- Open circuit in encoder cable
\end{tabular} \\
\hline F028 & \begin{tabular}{l}
Motor overtemperature \\
(active in operating states of \(\leq 06\) ) \\
When parameter P498=2 (thermostat connected), fault message at log. " 0 " signal (longer than 10s) at terminal 214 \\
Possible fault causes \\
- Thermostat for monitoring motor temperature has responded \\
- Open circuit in encoder cable
\end{tabular} \\
\hline F029 & \begin{tabular}{l}
Motor overtemperature \\
(active in all operating states) \\
Select via \(\quad \mathrm{P} 493=2\) or 3 (temperature sensor at terminals \(22 / 23\) ) or
\[
\text { P494=2 or } 3 \text { (temperature sensor at terminals } 204 \text { / 205) }
\] \\
When parameter P490.01=1 (KTY84 at terminals \(22 / 23\) ) or P490.02=1 (KTY84 at terminals 204 / 205): \\
The fault message is activated if the motor temperature reaches or exceeds the value set in parameter P492. \\
When parameter P490.01=2, 3, 4 or 5 (PTC thermistor at terminals \(22 / 23\) ) or P490.02=2,3,4 or 5 (PTC thermistor at terminals 204/ 205): \\
The fault message is activated if the motor temperature reaches or exceeds the response value of the selected PTC thermistor. \\
Fault value:
\end{tabular} \\
\hline & \begin{tabular}{ll}
\hline 1 & Fault activation through temperature sensor at terminals 22 / 23 \\
2 & Fault activation through temperature sensor at terminals 204 / 205
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.1.2.5 Drive faults}

\section*{NOTICE}

The monitoring functions F031, F035, F036, and F037 are deactivated in the delivery state.
They can be activated via parameter P820.
F030 \(\quad\) Pulse blocked because armature current actual value too high (active in all operating states)

Armature actual value la at end stop
Possible causes of error:
- Power dips during regenerative operation
- Current control loop not optimized
\begin{tabular}{|c|l|l|}
\hline Fault & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Cause as a function of fault value \\
No. \\
(r047.001, r949.001 or r949.009 with acknowledged error)
\end{tabular}} & Further information (r047.002 to r047.016) \\
\hline \hline F031 & \begin{tabular}{l} 
Speed controller monitoring \\
(active in operating states of,-- I, II) \\
The monitor responds when the difference between the connectors selected in P590 and P591 (factory setting: Setpoint/actual \\
value difference of speed controller) exceeds the limit set in parameter P388 for longer than the time set in parameter P390. \\
Possible fault causes \\
- Open control loop \\
- Controller not optimized \\
- P590 or P591 is not correctly parameterized
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.1.2.6 External faults}
\begin{tabular}{|c|c|}
\hline F033 & \begin{tabular}{l}
Fault message from free function block FB4 \\
(active in all operating states) \\
Fault value: \\
1 the binector wired via parameter U102 Index. 001 is in the state log." 1" \\
2 the binector wired via parameter U102 Index. 002 is in the state log." 1" \\
3 the binector wired via parameter U102 Index. 003 is in the state log." 1" \\
4 the binector wired via parameter U102 Index. 004 is in the state log." 1"
\end{tabular} \\
\hline F034 & \begin{tabular}{l}
Fault message from free function block FB5 \\
(active in all operating states) \\
Fault value: \\
1 the binector wired via parameter U103 Index. 001 is in the state log." 1" \\
2 the binector wired via parameter U103 Index. 002 is in the state log." 1" \\
3 the binector wired via parameter U103 Index. 003 is in the state log." 1" \\
4 the binector wired via parameter U103 Index. 004 is in the state log." 1"
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.1.2.7 Drive faults}
\begin{tabular}{|c|c|}
\hline F035 & \begin{tabular}{l}
Drive is blocked \\
(active in operating states of \(--, \mathrm{I}, \mathrm{II}\) ) \\
This monitoring function responds if the following conditions are fulfilled for longer than the period set in parameter P355: \\
- Positive or negative torque or armature current limit \\
- The armature current is higher than \(1 \%\) of the converter rated armature DC current \\
- The actual speed is less than \(0.4 \%\) of maximum speed \\
Possible fault causes \\
- Drive is blocked
\end{tabular} \\
\hline F036 & \begin{tabular}{l}
No armature current is flowing \\
(active in operating states of - - , I, II) \\
This monitoring function responds if the armature firing angle is at the rectifier stability limit for more than 500 ms and the armature current is less than \(1 \%\) of the converter rated armature DC current. \\
Possible fault causes \\
- Armature circuit is open (e.g. DC fuses have blown, open circuit, etc.) \\
- Rectifier stability limit \(\alpha_{G}\) (P150) is incorrectly set \\
- Drive is operating at \(\alpha_{G}\) limit (e.g. due to supply undervoltag) \\
- EMF is too high because maximum speed setting is too high, refer to P083, P115, P143, P741) \\
- EMF is too high because field weakening is not selected (refer to P082) \\
- EMF is too high because field current is set too high (refer to P102) \\
- EMF is too high because transition speed for field weakening is set too high (refer to P101) ? ?
\end{tabular} \\
\hline F037 & \begin{tabular}{l}
\(\mathbf{I}_{\mathbf{t}}\) motor monitor has responded \\
(active in operating states of \(--, \mathrm{I}, \mathrm{II}\) ) \\
This monitoring function responds when an \(I^{2} t\) value is reached which corresponds to the final temperature at \(110 \%\) of the rated motor armature current. \\
Possible fault causes \\
- Parameter P114 is incorrectly set \\
- Drive has been operating for too long at \(>110 \%\) of rated motor armature current
\end{tabular} \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline Fault No. & Description \\
\hline F046 & \begin{tabular}{l}
Analog select input for main setpoint (terminals 4 and 5) faulty \\
(active in operating states of \(\leq 06\) ) \\
This fault message is activated when \(\mathrm{P} 700=2\) (current input 4 to 20 mA ) and an input current of less than 2 mA is flowing. \\
Possible fault causes \\
- Open circuit in supply cable \\
- P700 is incorrectly set
\end{tabular} \\
\hline F047 & \begin{tabular}{l}
Analog select input 1 (terminals 6 and 7) is faulty \\
(active in operating states of \(\leq 06\) ) \\
This fault message is activated when \(\mathrm{P} 710=2\) (current input 4 to 20 mA ) and an input current of less than 2 mA is flowing. \\
Possible fault causes \\
- Open circuit in supply cable \\
- P710 is incorrectly set
\end{tabular} \\
\hline F048 & \begin{tabular}{l}
Fault in measuring channel for digital speed sensing using pulse encoder (active in all operating states) \\
1. Disturbances on encoder cables: \\
Faults on the encoder cables (transitions to 0 with a 1 signal or to 1 with a 0 signal) are signalled as a rotational direction change by the evaluation circuit. Frequent changes in rotational direction can occur only at speeds around 0. \\
The fault message is activated if 10 consecutive pulse encoder signal evaluations identify "direction of rotation change" at a speed of \(\geq 48 \mathrm{rev} / \mathrm{min}\) and an EMF \(>\) threshold (see below). \\
2. Pulse encoder defective: \\
The fault message is activated if, at an EMF > threshold (see below) 10 consecutive pulse encoder signal evaluations identify "implausible charracteristics" of these signals (i.e. frequent rotational direction changes, edges too close together, failureof an encoder cable or short circuit between two encoder cables). \\
Possible fault causes \\
- EMC-related interference on a pulse encoder signal (terminals 28 to 31) \\
- Pulse encoder defective \\
- Interruption in an encoder cable \\
- Short circuit between an encoder cable and the supply voltage or another encoder cable \\
- P110 or P111 is incorrectly set (resulting in incorrectly calculation of EMF) \\
Note: \\
When the speed encoder is operating correctly, signal sequences, which are characteristic of a faulty pulse encoder or disturbances on the pulse encoder cables, may occur continuously at the input terminals (e.g. continuous changes in rotational direction or short pulse intervals) at about 0 speed, e.g. as the result of slight oscillation around a bright/dark transition on the speed encoder disk). \\
For this reason, fault F048 is not activuated until the EMF \(>10 \%\) of \(P 078.001 * \frac{3 * \sqrt{2}}{\pi}\). \\
Fault value:
\end{tabular} \\
\hline & \begin{tabular}{l}
1 Disturbances on encoder cables \\
2 Defective pulse encoder
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.1.2.8 Start-up faults}

F050 \(\quad\) Optimization run not possible
(active in all operating states)
A fault has occurred during an optimization run.

\section*{NOTE}

The contents of r047, Index 002 to 016, can provide specialists with more detailed information about fault causes. For this reason, please read out and document all the indices associated with this fault and pass them on when you contact Siemens for help.

\begin{tabular}{|c|c|}
\hline Fault No. & Description \\
\hline \multirow[t]{7}{*}{} & \begin{tabular}{l}
11 A lower field current limit of \(\geq 50 \%\) of P 102 ( \(\mathrm{I}_{\mathrm{F}, \text { motor }}\) ) is applied (for this reason, it is not possible to plot a minimum of 9 field weakening measuring points) \\
Possible cause: \\
- P103 \(\geq 50 \%\) of P102 \\
Check P614!
\end{tabular} \\
\hline & \begin{tabular}{l}
12 The drive has reached the positive torque limit even though the applied field current setpoint is still \(\geq 50 \%\) of P 102 (IF,motor) \\
Possible cause: \\
- Armature current is very "unsteady", e.g. due to high speed controller P gain setting in P 225 (on drive with high integral-action time). In this case, setting a lower actual speed filtering value in P200 and execution of another speed controller optimization run (P051=26) may help. \\
- Check torque limits
\end{tabular} \\
\hline & \begin{tabular}{l}
13 The drive has reached the positive armature current limit even through the applied field current setpoint is still \(\geq 50 \%\) of P102 (IF,motor) \\
Possible cause: \\
- Armature current is very "unsteady", e.g. due to high speed controller \(P\) gain setting in P225 (on drive with high integral-action time). In this case, setting a lower actual speed filtering value in P200 and execution of another speed controller optimization run (P051=26) may help \\
- Check armature current limits
\end{tabular} \\
\hline & \begin{tabular}{l}
14 The speed has changed by more than \(12.5 \%\) at a constant speed setpoint even through the applied field current setpoint is still \(\geq 50 \%\) of P102 ( F , motor) \\
Possible cause: as for fault value 12
\end{tabular} \\
\hline & 15 The EMF setpoint is too small to plot a field characteristic
\[
\begin{aligned}
& E M F_{\text {set }}=U_{A}-A_{A}, \text { motor } * R_{A}=P 101-P 100 * P 110<10 \% \text { of } 1.35 * P 078 . i 001 \\
& \text { (e.g. P078.i001 }=400 \mathrm{~V} \ldots \text { minimum } E M F_{\text {set }}=54 \mathrm{~V} \text { ) }
\end{aligned}
\] \\
\hline & 16 Field weakening operation is not allowed in operation without a tachometer (P083=3) \\
\hline & \begin{tabular}{l}
17 The field current controller cannot be optimized because the field circuit time constant cannot be determined (actual field current does not decay after switch-off to below \(0.95^{*}\) initial value within approximately 1 s or to below \(0.8^{*} 0.95^{*}\) initial values within approximately 2 s) \\
Possible cause: \\
- Setting in P103 is too high \\
- Field circuit inductance is too high \\
- Fault in actual field current sensing circuit (gating board or A7001 electronics board defective) \\
- Ratio r073.02 / P102 is too high (change P076.02 if necessary)
\end{tabular} \\
\hline
\end{tabular}

18 Field weakening range is too wide, i.e. during power-up (at full field) to a speed setpoint of \(+10 \% \mathrm{n}_{\max }\), the \(|\mathrm{EMK}|\) is \(>\) \(77 \%\) of setpoint EMF (P101 - P100 * P110)
Possible cause:
- Maximum speed setting is incorrect
- Pulse encoder parameters are incorrect (P140 to P143)
- Parameters for tachometer adaptation are incorrect (P741)
- Setpoint EMF is not correct (P101, P100, P110)
- An excessively high load torque (in positive or negative direction, e.g. a suspended load) causes the drive to rotate, one of the armature current or torque limits may be parameterized too low

19 A steady-state actual speed of \(+10 \%,+20 \%,+30 \% \ldots\) or \(+100 \%\) of the maximum speed cannot be reached within 3 minutes (or maximum value of the three set acceleration times) in speed-controlled operation (the speed setpoint/actual value difference averaged over 90 firing cycles must equal \(<0.1 \% \mathrm{n}_{\max }\) for a specific time period)

\section*{Possible cause:}
- Acceleration time is set too low (P303, P307, P311)
- Drive is blocked
- An excessively high load torque (in positive or negative direction, e.g. a suspended load) causes the drive to rotate, one of the armature current or torque limits may be parameterized too low
- Poor speed controller setting (P225, P226, P228) or speed controller is parameterized as pure P controller or with droop
- A band elimination filter (P201, P202 or P203, P204) is active
- Command "Ramp-function generator enable" \(=0\) or " Ramp-function generator STOP" \(=1\) is applied
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Fault \\
No.
\end{tabular}} & \multicolumn{3}{|c|}{Description} \\
\hline & \multicolumn{2}{|r|}{Cause as a function of fault value (r047.001, r949.001 or r949.009 with acknowledged error)} & Further information (r047 \\
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|l|}{\begin{tabular}{l}
20 Current limit is too low \\
(With speed controller optimization run: Less than \(30 \%\) or \(45 \%\) of P 100 ( A ,motor) + the armature current required for zero speed, \\
With optimization run for friction moment and moment of inertia compensation: Less than \(20 \%\) of \(\mathrm{P} 100\left(\mathrm{I}_{\mathrm{A}}\right.\), motor \()+\) the armature current required for a steady-state speed corresponding to \(10 \%\) of maximum speed)
\end{tabular}} \\
\hline & \multicolumn{3}{|l|}{\begin{tabular}{l}
21 Field weakening range is too wide ( \(\mathrm{n}_{\mathrm{act}}<+7 \% \mathrm{n}_{\max }\) produces \(|\mathrm{EMF}|>54 \%\) setpoint EMF) (setpoint EMF=K289= P101 - P100*P110) \\
Possible cause: \\
- Maximum speed setting is incorrect \\
- Pulse encoder parameters are incorrect (P140 to P143) \\
- Parameters for tachometer adaptation are incorrect (P741) \\
- Setpoint EMF is not correct (P101, P100, P110) \\
- Caution: \\
Even a high absolute negative actual speed value can produce an | EMF | of \(>54 \%\) setpoint EMF
\end{tabular}} \\
\hline
\end{tabular}

22 With speed controller optimization run:
With an acceleration current equaling \(20 \%\) or \(30 \%\) of P 100 ( I , motor) + armature current required for zero speed or
With optimization run for friction moment and moment of inertia compensation:
With an acceleration current equaling the current required to achieve a steady-state speed of \(10 \%\) of maximum speed + \(20 \%\) of P100 ( 1 A , motor), the maximum speed cannot be reached within \(45 \mathrm{~s}+7 \%\)
Possible cause:
- Centrifugal mass is too large
- Drive is blocked, heavily speed-dependent or excessively high load torque
- "Active" load is attempting to maintain a certain speed

Possible remedy:
- Increase P100 while the optimization run is in progress in order to raise the applied acceleration current during optimization (during the speed controller optimization run, a maximum of \(45 \%\) of \(\mathrm{I}_{\mathrm{A}}\), motor (+ armature current for zero speed) is applied as the armature current setpoint, \(\mathrm{I}_{\mathrm{A}, \text { motor }}\) (P100) can thus be increased to 2.2 times the value at maximum without exceeding \(100 \%\) I A, motor during optimization)

23 With speed controller optimization run:
With an acceleration current equaling \(20 \%\) or \(30 \%\) of P100 (I A, motor) + armature current required for zero speed or With optimization run for friction moment and moment of inertia compensation:
With an acceleration current equalling the current required to achieve a steady-state speed of \(10 \%\) of maximum speed + \(20 \%\) of P100 (I A, motor), the maximum speed or \(100 \%\) of setpoint EMF cannot be reached within \(90 \mathrm{~s}+13 \%\)
Possible cause:
- Flywheel mass is too large
- Drive is blocked, heavily speed-dependent or excessively high load torque
- "Active" load is attempting to maintain a certain speed

Possible remedy:
- Increase P100 while the optimization run is in progress in order to raise the applied acceleration current during optimization (during the speed controller optimization run, a maximum of \(45 \%\) of \(\mathrm{I}_{\mathrm{A}}\), motor (+ armature current for zero speed) is applied as the armature current setpoint, \(I_{A, m o t o r ~(P 100) ~ c a n ~ t h u s ~ b e ~ i n c r e a s e d ~ t o ~} 2.2\) times the value at maximum without exceeding \(100 \%\) I A, motor during optimization)

24 With speed controller optimization run:
The actual speed does not drop to below \(+2 \%\) of maximum speed or to below the speed threshold \(n_{\text {min }}\) set in P370 within 2 minutes
With optimization run for field weakening:
The actual speed does not drop to below \(+2 \%\) of maximum speed or to below the speed threshold \(\mathrm{n}_{\text {min }}\) set in P370 within 10 minutes
With optimization run for friction moment and moment of inertia compensation:
The actual speed does not drop to below \(+2 \%\) of maximum speed or to below the speed threshold \(n_{\text {min }}\) set in P370 within 11 or 2 minutes
Possible cause:
- Single-quadrant drive coasts to a standstill too slowly
\begin{tabular}{|c|c|c|c|}
\hline Fault & \multicolumn{1}{c|}{\begin{tabular}{c} 
Cause as a function of fault value
\end{tabular}} & \begin{tabular}{c} 
Description \\
(r047.001, r949.001 or r949.009 with acknowledged error)
\end{tabular} & Further information (r047.002 to r047.016)
\end{tabular}

26 Load torque too high ( \(n_{\text {set }}=0 \% n_{\max }\) results in \(n_{\text {ict }} \geq 40 \% n_{\max }\) ) (actual speed value is averaged over 90 firing cycles, speed monitoring at \(\geq 40 \% n_{\text {max }}\) does not start for 1 s after application of speed setpoint of \(n_{\text {set }}=0\) )
Possible cause:
- An excessively high load torque (in a positive or negative direction, e.g. suspended load) causes the drive to rotate (the speed controller parameters are parameterized according to the factory setting during this run)
- One of the armature current or torque limits is parameterized too low (the motor field may not be reaching full field strength fast enough with the result that the initial motor torque is too low)
- Maximum speed setting is incorrect
- Pulse encoder parameters are incorrect (P140 to P143)
- Parameters for tachometer adjustment are not correct (P741)

27 Load torque is too high ( \(n_{\text {set }}=0 \% n_{\text {max }}\) results in | EMFL \(>100 \%\) setpoint EMF) (EMF monitoring at (P101 - P100* P110) does not start for 1 s after application of speed setpoint of \(\mathrm{n}_{\text {set }}=0\) )
Possible cause:
- An excessively high load torque (in a positive or negative direction, e.g. suspended load) causes the drive to rotate (the speed controller parameters are parameterized according to the factory setting during this run)
- One of the armature current or torque limits is parameterized too low (the motor field may not be reaching full field strength fast enough with the result that the initial motor torque is too low)
- Maximum speed setting is incorrect
- Pulse encoder parameters are incorrect (P140 to P143)
- Parameters for tachometer adjustment are not correct (P741)
- Setpoint EMF settings are incorrect (P101, P100, P110)

28 A steady-state actual speed corresponding to \(0 \%\) of maximum speed cannot be reached within 0 s in speed-controlled operation (the speed setpoint/actual value difference averaged over 90 firing cycles must be \(<1.0 \% \mathrm{n}_{\text {max }}\) for a total of 4 s )

Possible cause: As for fault value 26
29 The calculated armature circuit inductance is greater than 327.67 mH , therefore \(\mathrm{P} 111=327,67 \mathrm{mH}\) has been set. All other parameters (the current controller parameters P155 and P156 too) have been set correctly despite that. (For the real armature circuit inductance in mH , see r047.i010).
Possible cause:
-e.g. field supply from the armature terminals
30 The calculated armature circuit inductance is greater than 327.67 mH and the calculated armature circuit resistance is greater than \(32.767 \Omega\), therefore \(\underline{P 111}=327,67 \mathrm{mH}\) and \(\underline{P 110}=32,767 \Omega\) has been set. All other parameters have also been set. However, the values of the current controller parameters P155 and P156 might differ from the optimum setting.
Possible cause:
-e.g. field supply from the armature terminals
31 The calculated armature circuit resistance is greater than \(32.767 \Omega\), therefore \(P 110=32,767 \Omega\) has been set. All other parameters have also been set. Possibly the calculated P111 and therefore also the current controller parameters P155 and P156 have been distorted by the limitation in P110 .
Possible cause:
-e.g. field supply from the armature terminals
r047 Index 002:
1 Fault has occurred during optimization run for current controller and precontrol for armature and field (selected by means of P051=25)

2 Fault has occurred during optimization run for speed controller (selected through setting P051=26)
3 Fault has occurred during optimization run for field weakening (selected through setting P051=27)
4 Fault has occurred during internal offset adjustments (selected through P051=22)
5 Fault has occurred in optimization run for friction and moment of inertia compensation (selected through setting P051=28)


\subsection*{10.1.2.9 External faults}
\begin{tabular}{|c|c|}
\hline F053 & \begin{tabular}{l}
Fault message from free function block FB288 \\
(active in all operating states) \\
Fault value: \\
1 the binector wired via parameter U102 Index. 005 is in the state log." 1" \\
2 the binector wired via parameter U102 Index. 006 is in the state log." 1" \\
3 the binector wired via parameter U102 Index. 007 is in the state log." 1" \\
4 the binector wired via parameter U102 Index. 008 is in the state log." 1"
\end{tabular} \\
\hline F054 & \begin{tabular}{l}
Fault message from free function block FB289 \\
(active in all operating states) \\
Fault value: \\
1 the binector wired via parameter U103 Index. 005 is in the state log." 1" \\
2 the binector wired via parameter U103 Index. 006 is in the state log." 1" \\
3 the binector wired via parameter U103 Index. 007 is in the state log." 1" \\
4 the binector wired via parameter U103 Index. 008 is in the state log." 1"
\end{tabular} \\
\hline
\end{tabular}

\subsection*{10.1.2.10 Start-up faults}
\begin{tabular}{|l|l|}
\hline F055 & \begin{tabular}{l} 
No field characteristic recorded \\
(active in operating states of \(--, I, I I)\)
\end{tabular} \\
& \begin{tabular}{ll} 
Possible fault causes \\
• The optimization run for field weakening (P051=27) has not yet been executed.
\end{tabular} \\
Fault value:
\end{tabular}
\begin{tabular}{|c|c|}
\hline & Description \\
\hline No. & \begin{tabular}{c|c}
\begin{tabular}{c} 
Cause as a function of fault value \\
(r047.001, r949.001 or r949.009 with acknowledged error)
\end{tabular} & \(\quad\) Further information (r047.002 to r047.016)
\end{tabular} \\
\hline F056 & \begin{tabular}{l}
Important parameter is not set \\
(active in operating states of \(\leq 06\) ) \\
This fault message is activated if certain parameters are still set to 0 . \\
Fault value:
\end{tabular} \\
\hline & \begin{tabular}{l}
1 Speed controller actual value selection in P083 is still set to 0 \\
2 Rated motor armature current in P100 is still set to 0.0 \\
3 Rated motor field current in P102 is still set to 0.00 (fault message only when P082 \(\neq 0\) ) \\
4 Rated DC current of external field device is still set to 0.00 in U838 (error message if P082 >= 21 only)
\end{tabular} \\
\hline F058 & \begin{tabular}{l}
Parameter settings are not consistent \\
(active in operating states of \(\leq 06\) ) \\
Inconsistent values have been set in mutually dependent parameters. \\
Fault value:
\end{tabular} \\
\hline & \begin{tabular}{l}
2 The parameters for speed-dependent current limitation are not set correctly (the following applies: P105>P107 (I1> I2) and P104 < P106 (n1<n2)) \\
3 The field characteristic is not uniform \\
4 The first threshold for P gain adaptation of the speed controller set in parameter P556 is higher than the second threshold setting in parameter P559 \\
\(5 \quad\) P557 is set to greater than P560 \\
\(6 \quad \mathrm{P} 558\) is set to greater than P561 \\
7 If P083=1 (analog tachometer), then P746 may not equal 0 (main actual value is not connected) \\
8 If P083=2 (pulse encoder), then P140 may not equal x0 (no pulse encoder installed) \\
9 If P083=3 (EMF control) then P082 may not equal \(x 1 x\) (field weakening operation) \\
10 P 090 (stabilization time for supply voltage) \(\geq \mathrm{P} 086\) (time for automatic restart) \\
11 P 090 (stabilization time for supply voltage) \(\geq \mathrm{P} 089\) (waiting time in state 04 or 05) \\
\(12 \mathrm{P} 445=1\) is set (switch-on, shutdown and crawl act as a pushbutton) although no binector is parameterized as a shudown button (P444=0) \\
13 If P067 > 1, then P075 must also be \(>0\) \\
14 Parameter U673 > U674 (this setting is not permitted; see function diagram B152) \\
15 Parameter P169 = 1 and P170 = 1 (impermissible setting)
\end{tabular} \\
\hline F059 & \begin{tabular}{l}
Technology option \(\mathbf{S O O}\) is disabled/will be disabled soon (active in all operating statuses) \\
Fault value:
\end{tabular} \\
\hline & \begin{tabular}{l}
1 Time credit for SOO=0 hrs \\
The technology option S00 for 500 operating hours no longer applies. The functions are now no longer available, but the parameter settings have been retained. \\
If you wish to continue using technology option S00, please contact your nearest Siemens Sales Office to obtain the PIN number you will require to permanently enable this option. \\
You will need to know the serial number of your SIMOREG DC Master. For further details, please refer to the description of parameters U977 and n978 in Chapter 11 of the Parameter List. \\
2 Time credit S00<100 Std. \\
The remaining time period of temporary enabling of technology option S00 is now less than 100 operating hours. The technology functions will not be available for much longer. \\
If you wish to continue using technology option S00, please contact your nearest Siemens Sales Office to obtain the PIN number you will require to permanently enable this option. \\
for permanent enabling of technology option S00. \\
You will need to know the serial number of your SIMOREG DC Master. For further details, please refer to the description of parameters U977 and n978 in Chapter 11 of the Parameter List. \\
3 S00 operation will not be possible if an SLB cycle time of \(<1 \mathrm{~ms}\) is set Owing to the available capacity of the electronics board, it is not possible to operate the S00 technology option at the same time as a SIMOLINK bus with an extremely short cycle time ( \(\mathrm{U} 746<1 \mathrm{~ms}\) ). \\
See also parameter U746.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Fault & Description \\
No. & \begin{tabular}{c} 
Cause as a function of fault value \\
(r047.001, r949.001 or r949.009 with acknowledged error)
\end{tabular} & Further information (r047.002 to r047.016) \\
\hline \hline
\end{tabular}

\subsection*{10.1.2.11 Hardware faults}

\section*{F061}

\section*{Fault message from thyristor check function (active in operating state o3)}

This fault message can be activated only if the thyristor check is activated via parameter P830
If "Thyristor defective" or "Thyristor unable to block" is signaled, then the relevant thyristor module must be replaced.
Possible causes for irreparable damage to thyristors:
- Interruption in snubber circuit
- Current controller and precontrol are not optimized (excessive current peaks)
- Inadequate cooling (e.g. fan is not operating, ambient temperature is too high, fan is rotating in wrong direction (incorrect phase sequence), inadequate air supply, heatsink is very dirty)
- Excessive voltage peaks in incoming supply system
- External short circuit or fault to ground (check armature circuit)

If "Thyristor unable to block" is signaled, the cause can generally be attributed to a firing circuit fault, rather than to a efective thyristor.

Possible causes:
- Firing pulse cable to relevant thyristor is interrupted
- Ribbon cable X101 or X102 is incorrectly inserted or interrupted
- Defective electronics or gating board
- Internal interruption in gating cable in thyristor module

The designations of the firing cables and associated thyristors can be found in Section 6.4 (power connections).

Fault value:
1 Defective thyristor (short circuit in module V1, on 15A and 30 converters: V1 or V4)
2 Defective thyristor (short circuit in module V2, on 15A and 30 converters: V2 or V5)
3 Defective thyristor (short circuit in module V3, on 15A and 30 converters: V3 or V6)
4 Defective thyristor (short circuit in module V4, on 15A and 30 converters: V4 or V1)
5 Defective thyristor (short circuit in module V5, on 15A and 30 converters: V5 or V2)
6 Defective thyristor (short circuit in module V6, on 15A and 30 converters: V6 or V3)
8 Fault to ground in armature circuit
\(9 \quad \mathrm{I}=0\) message defective
Possible fault cause
- Defective A7001 electronics board

11 Thyristor cannot be fired (X11)
12 Thyristor cannot be fired (X12)
13 Thyristor cannot be fired (X13)
14 Thyristor cannot be fired (X14)
15 Thyristor cannot be fired (X15)
16 Thyristor cannot be fired (X16)
172 or more thyristors (MI) cannot be fired
Possible fault cause
- Armature circuit interrupted

21 Thyristor cannot be fired (X21)
22 Thyristor cannot be fired (X22)
23 Thyristor cannot be fired (X23)
24 Thyristor cannot be fired (X24)
25 Thyristor cannot be fired (X25)
26 Thyristor cannot be fired (X26)
272 or more thyristors (MII) cannot be fired
\begin{tabular}{|c|c|c|}
\hline Fault & \multicolumn{2}{c|}{\begin{tabular}{c} 
Description \\
No.
\end{tabular}} \\
\hline & \begin{tabular}{c} 
Cause as a function of fault value \\
(r047.001, r949.001 or r949.009 with acknowledged error)
\end{tabular} & Further information (r047.002 to r047.016) \\
\hline \hline & 31 & Thyristor unable to block (X11 or X21) \\
32 & Thyristor unable to block (X12 or X22) \\
33 & Thyristor unable to block (X13 or X23) \\
34 & Thyristor unable to block (X14 or X24) \\
& 35 & Thyristor unable to block (X15 or X25) \\
36 & Thyristor unable to block (X16 or X26) & \\
\hline
\end{tabular}

\subsection*{10.1.2.12 Internal faults}
\begin{tabular}{|c|c|c|}
\hline F062 & \begin{tabular}{l}
Fault in parameter memory \\
(active in all operating states) \\
Software monitoring of correct functioning of the EEPROM modu The EEPROM values contains all data which must be protected data which must remain stored during power failures). \\
The following are monitored: \\
- Connection between the A7001 electronics board and the E \\
- Whether the parameter values stored on the EEPROM are with \\
- Whether data are being correctly stored on the EEPROM. Fo after they are transferred to the module \\
- Whether the checksum of the non-volatile process data in th \\
Possible causes for all fault types: \\
Excessive EMC-related interference is present (e.g. due to unpro connections) \\
Fault value:
\end{tabular} & \begin{tabular}{l}
le (non-volatile memory) on the A7009 board. in the case of a power failure (i.e. parameter values and process \\
PROM on the A7009 backplane wiring assembly ithin the permissible value range r this purpose, values are read and checked for correctness \\
EEPROM is correct \\
tected contactors, unscreened cables, loose shield \\
r047 Index 002 to 016:
\end{tabular} \\
\hline & \begin{tabular}{l}
1 Connection to EEPROM is faulty \\
Possible fault causes \\
- A7001 electronics board is defective \\
- A7009 backplane wiring assembly is defective \\
- Plug-in connection X109 is defective
\end{tabular} & \\
\hline & \begin{tabular}{l}
2 Parameter value is outside permissible value range \\
Possible fault causes \\
- "Restore to default value" has never been executed with this software (e.g. after software replacement) \\
- A7009 backplane wiring assembly is defective \\
Possible remedy: \\
- Acknowledge fault, execute "Restore to default value" and start up the drive again
\end{tabular} & \begin{tabular}{l}
i002 Number of faulty parameter \\
i003 Index of faulty parameter \\
i004 Faulty parameter value
\end{tabular} \\
\hline & \begin{tabular}{l}
3 Parameter value cannot be stored on EEPROM \\
Possible fault causes \\
- A7001 electronics board is defective \\
- A7009 backplane wiring assembly is defective \\
- Plug-in connection X109 is defective
\end{tabular} & \begin{tabular}{l}
i002 Address of fault memory location \\
i003 Faulty value in EEPROM \\
i004 Correct parameter value
\end{tabular} \\
\hline & \begin{tabular}{l}
11 Checksum of non-volatile data (part 1) is not correct \\
12 Checksum of non-volatile data (part 2) is not correct \\
13 Checksum of non-volatile data (part 3) is not correct \\
20 Checksum of configuring table of parameter values is not correct \\
Possible fault causes \\
- Defective EEPROM \\
- "Restore to default value" has never been executed with this software (e.g. after software replacement) \\
Possible remedy: \\
- Acknowledge fault, execute "Restore to default value" and start up the drive again! Check interference suppression measures and improve if necessary.
\end{tabular} & \begin{tabular}{l}
i002 Calculate checksum \\
i003 Checksum found in EEPROM
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Fault No.} & \multicolumn{2}{|r|}{Description} \\
\hline & Cause as a function of fault value (r047.001, r949.001 or r949.009 with acknowledged error) & Further information (r047.002 to r047.016) \\
\hline \multirow[t]{5}{*}{F063} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Possible fault cause: \\
- Defective A7001 or A7006 electronics board \\
Fault value: \\
r047 Index 002 to 016:
\end{tabular}} \\
\hline & 11 Incorrect number of words in compensation values for analog inputs and outputs of A7001 & i002 Incorrect number of words \\
\hline & 12 Checksum error in compensation values for analog inputs and outputs of A7001 & i002 Calculated checksum i003 Errored checksum \\
\hline & 13 Incorrect value among compensation values for analog inputs and outputs of A7001 & i002 Incorrect value \\
\hline & 23 Incorrect value among compensation values for analog inputs and outputs of A7006 & i002 Incorrect value \\
\hline F064 & \begin{tabular}{l}
Watchdog timer has initiated a reset (active in all operating states) \\
An internal microprocessor hardware counter monitors wheth every 14 ms (program is executed on average every 2.7 to 3.3 then displayed. \\
Possible fault causes \\
- A7001 electronics board is defective \\
- Excessive EMC-related interference is present (e.g. due to connections)
\end{tabular} & he program for calculating the firing pulses runs at least once s). If this is not the case, the counter initiates a reset, F064 is nprotected contactors, unscreened cables, loose shield \\
\hline F065 & \begin{tabular}{l}
Illegal microprocessor status (active in all operating states) \\
An internal microprocessor hardware function monitors the micrin \\
Possible fault causes \\
- A7001 electronics board is defective \\
- Excessive EMC-related interference is present (e.g. due to connections)
\end{tabular} & \begin{tabular}{l}
processor for illegal operating states. \\
nprotected contactors, unscreened cables, loose shield
\end{tabular} \\
\hline \multirow[t]{4}{*}{F067} & \begin{tabular}{l}
Converter cooling faulty \\
(active in operating states of \(\leq 013\) ) \\
The heatsink temperature monitoring function is activated 6 s \\
(The current heat sink temperature is indicated at parameter \\
Fault value:
\end{tabular} & \begin{tabular}{l}
connection of the electronics supply. \\
3 and on connector K050) \\
r047 Index 002 to 016:
\end{tabular} \\
\hline & 1 Heatsink temperature > impermissible heatsink temperature & i002 Measured heatsink temperature (16384 .. \(100^{\circ} \mathrm{C}\) ) \\
\hline & 2 Heatsink temperature sensor is defective & i003 Measured ADC value \\
\hline & 3 Converter fan is defective & \\
\hline F068 & \begin{tabular}{l}
Analog measuring channel faulty (main setpoint, main ac (active in all operating states) \\
Hardware monitoring of measuring circuits \\
Possible fault causes \\
- A7001 module defective \\
- Measuring circuit saturated (input voltage at termina \\
Fault value:
\end{tabular} & \begin{tabular}{l}
value or analog select input) \\
4 and 5 or 6 and 7 higher than approx. 11.3V)
\end{tabular} \\
\hline & \begin{tabular}{l}
1 Measuring channel for main setpoint / analog select inp \\
2 Measuring channel for main actual value faulty (termina \\
3 Measuring channel for analog select input 1 faulty (term
\end{tabular} & \begin{tabular}{l}
faulty (terminals 4 and 5) 103 and 104) \\
Is 6 and 7)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Fault & & ption \\
\hline No. & Cause as a function of fault value (r047.001, r949.001 or r949.009 with acknowledged error) & Further information (r047.002 to r047.016) \\
\hline \multirow[t]{5}{*}{F069} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Possible fault causes \\
- Excessive EMC-related interference is present \\
(e.g. due to unprotected contactors, unscreened cables, loose shield connections) \\
- A7009 backplane wiring assembly is defective
\end{tabular}} \\
\hline & 1 MLFB code number (r070) = MLFB code number (r070) is illegal & i002 Incorrect MLFB code number \\
\hline & 2 MLFB data checksum error & - \\
\hline & 3 Works number checksum error & - \\
\hline & 4 Number of words of MLFB data is incorrect & - \\
\hline
\end{tabular}

\subsection*{10.1.2.13 Communication errors with supplementary boards}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Fault No.} & \multicolumn{3}{|c|}{Description} \\
\hline & Cause as a function of fault value (r047.001, r949.001 or r949.009 with acknowledged error) & & Further information \\
\hline \multirow[t]{2}{*}{} & 5 Parameters P918, U711 to U721 are not correctly set or not accepted after a change by means of \(\mathrm{U} 710=0\) setting. (The meanings of these parameters are defined in the manual for the relevant CB board, see also function diagrams, Section 8, Sheets Z110 and Z111) & \[
\begin{array}{ll}
\hline \hline \text { i015 } \\
& \text { C } \\
& 2
\end{array}
\] & \[
\begin{array}{ll}
\hline \hline \text { Code number of board: } \\
1 & \text { TB or } 11^{\text {st }} \mathrm{CB} \\
2 & 2^{\text {nd }} \mathrm{CB}
\end{array}
\] \\
\hline & 6 The initialization run for a \(\mathrm{CB} / \mathrm{TB}\) board has not been completed within 40 s & \[
\begin{array}{|ll|}
\hline \text { i015 } & C \\
& 1 \\
& 2
\end{array}
\] & \[
\begin{aligned}
& \text { Code number of board: } \\
& \begin{array}{l}
\text { TB or } 1^{\text {st }} \mathrm{CB} \\
2
\end{array} \mathrm{Cnd}^{\text {2nd }} \mathrm{CB}
\end{aligned}
\] \\
\hline F081 & \begin{tabular}{l}
\(C B / T B\) has not incremented the monitoring counter for a period of 800 ms \\
Possible causes of fault \\
- \(\mathrm{CB} / T B\) board is defective \\
- \(\mathrm{CB} / \mathrm{TB}\) board is not correctly installed
\end{tabular} & \[
\begin{array}{|ll}
\hline \text { i015 } & \text { C } \\
& 1 \\
& 2
\end{array}
\] & \[
\begin{aligned}
& \text { Code number of board: } \\
& \begin{array}{l}
\text { TB or } 1^{\text {st }} \mathrm{CB} \\
2
\end{array} 2^{\text {nd }} \mathrm{CB}
\end{aligned}
\] \\
\hline \multirow[t]{13}{*}{F082} & \multicolumn{3}{|l|}{\begin{tabular}{l}
CB/TB message timeout or error in data exchange \\
Possible causes of fault \\
- CB/TB PZD message timeout (with fault value 10 ) \\
- Excessive EMC-related interference (e.g. due to unprotected contactors, unscreened cables, loose screen connections) \\
- \(C B / T B\) board is defective \\
- \(\mathrm{CB} /\) TB board is not correctly inserted \\
Fault value (r949 index 001): \\
r047 Index 002 to 016:
\end{tabular}} \\
\hline & 1 Fault in alarm channel from CB to basic unit & \multicolumn{2}{|l|}{\[
\begin{array}{ll}
\text { i015 } & \text { Code number of board: } \\
\text { 1 } & \text { TB or 1 } 1^{\text {st }} \\
2 & 2^{\text {nd }} C B
\end{array}
\]} \\
\hline & 2 Fault in alarm channel from TB to basic unit & & \\
\hline & \(3 \quad\) Fault in fault channel from TB to basic unit & & \\
\hline & 5 Fault in parameter job channel from CB to basic unit & \[
\begin{array}{|rr|}
\hline \text { i015 } & 0 \\
& 1 \\
& 2
\end{array}
\] & \[
\begin{aligned}
& \text { Code number of board: } \\
& \begin{array}{ll}
\text { TB or } 1^{\text {st }} \mathrm{CB} \\
2 & 2^{\text {nd }} \mathrm{CB}
\end{array}
\end{aligned}
\] \\
\hline & 6 Fault in parameter response channel from basic unit to CB & \[
\begin{array}{|ll|}
\hline \text { i015 } & 0 \\
& 1 \\
& 2
\end{array}
\] & \[
\begin{aligned}
& \text { Code number of board: } \\
& \begin{array}{lll}
1 & 1^{\text {th }} \mathrm{TB} \text { or } 1^{\text {st }} \mathrm{CB}
\end{array} \\
& \begin{array}{ll}
2^{\text {nd }} \mathrm{CB}
\end{array}
\end{aligned}
\] \\
\hline & 7 Fault in parameter job channel from TB to basic unit & & \\
\hline & \begin{tabular}{|lll}
\hline 8 & Fault in parameter response channel from basic unit to \\
TB & \\
\hline
\end{tabular} & & \\
\hline & 10 CB/TB process data failure (message timeout period set in U722) & \[
\begin{array}{|ll}
\hline \text { i015 } & C \\
& 1 \\
& 2
\end{array}
\] & \[
\begin{aligned}
& \text { Code number of board: } \\
& \begin{array}{l}
\text { TB or } 1^{\text {st }} \mathrm{CB} \\
2
\end{array} \quad 2^{\text {nd }} \mathrm{CB}
\end{aligned}
\] \\
\hline & 11 Fault in parameter job channel from PMU to TB & & \\
\hline & 12 Fault in parameter response channel from TB to PMU & & \\
\hline & 15 Fault in setpoint channel from \(\mathrm{CB} / \mathrm{TB}\) to basic unit & \[
\begin{array}{|ll|}
\hline \text { i015 } & C \\
& 1 \\
& 2
\end{array}
\] & \[
\begin{aligned}
& \text { Code number of board: } \\
& \begin{array}{l}
\text { TB or } 1^{\text {st }} \mathrm{CB} \\
2
\end{array} 2^{\text {2nd }} \mathrm{CB}
\end{aligned}
\] \\
\hline & 16 Fault in actual value channel from basic unit to \(\mathrm{CB} / \mathrm{TB}\) & \[
\begin{array}{|rr}
\text { i015 } & \text { C } \\
& 1 \\
& 2
\end{array}
\] & \[
\begin{aligned}
& \text { Code number of board: } \\
& \begin{array}{l}
\text { TB or } 1^{\text {st }} \mathrm{CB} \\
2
\end{array} 2^{\text {nd }} \mathrm{CB}
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{10.1.2.14 Fault messages from supplementary boards}
\begin{tabular}{|l|l|}
\hline F101 & This group of fault messages is activated by supplementary boards \\
to & Please refer to the operating manual of the relevant supplementary board for explanation of the fault messages and fault values \\
F147 & \\
\hline
\end{tabular}

\subsection*{10.2 Alarm messages}

Alarm message display:
On the PMU: A (Alarm) and a three-digit number. The red LED (Fault) flashes.
On the OP1S: On the bottom line of the operational display. The red LED (Fault) flashes.
An alarm message cannot be acknowledged, but disappears automatically when the cause has been eliminated.

Several alarm messages can be active at the same time, these are then displayed in succession.
Many alarms (see List of Alarm Messages) can only be active in certain operating states.

The system responses to an alarm are as follows:
- Alarm message is displayed on the operator panel (PMU, OP1S)
- \(\quad \mathrm{B} 0114\) ( = status word 1 , bit 7 ) is set and B0115 is cancelled (see also special alarm bits in status word 2, e.g. for an external alarm, overload, etc.)
- The corresponding bit in one of the alarm words r953 (K9801) to r960 (K9808) is set
\begin{tabular}{|c|c|}
\hline Alarm No. & Description \\
\hline A015 & \begin{tabular}{l}
Simolink start \\
(active in all operating states) \\
Although the board has been initialized, it cannot yet exchange telegrams (parameters have not yet been correctly configured on all nodes or the boards have not yet been linked via fiber optics to form a closed ring).
\end{tabular} \\
\hline A018 & \begin{tabular}{l}
Short circuit at binary outputs \\
(active in all operating states) \\
Hardware monitoring function to check for short circuit at one of the binary select outputs (see also F018 and r011).
\end{tabular} \\
\hline A019 & \begin{tabular}{l}
Alarm message from free function block FB256 (active in all operating states) \\
The binector wired via parameter U104 Index. 002 is in the state log." 1"
\end{tabular} \\
\hline A020 & \begin{tabular}{l}
Alarm message from free function block FB257 (active in all operating states) \\
The binector wired via parameter U105 Index. 002 is in the state log." 1 "
\end{tabular} \\
\hline A021 & \begin{tabular}{l}
External alarm 1 \\
(active in all operating states) \\
Bit 28 in control word 2 was in the log. "0" state for longer than the time set in P360 index 003.
\end{tabular} \\
\hline A022 & \begin{tabular}{l}
External alarm 2 \\
(active in all operating states) \\
Bit 29 in control word 2 was in the log. "0" state for longer than the time set in P360 index 004.
\end{tabular} \\
\hline A023 & \begin{tabular}{l}
Alarm message from free function block FB6 (active in all operating states) \\
The binector wired via parameter U104 Index. 001 is in the state log." 1 "
\end{tabular} \\
\hline A024 & \begin{tabular}{l}
Alarm message from free function block FB7 (active in all operating states) \\
The binector wired via parameter U105 Index. 001 is in the state log." 1 "
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Alarm No. & Description \\
\hline A025 & \begin{tabular}{l}
Brush length too short \\
(active in all operating states) \\
When parameter \(\mathrm{P} 495=1\) (binary sensing of brush length): \\
Alarm in response to log. " 0 " signal (longer than 10 s) at terminal 211 \\
Possible causes \\
- Encoder for brush length has responded \\
- Interruption in encoder cable
\end{tabular} \\
\hline A026 & \begin{tabular}{l}
Poor bearing condition \\
(active in all operating states) \\
When parameter P496=1 (bearing condition sensing): \\
Alarm in response to log. " 0 " signal (longer than 2s) at terminal 212 \\
Possible causes \\
- Encoder for bearing condition has responded
\end{tabular} \\
\hline A027 & \begin{tabular}{l}
Air flow monitoring \\
(active in operating states of < 06) \\
When parameter P497=1 (air flow monitoring): \\
Alarm in response to log. " 0 " signal (longer than 40s) at terminal 213 \\
Possible causes \\
- Encoder for fan monitoring has responded \\
- Interruption in encoder cable
\end{tabular} \\
\hline A028 & \begin{tabular}{l}
Motor overtemperature \\
(active in all operating states) \\
When parameter P498=1 (thermostat connected): \\
Alarm in response to log. "0" signal (longer than 10s) at terminal 214 \\
Possible causes \\
- Thermostat for monitoring motor temperature has responded \\
- Interruption in encoder cable
\end{tabular} \\
\hline A029 & \begin{tabular}{l}
Motor overtemperature \\
(active in all operating states) \\
Selection via P493=1 or 3 (thermostat at terminals 22 / 23) or P494=1 or 3 (thermostat at terminals 204 / 205) \\
When parameter P490.01=1 (KTY84 at terminals \(22 / 23\) ) or P490.02=1 (KTY84 at terminals 204 / 205): \\
The alarm is activated if the motor temperature reaches or exceeds the values set in parameter P492. \\
When parameter P490.01=2,3,4 or 5 (PTC thermistor at terminals \(22 / 23\) ) or P490.02 \(=2,3,4\) or 5 (PTC thermistor at terminals 204 / 205): \\
The alarm is activated if the motor temperature reaches or exceeds the trip value of the selected PTC.
\end{tabular} \\
\hline A031 & \begin{tabular}{l}
Speed controller monitoring \\
(active in operating states of,-- I, II) \\
The monitor responds when the difference between the connectors selected in P590 and P591 (factory setting: Setpoint/actual value difference of speed controller) exceeds the limit set in parameter P388 for longer than the time set in parameter P390. \\
Possible causes \\
- Control loop interrupted \\
- Controller is not optimized \\
- P590 or P591 is not correctly parameterized
\end{tabular} \\
\hline A033 & \begin{tabular}{l}
Alarm message from free function block FB8 (active in all operating states) \\
The binector connected via parameter U106 Index. 001 is in the log. "1" state
\end{tabular} \\
\hline A034 & \begin{tabular}{l}
Alarm message from free function block FB9 (active in all operating states) \\
The binector connected via parameter U107 Index. 001 is in the log. "1" state
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Alarm \\
No.
\end{tabular} & Description \\
\hline A035 & \begin{tabular}{l}
Drive blocked \\
(active in operating states of \(--, \mathrm{I}, \mathrm{II}\) ) \\
The monitoring function responds if the following conditions are fulfilled for longer than the time set in parameter P355: \\
- Positive or negative torque or armature current limit reached \\
- Armature current is greater than \(1 \%\) of converter rated armature DC current \\
- The actual speed value is less than \(0.4 \%\) of maximum speed
\end{tabular} \\
\hline A036 & \begin{tabular}{l}
No armature current can flow \\
(active in operating states of,-- I, II) \\
This monitoring function responds if the armature firing angle is at the rectifier stability limit for more than 500 ms and the armature current is less than \(1 \%\) of the converter rated armature DC current.
\end{tabular} \\
\hline A037 & \begin{tabular}{l}
\(\mathrm{I}^{\mathbf{2}} \mathbf{t}\) motor monitor has responded \\
(active in operating states of \(--, \mathrm{I}, \mathrm{II}\) ) \\
The alarm is activated when the calculated \(\mathrm{I}_{\mathrm{t}}\) value of the motor reaches the value which corresponds to the final temperature at 100\% of permissible continuous motor current (= P113* P100).
\end{tabular} \\
\hline A038 & \begin{tabular}{l}
Overspeed \\
(active in operating states of,-- I, II) \\
The monitoring function responds if the actual speed value (selected in P595) exceeds the positive (P512) or negative (P513) threshold by \(0.5 \%\) \\
Possible causes \\
- Lower current limit has been input \\
- Current-controlled operation \\
- P512, P513 are set too low \\
- Tachometer cable contact fault in operation close to maximum speed
\end{tabular} \\
\hline A039 & \begin{tabular}{l}
\(\mathbf{I}^{\mathbf{2} t}\) value of power section too high \\
(active in all operating states) \\
This alarm is activated if the permissible \(\mathrm{I}^{2} \mathrm{t}\) value for the relevant power section is reached. At the same time, the current limit is set to P077 * 100\% of the converter rated DC current. This limit is not cancelled again until the setpoint drops below \(100 \%\) of the converter rated DC current. See also Fault F039 and Parameter P075.
\end{tabular} \\
\hline A043 & \begin{tabular}{l}
Automatic field current reduction if EMF is too high in operation \\
(active in operating states of \(--, \mathrm{I}, \mathrm{II}\) ) \\
This alarm is active only when parameter P272=1 and activated if the following equation applies to firing angle \(\alpha\) (armature) before limitation (K101): \\
\(\alpha>\) ( \(\alpha\) W (inverter stability limit acc. to P151) - 5 degrees) or, at a low (pulsating) current \\
\(\alpha>\) ( 165 degrees -5 degrees) \\
The field is reduced simultaneously with A043, implemented through control of the armature firing angle to (aW (or 165 degrees) - 5 degrees) using a P controller whose output reduces the EMF controller setpoint. For this reason, "Field current setpoint input through internal EMF control" (PO81=1) must be parameterized. \\
When a change in torque direction is requested, both torque directions are inhibited until the calculated control angle (K101) is < 165 degrees for the armature current requested in the new torque direction, i.e. until the field, and thus the EMF, have been reduced accordingly. \\
See also parameter P082.
\end{tabular} \\
\hline A044 & An alarm is active on one slave connected to the paralleling interface (active in all operating states) \\
\hline A046 & \begin{tabular}{l}
Analog select input for main setpoint (terminals 4 and 5) faulty (active in operating states of \(\leq 06\) ) \\
This alarm is activated when \(\mathrm{P} 700=2\) (current input 4 to 20 mA ) and the input current is less than 3 mA .
\end{tabular} \\
\hline A047 & \begin{tabular}{l}
Analog select input 1 (terminals 6 and 7) faulty (active in operating states of \(\leq 06\) ) \\
This alarm is activated when \(\mathrm{P} 710=2\) (current input 4 to 20 mA ) and the input current is less than 3 mA .
\end{tabular} \\
\hline A049 & SCB1: No SCI slave connected (active in all operating states) \\
\hline A050 & \begin{tabular}{l}
SCB1: Not all required SCI slaves are available (active in all operating states) \\
The SCI slave required to perform the parameterized functions is not available
\end{tabular} \\
\hline A053 & \begin{tabular}{l}
Alarm message from free function block FB258 (active in all operating states) \\
The binector connected via parameter U106 Index. 002 is in the log. "1" state
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Alarm & \multicolumn{1}{c|}{\(\quad\) Description } \\
No. & \(\begin{array}{l}\text { Alarm message from free function block FB259 } \\
\text { (active in all operating states) } \\
\text { The binector connected via parameter U107 Index.002 is in the log. "1" state }\end{array}\) \\
\hline \hline A059 & \(\begin{array}{l}\text { Remaining time for temporary enabling of the S00 technology option is now less than 100 operating hours } \\
\text { (active in all operating statuses) } \\
\text { Remaining time for temporary enabling of the S00 technology option is now less than 100 operating hours. The functions will } \\
\text { soon be unavailable. } \\
\text { If you wish to continue using technology option S00, please contact to your nearest Siemens Regional Office for a PIN number } \\
\text { for permanent enabling of technology option S00. } \\
\text { You will need to know the serial number of your SIMOREG DC Master. For further details, please refer to the description of } \\
\text { parameters U977 and n978 in Chapter 11 of the Parameter List. }\end{array}\) \\
\hline A067 & \(\begin{array}{l}\text { Converter cooling faulty } \\
\text { (active in all operating states) } \\
\text { The heatsink temperature is > 90 }\end{array}\) \\
\hline The monitoring function is activated 6s after the electronics supply is connected. \\
(The current heat sink temperature is indicated at parameter r013 and on connector K050)
\end{tabular}\(]\)

\section*{11 Parameter list}

\section*{Overview}
\begin{tabular}{|c|c|}
\hline Range of parameter numbers & Function \\
\hline r000 & Operating display \\
\hline r001-P050 & General visualization parameters \\
\hline P051-r059 & Access authorization levels \\
\hline r060-r065 & Definition of SIMOREG DC MASTER converter \\
\hline P067-P079 & Definition of SIMOREG DC MASTER power section \\
\hline P080-P096 & Setting values for converter control \\
\hline P100-P139 & Definition of motor \\
\hline P140-P148 & Definition of pulse encoder, speed sensing using pulse encoder \\
\hline P150-P165 & Closed-loop armature current control, auto-reversing stage, armature gating unit \\
\hline P169 - P191 & Current limitation, torque limitation \\
\hline P200 - P236 & Speed controller (further parameters for the speed controller P550-P567) \\
\hline P250 - P265 & Closed-loop field current control, field gating unit \\
\hline P272-P284 & Closed-loop EMF control \\
\hline P295 - P319 & Ramp-function generator \\
\hline P320-P323 & Setpoint processing \\
\hline P351 - P364 & Setting values for monitoring functions and limits \\
\hline P370-P399 & Setting values for limit-value monitors \\
\hline P401-P416 & Settable fixed values \\
\hline P421-P428 & Fixed control bits \\
\hline P430-P445 & Digital setpoint input (fixed setpoint, inching and crawling setpoints) \\
\hline P450-P453 & Position sensing with pulse encoder \\
\hline P455-P458 & Connector selector switches \\
\hline P460-P473 & Motorized potentiometer \\
\hline P480 - P485 & Oscillation \\
\hline P490-P498 & Definition of "Motor interface" \\
\hline P500 - P503 & Configuring of torque shell input \\
\hline P509 - P515 & Speed limiting controller \\
\hline P520-P530 & Friction compensation \\
\hline P540-P546 & Compensation of moment of inertia (dv/dt injection) \\
\hline P550 - P567 & Speed controller (further parameters for the speed controller P200-P236) \\
\hline P580 - P583 & Field reversal \\
\hline P590 - P597 & Input quantities for signals \\
\hline P600-P646 & Configuring of closed-loop control \\
\hline P648-P691 & Control word, status word \\
\hline P692-P698 & Further configuring measures \\
\hline P700 - P746 & Analog inputs (main actual value, main setpoint, selectable inputs) \\
\hline P749-P769 & Analog outputs \\
\hline P770 - P778 & Binary outputs \\
\hline P780 - P819 & Configuration of serial interfaces on basic converter \\
\hline P820-P821 & Deactivation of monitoring functions \\
\hline r824-r829 & Compensation values \\
\hline P830 & Thyristor diagnosis \\
\hline P831-P899 & Parameters for DriveMonitor and OP1S \\
\hline P918-P927 & Profile parameters \\
\hline r947-r952 & Fault memory \\
\hline r953-r960 & Visualization parameters: Alarms \\
\hline r964 & Device identification \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Range of parameter \\
numbers
\end{tabular} & Function \\
\hline r967 - r968 & Visualization parameters: Control and status word \\
\hline P970 - r999 & Resetting and storing parameters, list of existing and modified P and r parameters \\
\hline U005 - U007 & Password protection, key/lock mechanism \\
\hline n009 & Processor utilization \\
\hline n024 - U098 & Miscellaneous \\
\hline U116 - U118 & Binector / connector converter for the serial interfaces \\
\hline U607 - U608 & Setpoint reduction \\
\hline U616 & Definition of the function of inputs and outputs \\
\hline U619 & Definition of the function of the relay output at terminals 109 / 110 \\
\hline U651 - U657 & Starting pulse speed controller \\
\hline U660 - U668 & Evaluation of a 4-step master switch for cranes \\
\hline U690 - n699 & Configuration of SCB1 with SCl1 \\
\hline U710 - n739 & Configuration of supplementary boards in board locations 2 and 3 \\
\hline U740 - U753 & Configuration of the SIMOLINK board \\
\hline U755 - n770 & Configuration of the EB1 expansion board \\
\hline U773 - n788 & Configuration of the EB2 expansion board \\
\hline U790 - U796 & Configuration of the SBP pulse encoder board \\
\hline U800 - n813 & Configuration of paralleling interface \\
\hline U819 - U833 & Parameters for SIMOREG CM (Control Module) \\
\hline U838 & Rated DC current of external field device \\
\hline U840 & Simulation operation \\
\hline n845 - n909 & Parameters for DriveMonitor \\
\hline U910 & Slot deactivation \\
\hline n911 - n949 & Parameters for DriveMonitor \\
\hline n953 - n959 & Parameters for DriveMonitor \\
\hline n980 - n999 & \\
\hline
\end{tabular}

\section*{Parameters for technology software in the basic converter, S00 option ("freely assignable function blocks")}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Range of parameter \\
numbers
\end{tabular} & Function \\
\hline n010 - n023 & Displays \\
\hline U099 & Settable fixed values \\
\hline U100 - U107 & Triggering of faults and alarms \\
\hline U110 - U115 & Connector/binector converters, binector/connector converters \\
\hline U120 - U171 & Mathematical functions \\
\hline U172 - U173 & Processing of connectors (averager) \\
\hline U175 - U218 & Limiter, limit-value monitors \\
\hline U220 - U259 & Processing of connectors \\
\hline U260 - U299 & Integrators, DT1 elements, characteristics, dead zones, setpoint branching \\
\hline U300 - U303 & Simple ramp-function generator \\
\hline U310 - U313 & Multiplexer \\
\hline n314 - U317 & Counter \\
\hline U318 - U411 & Logic functions \\
\hline U415 - U474 & Storage elements, timers and binary signal selector switches \\
\hline U480 - U512 & Technology controller \\
\hline U515 - U523 & Velocity/speed calculators \\
\hline U525 - U529 & Variable moment of inertia \\
\hline U530 - U545 & Pl controller \\
\hline U550 - U554 & Closed-loop control elements \\
\hline U670 - U677 & Position/positional deviation acquisition \\
\hline U680 - U684 & Root extractor \\
\hline U950 - U952 & Sampling times \\
\hline U960 - U969 & Altering the processing sequence of function blocks \\
\hline U977 - n978 & Enabling of technology software in basic unit, S00 option ("freely assignable function blocks") \\
\hline
\end{tabular}

\section*{Overview of abbreviations}

Example:
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
PNU \\
FDS
\end{tabular} & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \text { P520 } \\
& * \quad 1) \\
& \text { FDS } 2 \text { ) } \\
& 8) 9 \text { (G153) } \\
& \left(\begin{array}{l}
\text { (G) }
\end{array}\right.
\end{aligned}
\] & \begin{tabular}{l}
Friction at 0\% speed \\
Setting as \% of converter rated DC current or converter rated torque
\end{tabular} & \[
\begin{aligned}
& 0.0 \text { to } 100.0 \\
& {[\%]} \\
& 0.1 \% 4)
\end{aligned}
\] & Ind: 4
\[
\begin{aligned}
& \left.\mathrm{FS}=0.0^{5}\right) \\
& \text { Type: } 02^{3)}
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 } \geq 20 \\
& \text { Online } 6 \text { ) }
\end{aligned}
\] \\
\hline
\end{tabular}
1) An * under the parameter number means that the parameter requires confirmation, i.e. the altered value does not take effect until the \(P\) key is pressed.
2) Abbreviation indicating that the parameter belongs to a data set (refers only to indexed parameters) (see Section 9.11 "Switch over parameter sets")

FDS Parameter belongs to the function data set (see Section 9.1, subsection "Data sets")
BDS Parameter belongs to the BICO data set (see Section 9.1, subsection "Data sets")
3) Specification of parameter type

O2 Unsigned 16-bit value
\(12 \quad\) Signed 16-bit value
\(04 \quad\) Unsigned 32-bit value
\(14 \quad\) Signed 32-bit value
V2 Bit-coded quantity
L2 Nibble-coded quantity
4) Setting steps for access via PKW mechanism
5) Factory setting
6) Minimum setting required (P052) to allow display of the relevant parameter Minimum access level required (P051) to allow modification of the relevant parameter Online: The parameter can be changed in all converter operating states Offline: The parameter can only be changed in converter operating states of \(\geq 01.0\)
8)

S00 Parameter belongs to the technology software in the basic converter, S00 option
9) The "OP parameter number" (i.e. the number to be entered via the OP1S operator panel) is specified in brackets in the "PNU" column for all parameters which are not "P parameters" or "r parameters": e.g. (2010) under n010 or (2100) under U100.
10) The parameter is shown in the specified function diagram in Section 8 (here G153).
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.1 Operating status display}

\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline &  & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.2 General visualization parameters}
\begin{tabular}{|c|c|c|c|c|}
\hline  & Display of terminals 4 and 5 (main setpoint) & \[
\begin{aligned}
& \hline-200.0 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline \begin{tabular}{l}
r002 \\
(G113)
\end{tabular} & Analog input, terminals 103 and 104 (main actual value) & \[
\begin{aligned}
& \hline-200.0 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline  & Analog input, terminals 6 and 7 (selectable input 1) & \[
\begin{aligned}
& \hline-200.0 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & Ind: None Type: I2 & P 052 = 3 \\
\hline \begin{tabular}{l}
r004 \\
(G114)
\end{tabular} & Analog input, terminals 8 and 9 (selectable input 2) & \[
\begin{aligned}
& \hline-200.0 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline \begin{tabular}{l}
r005 \\
(G114)
\end{tabular} & Analog input, terminals 10 and 11 (selectable input 3) & \[
\begin{aligned}
& \hline-200.0 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \text { r006 } \\
& \text { (G115) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Analog output, terminals 14 and 15 \\
Display of output value before normalization and offset
\end{tabular} & \[
\begin{aligned}
& \hline-200.0 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline \begin{tabular}{l}
r007 \\
(G115)
\end{tabular} & \begin{tabular}{l}
Analog output, terminals 16 and 17 \\
Display of output value before normalization and offset
\end{tabular} & \[
\begin{aligned}
& \hline-200.0 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: None Type: I2 & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { r008 } \\
& (\mathrm{G} 116)
\end{aligned}
\] & \begin{tabular}{l}
Analog output, terminals 18 and 19 \\
Display of output value before normalization and offset
\end{tabular} & \[
\begin{aligned}
& \hline-200.0 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: None Type: I2 & P052 = 3 \\
\hline \begin{tabular}{l}
r009 \\
(G116)
\end{tabular} & \begin{tabular}{l}
Analog output, terminals 20 and 21 \\
Display of output value before normalization and offset
\end{tabular} & \[
\begin{aligned}
& \hline-200.0 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & Ind: None Type: I2 & P052 = 3 \\
\hline \[
\begin{aligned}
& \text { r010 } \\
& \text { (G110) }
\end{aligned}
\] & \begin{tabular}{l}
Display of status of binary inputs \\
Representation on operator panel (PMU): \\
Segment ON: Corresponding terminal is activated (HIGH level is applied) \\
Segment OFF: Corresponding terminal is not activated (LOW level is applied) \\
Segment or bit \\
0 ........ Terminal 36 \\
1 ........ Terminal 37 (switch-on) \\
2 ........ Terminal 38 (operating enable) \\
3 ........ Terminal 39 \\
4 ........ Terminal 40 \\
5 ........ Terminal 41 \\
6 ........ Terminal 42 \\
7 ........ Terminal 43 \\
8 ........ Terminal 211 \\
9 ........ Terminal 212 \\
10 ........ Terminal 213 \\
11 ........ Terminal 214 \\
12 ........ Safety shutdown (E-Stop is applied) 1) \\
13 \(\qquad\) (not used) \\
14 \(\qquad\) (not used) \\
15 \(\qquad\) (not used) \\
1) The safety shutdown command is applied (segment dark) if \\
- terminal XS-105 is open (switch operation, see also Section 9) or \\
- terminal XS-107 (Stop pushbutton) is opened briefly and terminal XS108 (Reset pushbutton) is not yet activated (pushbutton operation, see also Section 9)
\end{tabular} & & Ind: None Type: V2 & P052 = 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { r011 } \\
& \\
& \text { (G112) } \\
& \text { (G117) }
\end{aligned}
\] & \begin{tabular}{l}
Display of status of binary outputs \\
Representation on operator panel (PMU): \\
Segment ON: Corresponding terminal is activated (HIGH level is applied) or overloaded or short-circuited \\
Segment OFF: Corresponding terminal is not activated (LOW level is applied) or not overloaded or not shortcircuited \\
Display of status of binary output terminals: \\
Segment or bit \\
0 ..... Terminal 46 \\
1 ..... Terminal 48 \\
2 ..... Terminal 50 \\
3 ..... Terminal 52 \\
7 ..... Terminal 109/110 (relay contact for line contactor) \\
Display of overloading of binary outputs: \\
Segment or bit \\
8 ..... Terminal 46 \\
9 ..... Terminal 48 \\
10 .... Terminal 50 \\
11 .... Terminal 52 \\
12 .... Terminal 26 ( 15 V output) \\
13 .... Terminal 34, 44 and/or 210 ( 24 V output)
\end{tabular} & & Ind: None Type: V2 & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { r012 } \\
& \text { (G185) }
\end{aligned}
\] & \begin{tabular}{l}
Motor temperature \\
Display of motor temperature when a KTY 84 temperature sensor is connected (P490.x=1). \\
A value of " 0 " is always output in r 012 when a PTC thermistor or no temperature sensor is installed. \\
i001: Motor temperature 1 (sensor at terminals 22 / 23) \\
i002: Motor temperature 2 (sensor at terminals 204 / 205)
\end{tabular} & \[
\begin{aligned}
& -58 \text { to }+200 \\
& {\left[{ }^{\circ} \mathrm{C}\right]} \\
& 1^{\circ} \mathrm{C}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 \\
Type: I2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline r013 & \begin{tabular}{l}
Heatsink temperature \\
Display of heatsink temperature
\end{tabular} & \[
\begin{array}{|l}
\hline-47 \text { to }+200 \\
{\left[{ }^{\circ} \mathrm{C}\right]} \\
1^{\circ} \mathrm{C} \\
\hline
\end{array}
\] & Ind: None Type: 12 & P052 = 3 \\
\hline r014 & \begin{tabular}{l}
Temperature rise \\
i001: Calculated motor temperature rise (see P114) \\
i002: Calculated thyristor temperature rise (see P075)
\end{tabular} & \[
\begin{aligned}
& 0.0 \text { to } 200.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 \\
Type: O2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline r015 & \begin{tabular}{l}
Display of line voltage (armature) \\
(generated as arithmetic rectification average, RMS value display applies to sinusoidal voltage, average over 3 line-to-line voltages)
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 1500.0 \\
& {[\mathrm{~V}]} \\
& 0.1 \mathrm{~V}
\end{aligned}
\] & Ind: None Type: O2 & \(\mathrm{P} 052=3\) \\
\hline r016 & \begin{tabular}{l}
Display of line voltage (field) \\
(generated as arithmetic rectification average, RMS value display applies to sinusoidal voltage)
\end{tabular} & \[
\begin{aligned}
& 0.0 \text { to } 800.0 \\
& {[\mathrm{~V}]} \\
& 0.1 \mathrm{~V}
\end{aligned}
\] & Ind: None Type: O2 & \(\mathrm{P} 052=3\) \\
\hline r017 & Display of line frequency & \[
\begin{array}{|l}
\hline 0.00 \text { to } 120.00 \\
{[\mathrm{~Hz}]} \\
0.01 \mathrm{~Hz} \\
\hline
\end{array}
\] & Ind: None Type: O2 & \(\mathrm{P} 052=3\) \\
\hline \begin{tabular}{l}
r018 \\
(G163)
\end{tabular} & Display of firing angle (armature) & \[
\begin{array}{|l}
\hline 0.00 \text { to } 180.00 \\
\text { [degrees] } \\
0.01 \text { degrees } \\
\hline
\end{array}
\] & Ind: None Type: O2 & \(\mathrm{P} 052=3\) \\
\hline \begin{tabular}{l}
r019 \\
(G162)
\end{tabular} & \begin{tabular}{l}
Display of actual armature current \\
The internal actual armature current value is displayed (arithmetic average between two gating pulses)
\end{tabular} & \[
\begin{aligned}
& \hline-400.0 \text { to } 400.0 \\
& \text { [\% of P100] } \\
& 0.1 \% \text { of P100 }
\end{aligned}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline \begin{tabular}{l}
r020 \\
(G162)
\end{tabular} & Display of the absolute value of armature current setpoint & \[
\begin{aligned}
& \hline 0.0 \text { to } 300.0 \\
& \text { [\% of P100] } \\
& 0.1 \% \text { of P100 } \\
& \hline
\end{aligned}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { r021 } \\
& \text { (G160) }
\end{aligned}
\] & \begin{tabular}{l}
Display of torque setpoint after torque limitation \\
Steps: \(1 \triangleq 0.1 \%\) of rated motor torque (=rated motor armature current (P100) * magnetic flux at rated motor field current (P102))
\end{tabular} & ```
-400.0 to 400.0
[%]
0.1% (see column
on left)
``` & Ind: None Type: I2 & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { r022 } \\
& \text { (G160) }
\end{aligned}
\] & \begin{tabular}{l}
Display of torque setpoint before torque limitation \\
Steps: \(1 \triangleq 0.1 \%\) of rated motor torque (=rated motor armature current (P100) * magnetic flux at rated motor field current (P102))
\end{tabular} & ```
-400.0 to 400.0
[%]
0.1% (see column
on left)
``` & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \hline \mathbf{r 0 2 3} \\
& \text { (G152) } \\
& \hline
\end{aligned}
\] & Display of speed controller setpoint/actual value deviation & \[
\begin{array}{|l|}
\hline-200.00 \text { to } 199.99 \\
{[\%]} \\
0.01 \% \\
\hline
\end{array}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline  & Display of actual speed value from pulse encoder & \[
\begin{array}{|l|}
\hline-200.00 \text { to } 199.99 \\
{[\%]} \\
0.01 \% \\
\hline
\end{array}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \text { r025 } \\
& \text { (G152) }
\end{aligned}
\] & Display of actual speed controller value & \[
\begin{array}{|l}
\hline-200.0 \text { to } 199.99 \\
{[\%]} \\
0.01 \% \\
\hline
\end{array}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \hline \mathbf{r 0 2 6} \\
& \text { (G152) } \\
& \hline
\end{aligned}
\] & Display of speed controller setpoint & \[
\begin{array}{|l}
\hline-200.0 \text { to } 199.99 \\
{[\%]} \\
0.01 \% \\
\hline
\end{array}
\] & Ind: None Type: I2 & P052 = 3 \\
\hline  & Display of ramp-function generator output & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: None Type: I2 & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { r028 } \\
& \text { (G136) } \\
& \hline
\end{aligned}
\] & Display of ramp-function generator input & \[
\begin{array}{|l|}
\hline-200.00 \text { to } 199.99 \\
{[\%]} \\
0.01 \% \\
\hline
\end{array}
\] & Ind: None Type: I2 & P052 = 3 \\
\hline  & Display of main setpoint before limitation & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & Ind: None Type: I2 & P052 = 3 \\
\hline r034 (G166) & Display of firing angle (field) & \[
\begin{aligned}
& 0.00 \text { to } 180.00 \\
& \text { [degrees] } \\
& 0.01 \text { degrees } \\
& \hline
\end{aligned}
\] & Ind: None Type: O2 & P052 = 3 \\
\hline \begin{tabular}{l}
r035 \\
(G166)
\end{tabular} & Display of field current controller actual value & \[
\begin{array}{|l|}
\hline 0.0 \text { to } 199.9 \\
\text { [\% of P102] } \\
0.1 \% \text { of P102 } \\
\hline
\end{array}
\] & Ind: None Type: O2 & \(\mathrm{P} 052=3\) \\
\hline \begin{tabular}{l}
r036 \\
(G166)
\end{tabular} & Display of field current controller setpoint & \[
\begin{array}{|l|}
\hline 0.0 \text { to } 199.9 \\
\text { [\% of P102] } \\
0.1 \% \text { of P102 } \\
\hline
\end{array}
\] & Ind: None Type: O2 & \(\mathrm{P} 052=3\) \\
\hline \begin{tabular}{l}
r037 \\
(G165)
\end{tabular} & Display of actual EMF value & \[
\begin{aligned}
& -1500.0 \text { to } 1500.0 \\
& \text { [V] } \\
& 0.1 \mathrm{~V}
\end{aligned}
\] & Ind: None Type: I2 & P052 = 3 \\
\hline r038 & Display of actual armature voltage value & \[
\begin{aligned}
& -1500.0 \text { to } 1500.0 \\
& \text { [V] } \\
& 0.1 \mathrm{~V} \\
& \hline
\end{aligned}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline r039 (G165) & \begin{tabular}{l}
Display of EMF setpoint \\
This parameter displays the EMF setpoint which is applied as the control quantity in the field-weakening range. \\
This value is calculated from:
\[
\text { Umotor }_{\text {rated }}-\text { Imotor }_{\text {rated }} * R A(=P 101-P 100 * P 110)
\]
\end{tabular} & \[
\begin{aligned}
& 0.0 \text { to } 1500.0 \\
& {[\mathrm{~V}]} \\
& 0.1 \mathrm{~V}
\end{aligned}
\] & Ind: None Type: O2 & P052 = 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline r040 & \begin{tabular}{l}
Display of limitations: \\
Representation on operator panel (PMU): \\
Segment ON: Corresponding limitation is reached \\
Segment OFF: Corresponding limitation is not reached \\
Segment or bit \\
\(0 \quad \alpha \mathrm{~W}\) limit (field) reached (P251) \\
1 Negative current limit (field) reached (K0274) \\
\(2 \alpha_{W}\) limit (armature) reached ( \(\alpha_{W}\) acc. to P151 for continuous current, \(165^{\circ}\) for discontinuous current) \\
3 \(\qquad\) Negative current limit (armature) reached (K0132) \\
4 \(\qquad\) Negative maximum speed reached (P513) Speed limiting controller responds (B0201) \\
5 \(\qquad\) Negative torque limit reached (B0203)
\(\qquad\) Neg. limitation at ramp generator output reached (K0182) \\
7 \(\qquad\) Neg. limitation at ramp generator input reached (K0197) \\
8 ....... \(\alpha_{G}\) limit (field) reached (P250) \\
9 ....... Positive current limit (field) reached (K0273) \\
\(10 \ldots . . . \alpha_{G}\) limit (armature) reached (P150) \\
11 ....... Positive current limit (armature) reached (K0131) \\
12 ....... Positive maximum speed reached (P512) \\
Speed limiting controller responds (B0201) \\
13 ....... Positive torque limit reached (B0202) \\
14 ....... Pos. limitation at ramp generator output reached (K0181) \\
15 \(\qquad\) Pos. limitation at ramp generator input reached (K0196) \\
Note: This parameter has the same bit assignments as connector K0810.
\end{tabular} & & Ind: None Type: V2 & P052 = 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Connector and binector displays} \\
\hline \[
\begin{aligned}
& \hline \text { r041 } \\
& \text { (G121) }
\end{aligned}
\] & \begin{tabular}{l}
High-resolution connector display: \\
i001: Display of connector selected in P042.01 \\
i002: Display of connector selected in P042.02 \\
The display value is filtered with a time constant of 300 ms (see Section 8, Sheet G121)
\end{tabular} & \[
\begin{array}{|l}
\hline-200.00 \text { to } 199.99 \\
{[\%]} \\
0.01 \%
\end{array}
\] & \begin{tabular}{l}
Ind: 2 \\
Type: I2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \hline \text { P042 } \\
& * \\
& (\mathrm{G} 121)
\end{aligned}
\] & \begin{tabular}{l}
High-resolution connector display: \\
i001: Selection of connector to be displayed in r041.01 \\
i002: Selection of connector to be displayed in r041.02 \\
The display value is filtered with a time constant of 300 ms (see Section 8 , Sheet G121)
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { r043 } \\
& \text { (G121) }
\end{aligned}
\] & \begin{tabular}{l}
Connector display: \\
i001: Display of connector selected in P044.01 \\
i002: Display of connector selected in P044.02 \\
i003: Display of connector selected in P044.03 \\
i004: Display of connector selected in P044.04 \\
i005: Display of connector selected in P044.05 \\
i006: Display of connector selected in P044.06 \\
i007: Display of connector selected in P044.07
\end{tabular} & \[
\begin{array}{|l}
\hline-200.0 \text { to } 199.9 \\
{[\%]} \\
0.1 \%
\end{array}
\] & \begin{tabular}{l}
Ind: 7 \\
Type: I2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \hline \text { P044 } \\
& \text { * } \\
& \text { (G121) }
\end{aligned}
\] & \begin{tabular}{l}
Connector display: \\
i001: Selection of connector displayed in r043.01 \\
i002: Selection of connector displayed in r043.02 \\
i003: Selection of connector displayed in r043.03 \\
i004: Selection of connector displayed in r043.04 \\
i005: Selection of connector displayed in r043.05 \\
i006: Selection of connector displayed in r043.06 \\
i007: Selection of connector displayed in r043.07
\end{tabular} & All connector numbers 1 & \[
\begin{aligned}
& \text { Ind: } 7 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
r045 \\
(G121)
\end{tabular} & \begin{tabular}{l}
Binector display: \\
i001: Display of binector selected in P046.01 \\
i002: Display of binector selected in P046.02 \\
i003: Display of binector selected in P046.03 \\
i004: Display of binector selected in P046.04
\end{tabular} & 0 to 1 & \begin{tabular}{l}
Ind: 4 \\
Type: O2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} \\
\hline \hline P046 & Binector display: & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\(*\) & i001: Selection of binector displayed in r045.01 & All binector numbers & \begin{tabular}{l} 
Ind: 4 \\
(G121) \\
\\
\\
\\
\\
i002: Selection of binector displayed in r045.02 \\
i003: Selection of binector displayed in r045.03 \\
i004: Selection of binector displayed in r045.04
\end{tabular} \\
\hline P052 \(=3\) \\
P051 \(=40\) \\
Type: L2 & Online \\
\\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline r047 & \begin{tabular}{l}
Display of fault diagnostic memory \\
Provides more detailed information about the cause of a fault after activation of a fault message (see Section 10).
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 16 \\
& \text { Type: } 02
\end{aligned}
\] & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { r048 } \\
& \text { (G189) }
\end{aligned}
\] & \begin{tabular}{l}
Hours run \\
Display of time (hours) in which drive has been operating in states I, II or --. All times of \(\geq\) approx. 0.1 s are included in the count.
\end{tabular} & 0 to 65535 [hours] 1 hour & Ind: None Type: O2 & P052 = 3 \\
\hline \[
\begin{aligned}
& \text { r049 } \\
& \text { (G189) }
\end{aligned}
\] & \begin{tabular}{l}
Fault time \\
Display of time at which the current fault, and the last 7 acknowledged faults, were activated. \\
i001: Current fault \\
hours \\
i002: \(1^{\text {st }}\) acknowledged fault hours \\
i003: \(\quad 2^{\text {nd }}\) acknowledged fault hours \\
i004: \(3^{\text {rd }}\) acknowledged fault hours \\
i005: \(\quad 4^{\text {th }}\) acknowledged fault hours \\
i006: \(\quad 5^{\text {th }}\) acknowledged fault hours \\
i007: \(\quad 6^{\text {th }}\) acknowledged fault hours \\
i008: \(7^{\text {th }}\) acknowledged fault \\
hours
\end{tabular} & 0 to 65535 [hours] 1 hour & \begin{tabular}{l}
Ind: 8 \\
Type: O2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline P050 & \begin{tabular}{l}
Language \\
Language of plaintext display on optional OP1S operator panel and in DriveMonitor PC service routine \\
German \\
English \\
Spanish \\
French \\
Italian
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 4 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 } \geq 0 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.3 Access authorization levels}
\begin{tabular}{|c|c|c|c|c|}
\hline P051 & Key parameters & see column on left & \begin{tabular}{l}
Ind: None
FS=40 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \mathrm{P} 051 \geq 0 \\
& \text { Online }
\end{aligned}
\] \\
\hline P052 & Selection of display parameters & 0, 1, 3 & \begin{tabular}{l}
Ind: None
\[
F S=3
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \mathrm{P} 051 \geq 0 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline P053 & \begin{tabular}{l}
Control word for the permanent memory \\
[SW 1.7 and later] \\
Disabling or enabling write accesses to the permanent memory \\
i001: Disabling or enabling write accesses to the parameter memory \\
0 Only save parameter P053 in the permanent memory; parameter changes are active immediately but the changed values are only stored temporarily and are lost when the electronics supply voltage is switched off \\
1 Save all parameter values in the permanent memory \\
i002: Disabling or enabling write accesses to the memory of the nonvolatile process data \\
0 Do not save nonvolatile process data in the permanent memory \\
1 Save all nonvolatile process data in the permanent memory If the nonvolatile process data are not stored (P053.002=0), data are lost when the electronics supply of the SIMOREG DC Master is switched off, i.e. they have the value 0 after the electronics supply is switched on again: \\
K0240: Setpoint of the motor potentiometer \\
K0309: Motor heating \\
K0310: Thyristor heating \\
K9195: Output of the 1st tracking/storage element \\
K9196: Output of the 2nd tracking/storage element
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 \\
FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \mathrm{P} 052=3 \\
& \mathrm{P} 051=0 \\
& \text { on-line }
\end{aligned}
\] \\
\hline P054 & \begin{tabular}{l}
OP1S - Background lighting \\
\(0 \quad\) ON continuously \\
1 ON when panel is in use
\end{tabular} & 0, 1 & \begin{tabular}{l}
Ind: None
\[
\mathrm{FS}=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \mathrm{P} 051 \geq 0 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P055 } \\
& { }_{*} \\
& \text { (G175) }
\end{aligned}
\] & \begin{tabular}{l}
Copy function data set \\
This parameter allows parameter set \(1,2,3\) or 4 to be copied to parameter set \(1,2,3\) or 4 . This function is applicable only to parameters with 4 indices in the function data set (see also Section 9.1, Data sets and Section 9.11, and Section 8, Sheet G175). \\
0xy Do nothing, automatic resetting value at the end of a copy operation. \\
\(1 x y \quad\) The contents of parameter set \(x\) (source data set, \(x=1,2,3\) or 4 ) are copied to parameter set y (target data set, \(y=1,2,3\) or 4 ) (parameter set \(x\) remains unchanged, the original contents of parameter set y are overwritten). \\
\(x\) and \(y\) are the respective parameter set numbers (1, 2, 3 or 4 ) of the source and target parameter sets. \\
Each copy operation is started by switching P055 over into parameter mode when P055=1xy. \\
During the copy operation, the numbers of the parameters being copied are displayed on the operator panel (PMU). \\
At the end of the copy operation, P055 is reset to \(\mathrm{P} 055=0 \mathrm{xy}\).
\end{tabular} & \[
\begin{aligned}
& 011 \text { to } 143 \\
& 1
\end{aligned}
\] & Ind: None FS=012 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { r056 } \\
& \text { (G175) } \\
& \hline
\end{aligned}
\] & Display of active function data set & \[
\begin{array}{|l|}
\hline 1 \text { to } 4 \\
1
\end{array}
\] & Ind: None Type: O2 & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { P057 } \\
& \text { * } \\
& \text { (G175) }
\end{aligned}
\] & \begin{tabular}{l}
Copy Bico data set \\
This parameter allows parameter set 1 or 2 to be copied to parameter set 1 or 2 . This function is applicable only to parameters with 2 indices in the Bico data set (see also Section 9.1, Data sets and Section 9.11, and Section 8, Sheet G175). \\
0xy Do nothing, automatic resetting value at the end of a copy operation. \\
1 xy The contents of parameter set x (source data set, \(\mathrm{x}=1\) or 2 ) are copied to parameter set \(y\) (target data set, \(\mathrm{y}=1\) or 2 ) (parameter set x remains unchanged, the original contents of parameter set y are overwritten). \\
\(x\) and \(y\) are the respective parameter set numbers (1 or 2 ) of the source and target parameter sets. \\
Each copy operation is started by switching P057 over into parameter mode when P057=1xy. \\
During the copy operation, the numbers of the parameters being copied are displayed on the operator panel (PMU). \\
At the end of the copy operation, P057 is reset to \(\mathrm{P} 057=0 \mathrm{xy}\).
\end{tabular} & \[
\begin{aligned}
& 011 \text { to } 121 \\
& 1
\end{aligned}
\] & Ind: None FS=012 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { r058 } \\
& \text { (G175) }
\end{aligned}
\] & Display of active Bico data set & \[
\begin{aligned}
& \hline 1 \text { to } 2 \\
& 1
\end{aligned}
\] & Ind: None Type: O2 & P052 = 3 \\
\hline r059 & \begin{tabular}{l}
Display of operating state \\
Meaning as for r000
\end{tabular} & \[
\begin{array}{|l|}
\hline 0.0 \text { to } 14.5 \\
0.1
\end{array}
\] & Ind: None Type: O2 & P052 = 3 \\
\hline
\end{tabular}

\subsection*{11.4 Definition of SIMOREG DC MASTER converter}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
r060 \\
(G101)
\end{tabular} & \begin{tabular}{l}
Software version \\
Converter software release \\
i001: CUD \\
i002: Slot D (board location 2) \\
i003: Slot E (board location 2) \\
i004: Slot F (board location 3) \\
i005: Slot G (board location 3)
\end{tabular} & \[
\begin{aligned}
& 0.0 \text { to } 9.9 \\
& 0.1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 5 \\
Type: O2
\end{tabular} & P052 = 3 \\
\hline \begin{tabular}{l}
r061 \\
(G101)
\end{tabular} & \begin{tabular}{l}
Creation date of software \\
i001: Year \\
i002: Month \\
i003: Day \\
i004: Hour \\
i005: Minute
\end{tabular} & & \begin{tabular}{l}
Ind: 5 \\
Type: O2
\end{tabular} & P052 = 3 \\
\hline \begin{tabular}{l}
r062 \\
(G101)
\end{tabular} & \begin{tabular}{l}
Checksum \\
i001: Converter firmware checksum \\
i002: Boot sector checksum
\end{tabular} & & \begin{tabular}{l}
Ind: 2 \\
Type: L2
\end{tabular} & P052 = 3 \\
\hline \begin{tabular}{l}
r063 \\
(G101)
\end{tabular} & \begin{tabular}{l}
Board code \\
Identification code of boards mounted in locations 1 to 3 of electronics box. \\
Arrangement of board locations 1 to 3 and slots D to G in electronics box \\
i001: Board in location 1 \\
71: CUD1 \\
72: CUD1 + CUD2 \\
i002: Board in slot D (upper slot of location 2) \\
111: Pulse encoder board (SBP) [SW 1.8 and later] \\
131 to 139: Technology board \\
141 to 149: Communications board \\
151, 152, 161: Special board (EB1, EB2, SLB) \\
i003: Board in slot E (lower slot of location 2) \\
111: Pulse encoder board (SBP) [SW 1.8 and later] \\
131 to 139: Technology board \\
141 to 149: Communications board \\
151, 152, 161: Special board (EB1, EB2, SLB) \\
i004: Board in slot \(F\) (upper slot of location 3) \\
111: Pulse encoder board (SBP) [SW 1.8 and later] \\
141 to 149: Communications board \\
151, 152, 161: Special board (EB1, EB2, SLB) \\
i005: Board in slot G (lower slot of location 3) \\
111: Pulse encoder board (SBP) [SW 1.8 and later] \\
141 to 149: Communications board \\
151, 152, 161: Special board (EB1, EB2, SLB)
\end{tabular} & & \begin{tabular}{l}
Ind: 5 \\
Type: O2
\end{tabular} & P052 \(=3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \begin{tabular}{l}
r064 \\
(G101)
\end{tabular} & \begin{tabular}{l}
Board compatibility \\
Compatibility identifier of boards in locations 1 to 3 of electronics box. The compatibility identifier is bit-coded. To ensure the compatibility of a board, it must have a "1" setting at the same bit location of the parameter value as the CUD (in location 1 / index i001). \\
Indices: \\
i001: Compatibility identifier of board in location 1 \\
i002: Compatibility identifier of board in slot D \\
i003: Compatibility identifier of board in slot \(E\) \\
i004: Compatibility identifier of board in slot F \\
i005: Compatibility identifier of board in slot G
\end{tabular} & & \begin{tabular}{l}
Ind: 5 \\
Type: O2
\end{tabular} & P052 = 3 \\
\hline \begin{tabular}{l}
r065 \\
(G101)
\end{tabular} & \begin{tabular}{l}
Software identifiers \\
Extended software version identifiers in locations 1, 2, and 3 of the electronics box \\
Indices: \\
i001: Software identifier of the board in location 1 \\
i002: Software identifier of the board in slot \(D\) \\
i003: Software identifier of the board in slot E \\
i004: Software identifier of the board in slot \(F\) \\
i005: Software identifier of the board in slot G
\end{tabular} & & \begin{tabular}{l}
Ind: 5 \\
Type: O2
\end{tabular} & P052 = 3 \\
\hline
\end{tabular}

\subsection*{11.5 Definition of SIMOREG DC MASTER power section}

\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline  & \begin{tabular}{l}
Serial number of SIMOREG DC Master converter \\
i001: \(1^{\text {st }}\) and \(2^{\text {nd }}\) places of serial number \\
i002: \(3^{\text {rd }}\) and \(4^{\text {th }}\) places of serial number \\
i003: \(5^{\text {th }}\) and \(6^{\text {th }}\) places of serial number \\
i004: \(7^{\text {th }}\) and \(8^{\text {th }}\) places of serial number \\
i005: \(9^{\text {th }}\) and \(10^{\text {th }}\) places of serial number \\
i006: \(11^{\text {th }}\) and \(12^{\text {th }}\) places of serial number \\
i007: \(13^{\text {th }}\) and \(14^{\text {th }}\) places of serial number \\
i008 to i015: 0 \\
i016: Checksum for serial number \\
The serial number ASCII code is displayed in this parameter. The number is output in plaintext on the OP1S panel.
\end{tabular} & & \begin{tabular}{l}
Ind: 16 \\
Type: L2
\end{tabular} & P052 = 3 \\
\hline \begin{tabular}{l}
r070 \\
(G101)
\end{tabular} & \begin{tabular}{l}
MLFB (order number) of SIMOREG DC Master converter \\
The corresponding MLFB is displayed in encoded form in this parameter. The MLFB is displayed in plaintext on the OP1S panel.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 57 \\
& 1
\end{aligned}
\] & Ind: None Type: O2 & \(\mathrm{P} 052=3\) \\
\hline \begin{tabular}{l}
r071 \\
(G101)
\end{tabular} & \begin{tabular}{l}
Converter rated supply voltage (armature) \\
Converter rated supply voltage (armature) as specified on rating plate
\end{tabular} & \[
\begin{aligned}
& 10 \text { to } 830 \\
& \text { [V] } \\
& \text { 1V }
\end{aligned}
\] & Ind: None Type: O2 & \(\mathrm{P} 052=3\) \\
\hline \begin{tabular}{l}
r072 \\
(G101)
\end{tabular} & \begin{tabular}{l}
Converter rated DC current (armature) \\
i001: Converter rated DC current (armature) as specified on rating plate (output DC current at power terminals 1C1 and 1D1) \\
i002: Actual converter rated DC current (armature) according to setting in parameter P076.001 or P067
\end{tabular} & ```
1.0 to 6553.5
[A]
0.1A
``` & \begin{tabular}{l}
Ind: 2 \\
Type: O2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \hline \text { r073 } \\
& \text { (G101) }
\end{aligned}
\] & \begin{tabular}{l}
Converter rated DC current (field) \\
i001: Converter rated DC current (field) as specified on rating plate (output DC current at power terminals 3C and 3D) \\
i002: Actual converter rated DC current (field) as set in parameter P076.002
\end{tabular} & 1.00 to 100.00 [A] 0.01A & \begin{tabular}{l}
Ind: 2 \\
Type: O2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline \begin{tabular}{l}
r074 \\
(G101)
\end{tabular} & \begin{tabular}{l}
Converter rated supply voltage (field) \\
Converter rated supply voltage (field) as specified on rating plate
\end{tabular} & \[
\begin{aligned}
& \hline 10 \text { to } 460 \\
& \text { [V] } \\
& \text { 1V } \\
& \hline
\end{aligned}
\] & Ind: None Type: O2 & \(\mathrm{P} 052=3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P075 } \\
& * \\
& \text { (G101) } \\
& \text { (G161) }
\end{aligned}
\] & \begin{tabular}{l}
Control word for power section \\
Selection of operating characteristics of thermal monitor (\(1^{2} t\) monitoring) of power section (see also Section 9.16 "Dynamic overload capability of power section"). \\
The "Dynamic overload capability of the power module" allows the SIMOREG DC Master to operate for short periods on armature currents that are higher than the converter rated DC current specified on the rating plate (=r072.001). \\
The permissible overload period is determined solely by the power module and the preceding operating history. \\
The "thermal power module monitoring" function does not monitor operation in compliance with the load class criteria set in parameter P067. If permitted by the power module, the unit can operate for overload periods in excess of those defined by the load class. \\
0 \\
Dynamic overload capability is not permitted \\
The armature current is limited to P077 * r072.001. \\
1 Dynamic overload capability is permitted, alarm A039 \\
The armature current is limited to P077 * 1.8 * r072.001 as long as the calculated thyristor temperature does not exceed the permitted value. \\
If the temperature exceeds the permitted value, the SIMOREG DC Master protects itself by reducing the current limit to P077 * r072.001. Alarm A039 is output at the same time. \\
The armature current setpoint limit is not increased to P077 * 1.8 * r072.001 (alarm A039 also disappears) until the calculated thyristor temperature has dropped below the limit value again and the armature current setpoint is lower than the converter rated DC current (r072.001). \\
2 Dynamic overload capability is permitted, fault F039 \\
The armature current is limited to P077 * 1.8 * r072.001 as long as the calculated thyristor temperature does not exceed the permitted value. \\
Fault message F039 is output if the permissible temperature limit is exceeded.
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 2 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P076 } \\
& * \\
& \text { (G101) }
\end{aligned}
\] & \begin{tabular}{l}
Reduction of converter rated DC current \\
i001: Reduction of converter rated DC current (armature) \\
i002: Reduction of converter rated DC current (field) \\
For the purpose of achieving a close match between the converter and motor, the converter rated DC current is reduced to the value entered here. \\
The current value of the device rated DC is indicated in parameter r072.002. \\
The following values can be set:
\[
10.0 \%, 20.0 \%, 33.3 \%, 40.0 \%, 50.0 \%, 60.0 \%, 66.6 \% ~ 70.0 \%, 80.0 \%, 90.0 \%
\] and 100.0\% \\
Note: \\
If a load class is selected in parameter P067 which causes a reduction in the converter rated DC current, then the lower of the two parameter setting values is effective.
\end{tabular} & see column on left & \begin{tabular}{l}
Ind: 2 FS=100.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P077 } \\
& \\
& \text { (G101) } \\
& \text { (G161) }
\end{aligned}
\] & \begin{tabular}{l}
Total thermal reduction factor \\
The factor set in this parameter effects a reduction in the armature current limit (as defined by the setting in P075). \\
The converter must be derated in the following instances: \\
- Operation at high ambient temperatures: \\
If the ambient temperature is higher than \(45^{\circ} \mathrm{C}\) (on naturally air-cooled converters) or \(35^{\circ} \mathrm{C}\) (on converters with forced air-cooling), the possible load capability of the converter decreases as a consequence of the maximum permissible thyristor junction temperature by percentage reduction "a" as specified in the table in Section 3.4, resulting in a temperature reduction factor of \(k_{\text {temp }}=k 1\) \\
- Installation altitudes of over 1000 m above sea level: \\
In this case, the lower air density and thus less effective cooling reduce the possible load capability of the converter to the percentage load "b1" specified in the table in Section 3.4, resulting in an installation altitude reduction factor of
\[
\mathbf{k}_{\text {altitude }}=\mathbf{k} 2
\] \\
P077 must be set as follows: \(\mathbf{P 0 7 7}=\mathbf{k}_{\text {temp }}{ }^{*} \mathbf{k}_{\text {altitude }}\) \\
Note: \\
A general reduction in the converter rated DC current (through appropriate setting of parameter P076.001) can be included in this calculation.
\end{tabular} & \[
\begin{aligned}
& \hline \hline 0.50 \text { to } 1.00 \\
& 0.01
\end{aligned}
\] & Ind: None FS=1.00 Type: O2 & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P078 \\
(G101)
\end{tabular} & \begin{tabular}{l}
Reduction of converter rated supply voltage \\
i001: Rated input voltage converter armature \\
i002: Rated input voltage converter field \\
The rated voltage value of the power system actually used to supply the power section must be set in this parameter. \\
This setting acts as the reference for the undervoltage, overvoltage and phase failure monitoring functions (see also P351, P352 and P353) as well as for connectors K0285 to K0289, K0291, K0292, K0301 K0302, K0303 and K0305 \\
NOTE \\
If a SIMOREG converter is operated at a rated input voltage that is lower than its rated supply voltage, then the rated DC voltage specified in the technical data (Section 3.4) cannot be reached!
\end{tabular} & \[
\begin{aligned}
& \text { i001: } 10 \text { to r071 } \\
& \text { i002: } 10 \text { to r074 } \\
& \text { [V] } \\
& \text { 1V }
\end{aligned}
\] & Ind: 2 FS= i001: r071 i002: 400V except when r071 = 460V then 460 V Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P079 } \\
& * \\
& (\mathrm{G} 163)
\end{aligned}
\] & \begin{tabular}{l}
Short pulses / long pulses, armature gating unit \\
0 Short pulses (\(0.89 \mathrm{~ms}=\) approx. 16 degrees at 50 Hz) are output on the armature gating unit. \\
1 Long pulses (pulse duration up to approx. 0.1 ms before next pulse) are output on the armature gating unit (e.g. required in cases where field is supplied via armature terminals).
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.6 Setting values for converter control}

\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \text { P081 } \\
& * \\
& \text { (G165) }
\end{aligned}
\] & \begin{tabular}{l}
EMF-dependent field weakening \\
\(0 \quad\) No field-weakening operation as a function of speed or EMF (100\% of rated motor field current is applied constantly as the internal field current setpoint). \\
1 Field-weakening operation by internal closed-loop EMF control to ensure that in field-weakening operation, i.e. at speeds above the motor rated speed (="field-weakening activation limit speed"), the motor EMF is maintained constantly at the setpoint \(\mathrm{EMF}_{\text {set }}(\mathrm{K} 0289)=\mathrm{P} 101-\mathrm{P} 100\) * P110 (field current setpoint is the product of the EMF controller output and the precontrol component determined by the actual speed according to the field characteristic). \\
NOTICE \\
When P081=1, a valid field characteristic must be available (P117=1), otherwise the optimization run for field weakening (P051=27) must be executed.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\(\left.\begin{array}{|l|l|l|l|}\hline \text { PNU } & \begin{array}{l}\text { Description }\end{array} & \begin{array}{l}\text { Value range } \\ \text { [Unit] } \\ \text { Steps }\end{array} & \begin{array}{l}\text { Factory } \\ \text { setting } \\ \text { Type }\end{array} \\ \text { Change } \\ \text { (Access } / \\ \text { Status) }\end{array}\right]\)
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P088 } \\
& \text { (G140) } \\
& \text { (G187) }
\end{aligned}
\] & \begin{tabular}{l}
Brake closing time \\
When the "Switch-on" or "Inching" or "Crawling" command is cancelled, or when the "Switch-on" command is not applied, or when the "Fast stop" command is input, the internal controller disabling signal, and thus the thyristor gating pulse disabling signal, is not actually activated after \(n<n_{\text {min }}\) has been reached until the time delay set in this parameter has elapsed. During this period, the drive continues to produce a torque (operating state I, II or --), so as to give the holding brake enough time to close.
\end{tabular} & \[
\begin{aligned}
& \hline \hline 0.00 \text { to } 10.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s}
\end{aligned}
\] & Ind: None FS=0.00 Type: O2 & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P089 & \begin{tabular}{l}
Maximum wait time for voltage to appear at power section \\
When the line contactor has dropped out and the "Switch-on" or "Inching" or "Crawling" command is applied, the converter waits in operating states 04 and 05 for voltage to appear at the power section, for the actual field current value (K0265) to reach > 50\% of the field current setpoint (K0268). The corresponding fault message is activated if no power section voltage and no field current is detected. This parameter specifies the maximum total delay period in which the drive may dwell in operating states 04 and o5 (response threshold for function which checks for voltage at power section, see parameter P353).
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 60.0 \\
& {[\mathrm{~s}]} \\
& 0.1 \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=2.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P090 & \begin{tabular}{l}
Stabilization time for line voltage \\
When the line contactor has dropped out and the "Switch-on" or "Inching" or "Crawling" command is applied, or after a phase failure has been detected in the armature or field mains supply with active "Automatic restart" function (P086>0), the converter dwells in operating state 04 and o5 until voltage appears at the power section. Line voltage is not assumed to be applied to the power terminals until the amplitude, frequency and phase symmetry have remained within the permissible tolerance for a period exceeding the setting in this parameter. The parameter applies to both the armature and field power connections. \\
Caution: \\
The setting in P090 must be lower than the settings in P086 (except when P086=0.0) and P089!
\end{tabular} & \[
\begin{aligned}
& \hline 0.01 \text { to } 1.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s}
\end{aligned}
\] & Ind: None FS=0.02 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P091 & \begin{tabular}{l}
Setpoint threshold \\
i001: Threshold for function "Switch on only if setpoint is low" The converter can be switched on only if a setpoint |K0193| \(\leq\) P091.001 is applied to the ramp-function generator input. If the applied setpoint is higher, the converter dwells in state 06 after "switch-on" until the absolute setpoint value is \(\leq\) P091.001. \\
i002: Threshold for function \\
"Automatic pulse disable if setpoint is low" [SW 2.0 and later] If |n-set| (|K0193|) and |n-act| (K0166) are less than P091.002, the firing pulses are disabled and the drive goes into state o2.0.
\end{tabular} & \[
\begin{aligned}
& \hline 0.00 \text { to } 199.99 \\
& {[\%] \quad} \\
& 0.01 \%
\end{aligned}
\] & ```
Ind: 2
FS=
i001: 199.99
i002:0.00
Type: O2
``` & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \begin{tabular}{l}
P092 \\
(G200)
\end{tabular} & \begin{tabular}{l}
Delay times for field reversal \\
These times are used to control a reversing contactor for reversing the field polarity on a 1-quadrant converter with field reversal. \\
i001: Delay time for the field reduction before opening of the current field contactor \\
When field polarity reversal is initiated, the delay time set in P092.i001 elapsed after reaching Ifield (K0265) < Ifield min (P394) before the current field contactor is opened. \\
i002: Delay time before actuation of the new field contactor [only SW 1.7 and later] \\
After opening the current field contactor the delay time set in P092.i002 elapsed before the field contactor for the "new" field direction is actuated (drop-out delay time of the contactor use is usually longer then the pick-up delay time). \\
i003: Delay time for enabling the field firing pulses [only SW 1.7 and later] \\
After actuation of the field contactor for the "new" field direction, the delay time acc. to P092.i003 elapses before the field firing pulses are enabled. This time must be longer than the pick-up delay time of the contactor used. \\
i004: Delay time after the field build-up before armature enable [only SW 1.7 and later] \\
After - directly following the field firing pulse enable - the actual field current value \(I_{\text {field }}\) in the "new" field direction has reached the value \(I_{\text {field }}(K 0265)>I_{\text {field }}\) set \((K 0268) *\) P398/100\%, the delay time acc. to P092.i004 elapses. Then the internal (armature) "Operating enable of field reversal" is issued, i.e. the Stopping of the drive in operating state \(\geq 01.4\) is canceled. This delay time permits waiting of the end of overshooting of the actual field current value and therefore overshooting of the EMF of the DC machine straight after the field current has been built up again, before the "armature operating enable" is issued. This is intended to prevent armature overcurrents due to excessive EMF during overshooting.
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 10.0 \\
& \text { [s] } \\
& 0.1 \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \\
FS= \\
i001: 3.0 \\
i002: 0.2 \\
i003: 0.1 \\
i004: 3.0 \\
Type: O 2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \mathrm{P} 052=3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline P093 & \begin{tabular}{l}
Pick-up delay for line contactor \\
Pick-up of the line contactor is delayed in relation to "Switch on auxiliaries" by the time delay set in this parameter.
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 120.0 \\
& {[\mathrm{~s}]} \\
& 0.1 \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P094 & \begin{tabular}{l}
Switch-off delay for auxiliaries \\
Switch-off of the auxiliaries is delayed in relation to dropout of the line contactor by the time delay set in this parameter.
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 6500.0 \\
& \text { [s] } \\
& 0.1 \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P095 & \begin{tabular}{l}
Pick-up time for a contactor in the DC circuit \\
If the DC output (terminals 1C1 and 1D1) is switched through to the motor via a contactor, and if this contactor is controlled by the "Relay for line contactor" (terminals 109 and 110), then the gating pulses may not be enabled until the contactor has safely picked up. For this purpose, it may be necessary to parameterize an additional delay time for the pick-up operation. The timer set in P095 commences during a pick-up operation when the converter reaches operating state 05 . If the timer has still not run down by the time the converter exits state o4, then the converter dwells in state o3.2 until the timer has finished. \\
During the time period set in P095, the "Main contactor checkback" signal must also switch to "1" if this function is activated (see P691). Otherwise the converter dwells in state o3.3 until the timer has finished and fault message F004 is then output with fault value 6.
\end{tabular} & \[
\begin{aligned}
& 0.00 \text { to } 1.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.00 \\
Type: 02
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P096 & \begin{tabular}{l}
After-running time for the device fan \\
After the drive has been shut down (operating state \(\geq 7.0\) reached) the device fan continues to run until the power section has cooled down. \\
With this parameter you can set the minimum duration for the after-running time. \\
Note: \\
If the field current is not switched off after the drive is shut down (see P082), the field current can prevent cooling of the power section. In this case, the equipment blower is never switched off.
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 60.0 \\
& {[\mathrm{~min}]} \\
& 0.1 \mathrm{~min}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=4.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.7 Definition of motor}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \text { P100 } \\
* \\
\text { FDS } \\
(\text { G165 ) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Rated motor armature current (acc. to motor rating plate) \\
0.0 Parameter not yet set
\end{tabular} & \[
\begin{aligned}
& 0.0 \text { to } 6553.0 \\
& {[\mathrm{~A}]} \\
& 0.1 \mathrm{~A}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P101 } \\
& \text { * } \\
& \text { FDS } \\
& \text { (G165) }
\end{aligned}
\] & \begin{tabular}{l}
Rated motor armature voltage (acc. to motor rating plate) \\
Notes: \\
One of the functions of this parameter is to determine the point at which field-weakening operation commences. \\
If possible, the rated motor armature voltage + the voltage drop in the motor feeder cable (for a current setting acc. to P100) should be set in P101.
\end{tabular} & \[
\begin{aligned}
& 10 \text { to } 2000 \\
& \text { [V] } \\
& 1 \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=400 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P102 } \\
\star \\
\text { FDS } \\
(\text { G165 }) \\
\hline
\end{array}
\] & Rated motor field current (acc. to motor rating plate) 0.00 Parameter not yet set & \[
\begin{aligned}
& 0.00 \text { to } 600.00 \\
& {[A]} \\
& 0.01 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=0.00 } \\
& \text { Type: } 02
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P103 } \\
\star \\
\text { FDS } \\
\text { (G165) }
\end{array}
\] & \begin{tabular}{l}
Minimum motor field current \\
Note: \\
P103 must be set to \(<50 \%\) of P102 to execute the optimization run for field weakening (P051=27).
\end{tabular} & \[
\begin{aligned}
& 0.00 \text { to } 100.00 \\
& {[A]} \\
& 0.01 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=0.00 } \\
& \text { Type: } 02
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P104 } \\
& \star \\
& \text { FDS } \\
& \text { (G161) }
\end{aligned}
\] & \begin{tabular}{l}
Speed n 1 (acc. to motor rating plate) \\
\(1^{\text {st }}\) point (speed value) in speed-dependent current limitation. \\
This parameter is used together with P105, P106, P107 and P108 to define the characteristic of the current limiting value as a function of actual speed.
\end{tabular} & 1 to 10000 [rev/min] \(1 \mathrm{rev} / \mathrm{min}\) & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=5000 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P105 } \\
& * \\
& \text { FDS } \\
& \text { (G161) }
\end{aligned}
\] & \begin{tabular}{l}
Armature current \(\mathrm{I1}\) (acc. to motor rating plate) \\
\(1^{\text {st }}\) point (current value) in speed-dependent current limitation. \\
This parameter is used together with P104, P106, P107 and P108 to define the characteristic of the current limiting value as a function of actual speed.
\end{tabular} & \[
\begin{aligned}
& 0.1 \text { to } 6553.0 \\
& {[\mathrm{~A}]} \\
& 0.1 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=0.1 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P106 } \\
& \star \\
& \text { FDS } \\
& \text { (G161) }
\end{aligned}
\] & \begin{tabular}{l}
Speed n2 (acc. to motor rating plate) \\
\(2^{\text {nd }}\) point (speed value) in speed-dependent current limitation. \\
This parameter is used together with P104, P105, P107 and P108 to define the characteristic of the current limiting value as a function of actual speed.
\end{tabular} & 1 to 10000 [rev/min] \(1 \mathrm{rev} / \mathrm{min}\) & Ind: 4 FS=5000 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P107 } \\
& \star \\
& \text { FDS } \\
& \text { (G161) }
\end{aligned}
\] & \begin{tabular}{l}
Armature current I2 (acc. to motor rating plate) \\
\(2^{\text {nd }}\) point (current value) in speed-dependent current limitation. \\
This parameter is used together with P104, P105, P106 and P108 to define the characteristic of the current limiting value as a function of actual speed.
\end{tabular} & \[
\begin{aligned}
& 0.1 \text { to } 6553.0 \\
& {[\mathrm{~A}]} \\
& 0.1 \mathrm{~A}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P108 } \\
* \\
\text { FDS } \\
\text { (G161) }
\end{array}
\] & \begin{tabular}{l}
Maximum operating speed n3 \\
When the speed-dependent current limitation is in use, the maximum speed which is defined by the selection of the actual speed source as set in P083, must be entered in this parameter: \\
When P083=1 (analog tacho): \\
Speed at which a tacho voltage as set in P741 is reached \\
When P083=2 (pulse encoder): \\
Same value as maximum speed set in P143 \\
When P083=3 (operation without tacho): \\
Speed at which EMF as set in P115 is reached
\end{tabular} & 1 to 10000 [rev/min] \(1 \mathrm{rev} / \mathrm{min}\) & Ind: 4 FS=5000 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P109 } \\
\text { * } \\
\text { FDS } \\
\text { (G161) }
\end{array}
\] & \begin{tabular}{cc} 
Control word for speed-dependent current limitation \\
0 & Speed-dependent current limitation is deactivated \\
1 & Speed-dependent current limitation is activated
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & Ind: 4
FS=0
Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l} 
P110 \\
FDS \\
(G162) \\
(G165) \\
\hline
\end{tabular} & \begin{tabular}{l}
Armature circuit resistance \\
This parameter is set automatically during the optimization run for precontrol and current controller (armature and field) (P051=25).
\end{tabular} & \[
\begin{aligned}
& \hline 0.000 \text { to } 32.767 \\
& {[\Omega]} \\
& 0.001 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=0.000 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \text { P111 } \\
& \text { FDS } \\
& \text { (G162) } \\
& \text { (G165) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Armature circuit inductance \\
This parameter is set automatically during the optimization run for precontrol and current controller (armature and field) (P051=25).
\end{tabular} & \[
\begin{aligned}
& 0.000 \text { to } 327.67 \\
& {[\mathrm{mH}]} \\
& 0.01 \mathrm{mH}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=0.00 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = 3 } \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P112 } \\
& \text { FDS } \\
& \text { (G166) }
\end{aligned}
\] & \begin{tabular}{l}
Field circuit resistance \\
This parameter is set automatically during the optimization run for precontrol and current controller (armature and field) (P051=25).
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 3276.7 \\
& {[\Omega]} \\
& 0.1 \Omega
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=0.0 } \\
& \text { Type: } 02
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P113 } \\
& * \\
& \text { FDS }
\end{aligned}
\] & \begin{tabular}{l}
Continuous current factor torque control / current control \\
This parameter defines the current to be permitted as a continuous current by the \(I^{2} t\) motor monitoring function without activation of alarm message A037 or fault message F037. \\
This current is the product of calculation P113 * P100.
\end{tabular} & \[
\begin{aligned}
& 0.50 \text { to } 2.00 \\
& 0.01
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=1.00 } \\
& \text { Type: } 02
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P114 } \\
& \text { FDS }
\end{aligned}
\] & \begin{tabular}{l}
Thermal time constant of motor (see Section 9.15) \\
\(0.0 \quad 12 \mathrm{t}\) monitoring deactivated
\end{tabular} & \[
\begin{array}{|l}
\hline 0.0 \text { to } 80.0 \\
\text { [min] } \\
0.1 \mathrm{~min}
\end{array}
\] & \begin{tabular}{l}
Ind: 4 FS=10.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P115 } \\
& \text { FDS }
\end{aligned}
\] & \begin{tabular}{l}
EMF at maximum speed in operation without tachometer \\
(see also Section 8, Function Diagram Sheet G152) \\
This parameter is used to adjust the speed in cases where the internal actual EMF value is applied as the actual speed value. P115 defines the EMF which corresponds to maximum speed as a percentage of P078.001.
\end{tabular} & 1.00 to 140.00
[\% of P078.001]
\(0.01 \%\) & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=100.00 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P117 } \\
& * \\
& \text { FDS } \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Control word for field characteristic
\[
\begin{array}{ll}
0 & \text { No valid field characteristic has yet been recorded } \\
1 & \text { Valid field characteristic (P118 to P139 valid) }
\end{array}
\] \\
The parameter is set automatically during the field-weakening optimization run (P051=27).
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P118 \\
FDS
(G165)
\end{tabular} & \begin{tabular}{l}
Rated EMF value \\
(see also Section 8, Sheet G165) \\
EMF that is reached with a full field (according to parameter P102) and a speed as set in parameter P119. \\
The parameter is set automatically during the field-weakening optimization run (P051=27) and specifies in this case the setpoint EMF in the fieldweakening range. \\
Note: \\
As regards the closed-loop field-weakening control, only the ratio between P118 and P119 is relevant. The EMF setpoint in the field-weakening range is determined by (P101 - P100 * P110). When the setting in P100, P101 or P110 is changed subsequently, the field-weakening optimization run need not be repeated. However, P118 then no longer defines the setpoint EMF in the field-weakening range. \\
When the setting in parameter P102 is changed subsequently, the fieldweakening optimization run must be repeated, the same applies if the maximum speed setting is subsequently re-adjusted.
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 1400 \\
& \text { [V] } \\
& \text { 1V }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=340 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P119 } \\
& \text { FDS } \\
& \text { (G165) }
\end{aligned}
\] & \begin{tabular}{l}
Rated speed \\
Speed at which an actual EMF value as set in parameter P118 is reached at full field (according to parameter P102). \\
This parameter is set automatically during the optimization run for field weakening (P051=27) and specifies in this case the field-weakening activation limit speed. \\
Note: \\
As regards the closed-loop field-weakening control, only the ratio between P118 and P119 is relevant. When the setting in P100, P101 or P110 is changed subsequently, the field-weakening optimization run need not be repeated. However, P119 then no longer defines the field-weakening activation limit speed. \\
When the setting in parameter P102 is changed subsequently, the fieldweakening optimization run must be repeated, the same applies if the maximum speed setting is subsequently re-adjusted.
\end{tabular} & \[
\begin{array}{|l|}
\hline 0.0 \text { to } 199.9 \\
{[\%]} \\
0.1 \%
\end{array}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=100.0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\section*{Magnetization characteristic (field characteristic)}

Parameters P120 to P139 determine the curve shape of the magnetization characteristic (field characteristic) in normalized representation (see example field characteristic below for further details).

Note:
When the setting in parameter P102 is changed subsequently, the field-weakening optimization run must be repeated, because this alters the degree of saturation and thus the shape of the magnetization characteristic. (When parameter P100, P101 or P110, or the maximum speed adjustment, is subsequently altered, the settings in P120 to P139 remain the same, but the values in P118 and/or P119 are changed).
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
r120 \\
FDS \\
(G165) \\
(G166)
\end{tabular} & Field current for 0\% motor flux (field characteristic, point no. 0) & \[
\begin{aligned}
& \hline 0.0 \\
& \text { [\% of P102] } \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \\
Type: O2
\end{tabular} & P052 \(=3\) \\
\hline \[
\begin{array}{|l|}
\hline \text { P121 } \\
\text { FDS } \\
\text { (G165) } \\
(\text { G166 }) \\
\hline
\end{array}
\] & Field current for 5\% motor flux (field characteristic, point no. 1) & \[
\begin{aligned}
& 0.0 \text { to } 100.0 \\
& \text { [\%] } \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=3.7 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|l|}
\hline \text { P122 } \\
\text { FDS } \\
\text { (G165) } \\
(\mathrm{G} 166) \\
\hline
\end{array}
\] & Field current for 10\% motor flux (field characteristic, point no. 2) & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& \text { [\% of P102] } \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=7.3 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P123 } \\
\text { FDS } \\
\text { (G165) } \\
\text { (G166) } \\
\hline
\end{array}
\] & Field current for 15\% motor flux (field characteristic, point no. 3) & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& \text { [\% of P102] } \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=11.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P124 } \\
\text { FDS } \\
\text { (G165) } \\
\text { (G166) } \\
\hline
\end{array}
\] & Field current for 20\% motor flux (field characteristic, point no. 4) & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& \text { [\% of P102] } \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=14.7 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P125 } \\
\text { FDS } \\
\text { (G165) } \\
\text { (G166) } \\
\hline
\end{array}
\] & Field current for 25\% motor flux (field characteristic, point no. 5) & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\% \text { of P102] }} \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=18.4 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P126 } \\
\text { FDS } \\
\text { (G165) } \\
\text { (G166) } \\
\hline
\end{array}
\] & Field current for 30\% motor flux (field characteristic, point no. 6) & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\% \text { of P102] }} \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=22.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P127 } \\
\text { FDS } \\
\text { (G165) } \\
\text { (G166) } \\
\hline
\end{array}
\] & Field current for 35\% motor flux (field characteristic, point no. 7) & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& \text { [\% of P102] } \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=25.7 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P128 } \\
\text { FDS } \\
\text { (G165) } \\
\text { (G166) } \\
\hline
\end{array}
\] & Field current for 40\% motor flux (field characteristic, point no. 8) & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& \text { [\% of P102] } \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=29.4 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P129 } \\
\text { FDS } \\
\text { (G165) } \\
\text { (G166) } \\
\hline
\end{array}
\] & Field current for 45\% motor flux (field characteristic, point no. 9) & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& \text { [\% of P102] } \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=33.1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P130 } \\
\text { FDS } \\
\text { (G165) } \\
\text { (G166) } \\
\hline
\end{array}
\] & Field current for 50\% motor flux (field characteristic, point no. 10) & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& \text { [\% of P102] } \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=36.8 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P131 } \\
\text { FDS } \\
\text { (G165) } \\
(\text { G166 }) \\
\hline
\end{array}
\] & Field current for 55\% motor flux (field characteristic, point no. 11) & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& \text { [\% of P102] } \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=40.6 \\
Type: 02
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P132 } \\
\text { FDS } \\
\text { (G165) } \\
(\text { G166 }) \\
\hline
\end{array}
\] & Field current for 60\% motor flux (field characteristic, point no. 12) & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& \text { [\% of P102] } \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=44.6 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P133 } \\
\text { FDS } \\
\text { (G165) } \\
\text { (G166) } \\
\hline
\end{array}
\] & Field current for 65\% motor flux (field characteristic, point no. 13) & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& \text { [\% of P102] } \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=48.9 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P134 } \\
\text { FDS } \\
\text { (G165) } \\
\text { (G166) } \\
\hline
\end{array}
\] & Field current for 70\% motor flux (field characteristic, point no. 14) & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& \text { [\% of P102] } \\
& 0.1 \% \text { of P102 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=53.6 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit \(]\) \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} \\
\hline \hline P135 & Field current for 75\% motor flux (field characteristic, point no. 15) & \begin{tabular}{l} 
See \\
Change \\
(Access \(/\) \\
Status)
\end{tabular} \\
\begin{tabular}{l} 
FDS \\
(G165) \\
(G166)
\end{tabular} & & \begin{tabular}{l}
0.0 to 100.0 \\
{\([\%\) of P102] } \\
\(0.1 \%\) of P102
\end{tabular} & \begin{tabular}{l} 
Ind: 4 \\
FS=58.9 \\
Type: O2
\end{tabular} & \begin{tabular}{l} 
P052 = 3 \\
P051 \(=40\) \\
Offline
\end{tabular} \\
\hline P136 & Field current for 80\% motor flux (field characteristic, point no. 16) & \begin{tabular}{l}
0.0 to 100.0 \\
[\% of P102] \\
FDS \\
(G165) \\
(G166)
\end{tabular} & & \(0.1 \%\) of P102
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\section*{Example of a field characteristic}

The example characteristic exhibits a sharper curvature (i.e. a lower degree of saturation) than the field characteristic produced by the factory setting.

1) For actual field currents \(I_{f}\) of \(>100 \%\) of \(P 102\), the characteristic is extended linearly for internal calculation of the motor flux.
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.8 Definition of pulse encoder, speed sensing using pulse encoder}

The following types of pulse encoder can be used (type selection in P140):
1. Pulse encoder type 1

Encoder with two pulse tracks mutually displaced by \(90^{\circ}\) (with/without zero marker)

2. Pulse encoder type 1a

Encoder with two pulse tracks mutually displaced by \(90^{\circ}\) (with/without zero marker). The zero marker is converted internally to a signal
in the same way as on encoder type 1.

3. Pulse encoder type 2

Encoder with one pulse track per direction of rotation (with/without zero marker).

4. Pulse encoder type 3

Encoder with one pulse track and one output for direction of rotation (with/without zero marker).

\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\section*{Notes on selecting a pulse encoder (number of pulses):}

The lowest speed which can be measured by a pulse encoder is calculated with the following equation:
\(n \min [\mathrm{rev} / \min ]=21973 * \frac{1}{X * P 141} \quad\) Formula applies with a nominal measuring time of 1 ms when \(\mathrm{P} 146=0\) and \(\mathrm{P} 147=0\)

The following applies:
\(X=1\) for \(1 x\) evaluation of pulse encoder signals ( \(\mathrm{P} 144=0\) )
2 for \(2 x\) evaluation of pulse encoder signals (P144=1)
4 for \(4 x\) evaluation of pulse encoder signals (P144=2)
see also "Single/multiple evaluation of encoder pulses"
Lower speeds are interpreted as \(\mathrm{n}=0\).
The frequency of the pulse encoder signals at terminals 28 and 29 or 30 and 31 must not be higher than 300 kHz . The highest speed which can be measured by a pulse encoder is calculated with the following equation:
\[
n \max [\mathrm{rev} / \mathrm{min}]=\frac{18000000}{P 141}
\]

When selecting a pulse encoder, therefore, it is important to ensure that the lowest possible speed \(\neq 0\) is significantly higher than \(\mathrm{n}_{\text {min }}\) and the highest possible speed does not exceed \(\mathrm{n}_{\text {max }}\).


Equations for selection of pulses per revolution IM of pulse encoder

\section*{Single/multiple evaluation of encoder pulses:}

The setting for single/multiple evaluation of encoder pulses is applicable for both the speed and position sensing functions.
1x evaluation: Only the rising edges of one pulse track are evaluated (applies to all encoder types).
\(2 x\) evaluation: The rising and falling edges of one pulse track are evaluated (can be set for encoder types 1, 1a and 2).
\(4 x\) evaluation: \(\quad\) The rising and falling edges of both pulse tracks are evaluated (can be set for encoder types 1 and 1a)

See parameters P450 and P451 for position sensing function
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { P140 } \\
& \text { (G145) }
\end{aligned}
\] & \begin{tabular}{l}
Selection of pulse encoder type \\
See beginning of this Section (11.8) for pulse encoder types \\
\(0 \quad\) No encoder/"Speed sensing with pulse encoder" function not selected \\
Pulse encoder type 1 \\
Pulse encoder type 1a \\
Pulse encoder type 2 \\
Pulse encoder type 3
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 4 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \mathbf{P 1 4 1} \\
(\mathrm{G} 145)
\end{array}
\] & Number of pulses of pulse encoder & 1 to 32767 [pulses/rev] 1 pulse/rev & Ind: None FS=500 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P142 } \\
& \text { (G145) }
\end{aligned}
\] & \begin{tabular}{l}
Matching to pulse encoder signal voltage \\
\(0 \quad\) Pulse encoder outputs 5 V signals \\
1 Pulse encoder outputs 15 V signals \\
Matching of internal operating points to signal voltage of incoming pulse encoder signals. \\
CAUTION \\
Resetting parameter P142 to the alternative setting does not switch over the supply voltage for the pulse encoder (terminals X173.26 and 27). Terminal X173.26 always supplies +15 V . An external voltage supply is must be provided for pulse encoders requiring a 5 V supply.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P143 } \\
& \text { FDS } \\
& \text { (G145) }
\end{aligned}
\] & \begin{tabular}{l}
Setting the maximum speed for pulse encoder operation \\
The speed set in this parameter corresponds to an actual speed (K0040) of 100\%.
\end{tabular} & 1.0 to 6500.0 [rev/min] \(0.1 \mathrm{rev} / \mathrm{min}\) & \begin{tabular}{l}
Ind: 4 FS=500.0 \\
Type: 04
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}

Control parameters for speed sensing with pulse encoder P144 to P147:
P144 and P147 determine the basic setting for actual speed sensing by means of pulse encoder (single or multiple evaluation of pulse encoder signals and nominal measuring time) and thus also define the lowest possible measurable speed (minimum speed).

P145 and P146 can be used in special cases to extend the measurable speed range down to even lower speeds, on the basis of the minimum speed defined by the settings in P144 and P147.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { P144 } \\
& * \\
& \text { FDS } \\
& \text { (G145) }
\end{aligned}
\] & \begin{tabular}{l}
Multiple evaluation of encoder signals \\
\(0 \quad 1 \mathrm{x}\) evaluation of pulse encoder signals \\
\(1 \underline{2 x}\) evaluation of pulse encoder signals (for encoder types \(1,1 a, 2\) ) \\
2 4x evaluation of pulse encoder signals (for encoder types 1, 1a) \\
Note: \\
In contrast to the 1 x evaluation method, 2 x or 4 x evaluation reduces the minimum measurable speed by a factor of 2 or 4 respectively, but may produce an "unsteady" actual speed value on encoders with unequal pulse/pause ratio or without an exact \(90^{\circ}\) displacement between encoder signals.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 2 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=2 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P145 } \\
& \text { * } \\
& \text { FDS } \\
& \text { (G145) }
\end{aligned}
\] & \begin{tabular}{l}
Automatic measuring range switchover for measurement of low speeds - switchover of multiple evaluation \\
0 \\
Automatic switchover of multiple evaluation of pulse encoder signals OFF (i.e. P144 is always active) \\
1 Automatic switchover of multiple evaluation of pulse encoder signals ON (i.e. when P144 \(=0,2 x\) evaluation is selected for low speeds and \(4 x\) evaluation for very low speeds. When P144 \(=1,4 x\) evaluation is selected for low speeds) \\
As opposed to P145 = 0, this setting reduces the minimum measurable speed by up to a factor of 4 . \\
Caution: \\
Switching over the multiple evaluation method for encoder pulses also affects the position sensing function in the measuring channel. For this reason, this setting may not be used in conjunction with positioning operations. Connectors K0042 to K0044 are inoperative when P145 = 1.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=0 } \\
& \text { Type: } 02
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P146 } \\
& * \\
& \text { FDS } \\
& \text { (G145) }
\end{aligned}
\] & \begin{tabular}{l}
Automatic measuring range switchover for measurement of Iow speeds - switchover of measuring time \\
0 Automatic switchover of measuring time OFF (i.e. P147 is always active) \\
1 Automatic switchover of measuring time ON This setting extends the measuring time for low speeds (based on the measuring time set in P147, i.e. when P147 \(=0\), the nominal measuring time is switched over to 2 ms for low speeds and to 4 ms for very low speeds. When P147 = 1, the nominal measuring time is switched over to 4 ms for low speeds) \\
Caution: \\
When P146=1, the minimum measurable speed can be reduced by up to a factor of 4 as opposed to a 0 setting. However, this setting results in a longer actual speed sensing delay in the extended minimum speed range.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P147 } \\
& \text { * } \\
& \text { FDS } \\
& \text { (G145) }
\end{aligned}
\] &  & \[
\begin{aligned}
& 0 \text { to } 20 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \hline \text { Ind: } 4 \\
& \text { FS=0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P148 } \\
& \text { * } \\
& \text { FDS } \\
& \text { (G145) }
\end{aligned}
\] & \begin{tabular}{l}
Pulse encoder monitoring function \\
0 Pulse encoder monitoring OFF (activation of F048 in response to a defective pulse encoder is disabled) \\
1 Pulse encoder monitoring ON (hardware monitoring of pulse encoder signals for implausible behaviour (i.e. frequent speed changes, distance between edges too short, encoder cable defect or short between two encoder cables) may cause activation of F048)
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.9 Closed-loop armature current control, auto-reversing stage, armature gating unit}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { P150 } \\
& \text { FDS } \\
& \text { (G163) }
\end{aligned}
\] & \begin{tabular}{l}
Alpha G limit (armature) \\
Rectifier stability limit for firing angle of armature converter.
\end{tabular} & 0 to 165 [degrees] 1 degrees & Ind: 4 FS=5 / 30 (for 1Q / 4Q converters) Type: O2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P151 } \\
& \text { FDS } \\
& \text { (G163) }
\end{aligned}
\] & \begin{tabular}{l}
Alpha W limit (armature) \\
Inverter stability limit for firing angle of armature converter. This firing angle limitation is active only when the armature current is continuous. In the case of a discontinuous armature current, the firing angle is limited to 165 degrees.
\end{tabular} & \[
\begin{aligned}
& 120 \text { to } 165 \\
& \text { [degrees] } \\
& 1 \text { degrees }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=150 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P152 } \\
& \text { * } \\
& \text { FDS } \\
& \text { (G163) }
\end{aligned}
\] & \begin{tabular}{l}
Line frequency correction (armature) \\
The internal line synchronization for the armature gating pulses derived from the power terminals (armature mains infeed) is averaged over the number of line periods set in this parameter. In operation on "weak" power supplies with unstable frequencies, for example, on a diesel-driven generator (isolated operation), this parameter must be set lower than for operation on "constant \(\mathrm{V} / \mathrm{Hz}\) " systems in order to achieve a higher frequency correction speed.
\end{tabular} & 1 to 20 & \begin{tabular}{l}
Ind: 4 FS=20 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P153 } \\
& \text { * } \\
& \text { FDS } \\
& \text { (G162) }
\end{aligned}
\] & \begin{tabular}{|cl} 
Control word for the armature precontrol \\
0 & Armature precontrol disabled, output of the precontrol=165 \\
1 & Armature precontrol active \\
2 & \begin{tabular}{l} 
Armature precontrol active but EMF influence only active on \\
change in torque direction
\end{tabular} \\
3 & \begin{tabular}{l} 
Armature precontrol active but without EMF influence., i.e. for \\
precontrol, the EMF is assumed to be 0. \\
(recommended setting for supplying large inductance from \\
armature terminals, e.g. solenoids, field supply) \\
[can only be set on SW 1.7 and later]
\end{tabular} \\
& \\
& \\
& \\
\hline
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P154 } \\
& \text { * } \\
& \text { FDS } \\
& \text { (G162) }
\end{aligned}
\] & \begin{tabular}{l}
Set armature current controller I component to zero \\
\(0 \quad\) Set controller I component to zero (i.e. to obtain pure \(P\) controller) \\
1 Controller I component is active
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P155 } \\
& \text { FDS } \\
& \text { (G162) }
\end{aligned}
\] & \begin{tabular}{l}
Armature current controller \(\mathbf{P}\) gain \\
Proportional gain of armature current controller \\
This parameter is automatically set during the optimization run for precontrol and current controller (armature and field) (P051=25). \\
See also parameter P175
\end{tabular} & \[
\begin{aligned}
& 0.01 \text { to } 200.00 \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.10 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P156 } \\
& \text { FDS } \\
& \text { (G162) }
\end{aligned}
\] & \begin{tabular}{l}
Armature current controller reset time \\
This parameter is automatically set during the optimization run for precontrol and current controller (armature and field) (P051=25). See also parameter P176
\end{tabular} & \[
\begin{aligned}
& \hline 0.001 \text { to } 10.000 \\
& {[\mathrm{~s}]} \\
& 0.001 \mathrm{~s} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=0,200 } \\
\text { Type: O2 }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P157 } \\
* \\
\text { FDS } \\
\text { (G162) }
\end{array}
\] & \begin{tabular}{l}
Control word for current setpoint integrator \\
\(0 \quad\) Reduced gearbox stressing The integrator is active only after a change in torque direction (acts as ramp-function generator for armature current setpoint only until the output reaches the setpoint at the integrator input for the \(1^{\text {st }}\) time after a change in torque direction). \\
1 Current setpoint integrator \\
The integrator is always active (acts as ramp-function generator for the armature current setpoint)
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathrm{P} 158 \\
& \mathrm{FDS} \\
& (\mathrm{G} 162)
\end{aligned}
\] & \begin{tabular}{l}
Ramp-up time for current setpoint integrator (reduced gearbox stressing) \\
Period of an acceleration ramp with a setpoint step change from 0\% to 100\% at r072.002. \\
For older DC machines (i.e. unsuitable for steep rates of current rise), P157=1 and P158=0.040 must be set.
\end{tabular} & \[
\begin{aligned}
& \hline 0.000 \text { to } 1.000 \\
& {[\mathrm{~s}]} \\
& 0.001 \mathrm{~s}
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=0.000 } \\
\text { Type: O2 }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P159 } \\
\text { FDS } \\
(\mathrm{G} 163)
\end{array}
\] & Switchover threshold for auto-reversing stage (armature) & \[
\begin{aligned}
& \hline 0.00 \text { to } 100.00 \\
& \text { [\%] } \\
& 0.01 \% \text { of } n \text { controller } \\
& \text { output }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.01 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P160 } \\
& \text { FDS } \\
& \text { (G163) }
\end{aligned}
\] & \begin{tabular}{l}
Additional torque-free interval \\
Additional torque-free interval for torque direction change in 4Q operation. It is particularly important to set this parameter to values of \(>0\) for converter armatures which supply large inductances (e.g. lifting solenoids).
\end{tabular} & \[
\begin{aligned}
& \hline 0.000 \text { to } 2.000 \\
& {[\mathrm{~s}]} \\
& 0.001 \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.000 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P161 } \\
& \text { FDS } \\
& \text { (G163) }
\end{aligned}
\] & \begin{tabular}{l}
Additional Alpha W pulses with disabled second pulses \\
Number of additional Alpha W pulses with disabled second pulses after detection of \(\mathrm{I}=0\) message prior to a change in torque direction. It is particularly important to set this parameter to values of >0 for converter armatures which supply large inductances (e.g. lifting solenoids). These pulses cause the current to decay prior to a change in torque direction. When it drops below the thyristor holding current value, the current is suddenly chopped by the unfired second thyristor and the residual energy stored in the load inductor must be dissipated via a suppressor circuit (e.g. a varistor) to prevent the load inductor from producing a surge voltage. See also P179.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 100 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \hline \text { Ind: } 4 \\
& \text { FS=0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P162 } \\
\text { *DS } \\
\text { (G162) }
\end{array}
\] & \begin{tabular}{l}
EMF calculation method for armature precontrol \\
0 The EMF derived from the measured armature voltage is applied \\
1 The EMF derived from the calculated armature voltage is applied (the purpose of this setting is to prevent the occurrence of any low-frequency ( \(<15 \mathrm{~Hz}\) ) armature current fluctuations)
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P163 } \\
& \star \\
& \text { FDS } \\
& \text { (G162) }
\end{aligned}
\] & \begin{tabular}{|cl} 
EMF filtering method for armature precontrol \\
0 & No filtering \\
1 & \begin{tabular}{l} 
Filtering element, filter time constant = approx. 10 ms \\
(for use by works engineers only)
\end{tabular} \\
2 & \begin{tabular}{l} 
Averaging over the last 2 EMF values \\
(for use by works engineers only )
\end{tabular} \\
3 & Averaging over the last 3 EMF values
\end{tabular} & \[
\begin{array}{|l|}
\hline 0 \text { to } 3 \\
1
\end{array}
\] & \begin{tabular}{l}
Ind: 4 FS=3 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P164 } \\
* \\
\text { FDS } \\
\text { (G162) }
\end{array}
\] & \begin{tabular}{l}
Set armature current controller P component to zero \\
\(0 \quad\) Set controller P component to zero (i.e. to obtain pure I controller) \\
1 Controller P component is active
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P165 } \\
* \\
\text { BDS } \\
\text { (G163) }
\end{array}
\] & \begin{tabular}{l}
Select the binector to control the "Enable a torque direction for torque direction change" function \\
\(0=\) Binector B0000 \\
1 = Binector B0001 \\
etc. \\
Binector status = \\
0 ... Enable for M0 or MII \\
1 ... Enable for MO or MI
\end{tabular} & All binector numbers 1 & Ind: 2 FS=220 Type: L2 & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.10 Current limitation, torque limitation}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l|}
\hline \text { P169 } \\
* \\
\text { FDS } \\
\text { (G160) } \\
\hline
\end{array}
\] & Select closed-loop torque / current control See parameter P170 & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=1 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P170 } \\
& * \\
& \text { FDS } \\
& \text { (G160) }
\end{aligned}
\] & \begin{tabular}{l}
Select closed-loop torque / current control \\
Note: \\
A valid field characteristic (P117=1) must be available when P169 or \(\mathrm{P} 170=1\). If one is not, the optimization run for field weakening (P051=27) must be executed. \\
P263 determines the input quantity for the motor flux calculation.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & Ind: 4
FS=0
Type: O2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P171 } \\
& \text { FDS } \\
& \text { (G160) } \\
& \text { (G161) } \\
& \hline
\end{aligned}
\] & System current limit in torque direction I & \[
\begin{aligned}
& \hline \hline 0.0 \text { to } 300.0 \\
& \text { [\% of P100] } \\
& 0.1 \% \text { of P100 }
\end{aligned}
\] & Ind: 4 FS=100.0 Type: 02 & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P172 } \\
& \text { FDS } \\
& \text { (G160) } \\
& \text { (G161) } \\
& \hline
\end{aligned}
\] & System current limit in torque direction II & \[
\begin{aligned}
& -300.0 \text { to } 0.0 \\
& \text { [\% of P100] } \\
& 0.1 \% \text { of P100 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS }=-100.0 \\
& \text { Type: } 12
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P173 } \\
& * \\
& \text { BDS } \\
& \text { (G160) }
\end{aligned}
\] & \begin{tabular}{l}
Source for "Torque control / Current control" switchover [SW 1.9 and later] \\
The binector selected here has the same effect as parameter P170.
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \[
\begin{aligned}
& \text { Ind: } 2 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P175 } \\
& * \\
& \text { FDS } \\
& \text { (G162) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for variable P gain [SW 1.8 and later] \\
The content of the selected connector acts as the P gain for the armature current controller after multiplication with P155.
\end{tabular} & All connector numbers 1 & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=1 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P176 } \\
& * \\
& \text { FDS } \\
& \text { (G162) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for variable Integration time [SW 1.8 and later] \\
The content of the selected connector acts as the integration time for the armature current controller after multiplication with P156.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P177 } \\
& \text { * } \\
& \text { BDS } \\
& \text { (G163) }
\end{aligned}
\] & \begin{tabular}{l}
Source for the command "no immediate pulse disable" \\
[SW 1.8 and later] \\
A low signal causes the armature firing pulses to be disabled immediately without waiting for the \(\mathrm{I}=0\) signal or without outputting alpha-W pulses for current reduction. The additional alpha-W pulses (acc. to parameter P161) are not output either. As long as this command is pending, it is not possible to fall below operating state o1.6. \\
This command can be used, for example, if it is not a motor that is supplied by the SIMOREG DC Master but a field and the current is to be reduced via an external parallel-connected de-excitation resistance.
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline P178
*
BDS
(G163) & \begin{tabular}{l}
Source for the command "fire all thyristors simultaneously" [SW 1.8 and later] \\
Setting this command (high signal) causes all six thyristors of the thyristor bridge I to be fired continuously and simultaneously. Switchover to long pulses is automatic. This command is only active if no line voltage is applied to the armature power section .
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P179 } \\
& \text { FDS } \\
& \text { (G163) }
\end{aligned}
\] & \begin{tabular}{l}
Additional Alpha W pulses with disabled second pulses \\
[SW 1.9 and later] \\
Number of additional Alpha W pulses with disabled second pulses after detection of \(\mathrm{I}=0\) message prior to a change in torque direction. \\
It is particularly important to set this parameter to values of \(>0\) for converter armatures which supply large inductances (e.g. lifting solenoids). These pulses cause the current to decay before a change in torque direction; the thyristors are fired in pairs to prevent sudden chopping, and the generation of a surge voltage by the load inductor, when the current drops below the thyristor holding current. \\
When a change in torque direction is required, the current in the existing direction must be reduced. \\
This is achieved in the following ways: \\
If P179>0: \\
1) Alpha \(W\) pulses with enabled second pulses until the I=0 signal arrives \\
2) Additional Alpha W pulses with enabled second pulses (number as set in P179.F) \\
3) Additional Alpha \(W\) pulses with disabled second pulses (number as set in P161.F) \\
4) Additional torque-free interval (period as set in P160.F) If P179 = 0: \\
1) Alpha \(W\) pulses with disabled second pulses until the I=0 signal arrives \\
2) Additional Alpha W pulses with disabled second pulses (number as set in P161.F) \\
3) Additional torque-free interval (period as set in P160.F)
\end{tabular} & \[
\begin{array}{|l|}
\hline 0 \text { to } 100 \\
1
\end{array}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P180 } \\
& \text { FDS } \\
& \text { (G160) } \\
& \hline
\end{aligned}
\] & Positive torque limit 1 & ```
-300.00 to 300.00
[%]
0.01%
of rated motor torque
``` & \[
\begin{aligned}
& \hline \hline \text { Ind: } 4 \\
& \text { FS=300.00 } \\
& \text { Type: } 12
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = 3 } \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P181 } \\
\text { FDS } \\
\text { (G160) } \\
\hline
\end{array}
\] & Negative torque limit 1 & ```
-300.00 to 300.00
[%]
0.01%
of rated motor torque
``` & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=-300.00 } \\
& \text { Type: I2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P182 } \\
\text { FDS } \\
\text { (G160) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Positive torque limit 2 \\
If "Torque limit switchover" is selected (state of binector selected in P694 \(=1\) ) and the speed is higher than the threshold speed set in parameter P184, then torque limit 2 is activated in place of torque limit 1.
\end{tabular} & \[
\begin{aligned}
& -300.00 \text { to } 300.00 \\
& {[\%]} \\
& 0.01 \% \\
& \text { of rated motor torque }
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=300.00 } \\
\text { Type: } 12
\end{array}
\] & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P183 } \\
& \text { FDS } \\
& (\text { G160 })
\end{aligned}
\] & \begin{tabular}{l}
Negative torque limit 2 \\
If "Torque limit switchover" is selected (state of binector selected in P694 \(=1\) ) and the speed is higher than the threshold speed set in parameter P184, then torque limit 2 is activated in place of torque limit 1.
\end{tabular} & \[
\begin{aligned}
& -300.00 \text { to } 300.00 \\
& {[\%]} \\
& 0.01 \% \\
& \text { of rated motor torque }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=-300.00 } \\
& \text { Type: } 12
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P184 } \\
\text { FDS } \\
(\text { G160 })
\end{array}
\] & \begin{tabular}{l}
Threshold speed for torque limits \\
If "Torque limit switchover" is selected (state of binector selected in P694 \(=1\) ) and the speed (K0166) is higher than the threshold speed set in parameter P184, then torque limit 2 (P182, P183) is activated in place of torque limit 1 (P180, P181).
\end{tabular} & \[
\begin{aligned}
& \hline 0.00 \text { to } 120.00 \\
& {[\%]} \\
& 0.01 \% \\
& \text { of maximum speed }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P190 } \\
\text { FDS } \\
\text { (G162) }
\end{array}
\] & \begin{tabular}{l}
Filter time for setpoint for armature current precontrol \\
[SW 1.9 and later] \\
Filtering of the armature current setpoint at the input of the precontrol for the armature current controller. \\
The purpose of this filter is to decouple the armature current precontrol from the armature current controller.
\end{tabular} & \[
\begin{array}{|l}
\hline 0 \text { to } 10000 \\
{[\mathrm{~ms}]} \\
1 \mathrm{~ms}
\end{array}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P191 } \\
& \text { FDS } \\
& \text { (G162) }
\end{aligned}
\] & \begin{tabular}{l}
Filter time for setpoint for armature current controller \\
[SW 1.9 and later] \\
Filtering of the armature current setpoint at the input of the armature current controller. \\
The purpose of this filter is to decouple the armature current precontrol from the armature current controller.
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=0 } \\
\text { Type: O2 }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.11 Speed controller}
further parameters for the speed controller P550-P567
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Setting values for speed controller - actual value/setpoint processing} \\
\hline \begin{tabular}{l}
P200 \\
FDS (G152)
\end{tabular} & \begin{tabular}{l}
Filter time for actual speed controller value \\
Filtering of the actual speed value by means of a PT1 element. \\
This filter setting is taken into account by the speed controller optimization run (P051=26).
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& \text { [ms] } \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P201 } \\
& \text { FDS } \\
& \text { (G152) } \\
& \hline
\end{aligned}
\] & Band-stop 1: Resonant frequency & \[
\begin{array}{|l|}
\hline 1 \text { to } 140 \\
{[\mathrm{~Hz}]} \\
1 \mathrm{~Hz} \\
\hline
\end{array}
\] & Ind: 4 FS=1 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P202 \\
FDS \\
(G152)
\end{tabular} & Band-stop 1: Quality
\[
\begin{array}{ll}
0 & \text { Quality }=0.5 \\
1 & \text { Quality }=1 \\
2 & \text { Quality }=2 \\
3 & \text { Quality }=3
\end{array}
\] & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Online }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 2 0 3} \\
& \text { FDS } \\
& \text { (G152) } \\
& \hline
\end{aligned}
\] & Band-stop 2: Resonant frequency & \[
\begin{array}{|l|}
\hline 1 \text { to } 140 \\
{[\mathrm{~Hz}]} \\
1 \mathrm{~Hz} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=1 } \\
& \text { Type: } 02 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Online } \\
\hline
\end{array}
\] \\
\hline \begin{tabular}{l}
P204 \\
FDS
\end{tabular} & Band-stop 2: Quality
\[
\begin{array}{ll}
0 & \text { Quality }=0.5 \\
1 & \text { Quality }=1 \\
2 & \text { Quality }=2 \\
3 & \text { Quality }=3
\end{array}
\] & \[
\begin{array}{|l}
\hline 0 \text { to } 3 \\
1
\end{array}
\] & Ind: 4 FS=0 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P205 } \\
& \text { FDS } \\
& \text { (G152) } \\
& \hline
\end{aligned}
\] & D element: Derivative-action time & \[
\begin{aligned}
& 0 \text { to } 1000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} \\
\hline \hline P206 & D element: Filter time & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline FDS & & 0 to 100 & {\([\mathrm{ms}]\)} & Ind: 4 \\
(G152) & & 1 ms & FS=0 \(=3\) \\
P052 \(=40\) \\
Type: O2 & Online \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { r217 } \\
& \text { (G152) }
\end{aligned}
\] & Indication of the active droop of the speed controller [SW 1.7 and later] & \[
\begin{aligned}
& \hline 0.0 \text { to } 10.0 \\
& {[\%]} \\
& 0.1 \% \\
& \hline
\end{aligned}
\] & Ind: None Type: O2 & P052 \(=3\) \\
\hline r218 (G151) (G152) & \begin{tabular}{l}
Indication of the active integration time of the speed controller \\
[SW 1.7 and later]
\end{tabular} & \[
\begin{array}{|l}
\hline 0.010 \text { to } 10.000 \\
\text { [s] } \\
0.001 \mathrm{~s} \\
\hline
\end{array}
\] & Ind: None Type: O2 & \(\mathrm{P} 052=3\) \\
\hline r219 (G151) (G152) & Display of effective P gain of speed controller & \[
\begin{aligned}
& 0.01 \text { to } 200.00 \\
& 0.01
\end{aligned}
\] & Ind: None Type: O2 & P052 = 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
\mathbf{P} 221
\] \\
FDS (G152)
\end{tabular} & \begin{tabular}{l}
Speed controller: Hysteresis for PI/P controller switchover \\
[SW 1.9 and later] \\
See P222 for further details.
\end{tabular} & ```
0.00 to 100.00
[%]
0.01% of maximum
speed
``` & \begin{tabular}{l}
Ind: 4 FS=2.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P222 } \\
& \text { FDS } \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Speed controller: PI / P controller switchover threshold \\
0.00 Automatic switchover from Pl to P controller deactivated. \\
> 0.00 Depending on the actual speed (K0166), the PI controller switches over to a \(P\) controller if the speed drops below the threshold set in parameter P222. The integrator is not switched in again (with value of 0) until the actual speed is > P222 + P221. \\
This function allows the drive to be stopped without overshoot using a zero setpoint with the controllers enabled. \\
This function is active only if the binector selected in P698 is in the log. "1" state.
\end{tabular} & ```
0.00 to 10.00
[%]
0.01% of maximum
speed
``` & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Setting values for speed controller} \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 2 2 3} \\
& * \\
& \text { FDS } \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Control word for speed controller precontrol \\
\(0 \quad\) Speed controller precontrol disabled \\
1 Speed controller precontrol acts as torque setpoint (is added to n controller output)
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & Ind: 4 FS=0 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P224 } \\
& \text { * } \\
& \text { FDS }
\end{aligned}
\] & \begin{tabular}{l}
Control word for speed controller I component \\
\(0 \quad\) Set controller I component to 0 (i.e. to achieve a pure P controller) \\
1 Controller I component is active The I component is stopped when a torque or current limit is reached \\
2 Controller I component is active The I component is stopped when a torque limit is reached \\
3 Controller I component is active The I component is stopped only when \(\pm 199.99 \%\) is reached
\end{tabular} & \[
0 \text { to } 3
\] & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P225 \\
FDS \\
(G151)
\end{tabular} & \begin{tabular}{l}
Speed controller \(\mathbf{P}\) gain \\
See also setting values for "Speed controller adaptation" function (P550 to P559). \\
This parameter is set automatically during the speed controller optimization run (P051=26).
\end{tabular} & \[
\begin{aligned}
& 0.10 \text { to } 200.00 \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=3.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P226 } \\
& \text { FDS } \\
& \text { (G151) }
\end{aligned}
\] & \begin{tabular}{l}
Speed controller reset time \\
This parameter is set automatically during the speed controller optimization run (P051=26).
\end{tabular} & \[
\begin{aligned}
& \hline 0.010 \text { to } 10.000 \\
& {[\mathrm{~s}]} \\
& 0.001 \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0,650 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Speed controller droop}

Function: A parameterizable feedback loop can be connected in parallel to the I and P components of the speed controller (acts on summation point of setpoint and actual value)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{P227} & \multirow[t]{2}{*}{Speed controller droop} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.0 \text { to } 10.0 \\
& \text { [\%] }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=0.0 } \\
& \text { Type: O2 }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\]} \\
\hline & & & & \\
\hline FDS & A 10\% speed droop setting causes a \(10 \%\) deviation in the speed from the setpoint at a \(100 \%\) controller output ( \(100 \%\) torque or armature current & \[
0.1 \%
\] & & \\
\hline (G151 & setpoint) ("softening" of closed-loop control). & & & \\
\hline & See also P562, P563, P630 and P684 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P228 } \\
& \text { FDS } \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Filter time for speed setpoint \\
Filtering of setpoint by means of a PT1 element. \\
This parameter is automatically set to the same value as the speed controller reset time during the speed controller optimization run (P051=26). It may be useful to parameterize lower values when the ramp-function generator is in use.
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 2 2 9} \\
& * \\
& \text { FDS } \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Control of I component tracking for slave drive \\
\(0 \quad\) On a slave drive, the I component of the speed controller is made to follow such that M(set, ncontr.) = M(set, limit), the speed setpoint is set to the actual speed value \\
1 Tracking deactivated
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P230 } \\
& \text { FDS } \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Setting period of speed controller integrator \\
[SW 1.9 and later] \\
After a positive edge at the binector set in P695, the integrator of the speed controller is set to the instantaneous value of the connector set in P631. If a time of \(>0\) is set on P230, this setting operation is not performed just once, but the speed controller integrator is set continually to the setting value for the parameterized time period.
\end{tabular} & \[
\begin{array}{|l}
\hline 0 \text { to } 10000 \\
{[\mathrm{~ms}]} \\
1 \mathrm{~ms}
\end{array}
\] & \begin{tabular}{l}
Ind: 4 \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P234 } \\
& \text { * } \\
& \text { FDS }
\end{aligned}
\] & \begin{tabular}{l}
Set speed controller P component to zero \\
0 Set controller P component to zero (i.e. to obtain a pure I controller) \\
1 Controller P component is active
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=1 } \\
\text { Type: O2 }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P236 } \\
& \text { * } \\
& \text { FDS }
\end{aligned}
\] & \begin{tabular}{l}
Specifying the dynamic response of the speed control loop \\
[SW 2.0 and later] \\
The parameter value is used as the optimization criterion for the speed control loop. \\
Note: \\
Changes to this value do not take effect until the speed controller optimization run (P051 \(=26\), see Section 7.5 ) has been executed. \\
Setting instructions: \\
For drives, for example, with gear backlash, optimization should be started with low dynamic response values (from 10\%). \\
For drives with top synchronism and dynamic response requirements, values up to \(100 \%\) should be used.
\end{tabular} & \[
\begin{aligned}
& \hline 10 \text { to } 100 \\
& {[\%]} \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=75 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { online }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.12 Closed-loop field current control, field gating unit}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { P250 } \\
& \text { FDS } \\
& \text { (G166) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Alpha G limit (field) \\
Rectifier stability limit for firing angle of field converter
\end{tabular} & 0 to 180 [degrees] 1 degree & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=0 } \\
& \text { Type: O2 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline  & \begin{tabular}{l}
Alpha W limit (field) \\
Inverter stability limit for firing angle of field converter
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 180 \\
& \text { [degrees] } \\
& 1 \text { degree } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=180 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P252 } \\
& \text { * } \\
& \text { FDS } \\
& \text { (G166) }
\end{aligned}
\] & \begin{tabular}{l}
Filtering of line frequency correction (field) \\
The internal line synchronization for the field gating pulses derived from the field mains infeed terminals is filtered with this time constant. In operation on "weak" power supplies with unstable frequencies, for example, on a diesel-driven generator (isolated operation), the filter time constant must be set lower than for operation on "constant \(\mathrm{V} / \mathrm{Hz}\) " systems in order to achieve a higher frequency correction speed. \\
Using the units position, the line synchronization function can be altered additionally as follows: \\
When the parameter is set to an uneven number, the measured line zero crossings for line synchronization are subjected to an extra "filter", may improve performance in the case of difficulties with brief mains interruptions (e.g. power supply via sliding current collectors), but may only be set for constant \(\mathrm{V} / \mathrm{Hz}\) power supplies (not for weak isolated supply systems).
\end{tabular} & \[
\begin{array}{|l}
\hline 0 \text { to } 200 \\
{[\mathrm{~ms}]} \\
1 \mathrm{~ms}
\end{array}
\] & \begin{tabular}{l}
Ind: 4 FS=200 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P253 } \\
& * \\
& \text { FDS } \\
& \text { (G166) }
\end{aligned}
\] & \begin{tabular}{cl} 
Control word for field precontrol \\
0 & Field precontrol disabled, precontrol output \(=180^{\circ}\) \\
1 & \begin{tabular}{l} 
Field precontrol active, output is dependent on field current \\
setpoint, field line voltage, P112
\end{tabular}
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P254 } \\
& * \\
& \text { FDS } \\
& (\text { G166 })
\end{aligned}
\] & \begin{tabular}{l}
Set field current controller I component to zero \\
\(0 \quad\) Set controller I component to zero (i.e. to obtain pure \(P\) controller) \\
1 Controller I component is active
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \\
FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 2 5 5} \\
& \text { FDS } \\
& (\mathrm{G} 166)
\end{aligned}
\] & \begin{tabular}{l}
Field current controller \(\mathbf{P}\) gain \\
This parameter is set automatically during the optimization run for precontrol and current controller (armature and field) (P051=25).
\end{tabular} & \[
\begin{aligned}
& 0.01 \text { to } 100.00 \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=5.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 2 5 6} \\
& \text { FDS } \\
& (\text { G166 })
\end{aligned}
\] & \begin{tabular}{l}
Field current controller reset time \\
This parameter is set automatically during the optimization run for precontrol and current controller (armature and field) (P051=25).
\end{tabular} & 0.001 to 10.000 [s] 0.001 s & \begin{tabular}{l}
Ind: 4 FS=0,200 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P257 } \\
& \text { FDS } \\
& (\mathrm{G} 166)
\end{aligned}
\] & \begin{tabular}{l}
Standstill field \\
Value to which the field current is reduced when "Automatic field current reduction" function is parameterized (by means of P082=2) or with signaldriven selection of "Standstill excitation" function (selected in P692).
\end{tabular} & \[
\begin{array}{|l|}
\hline 0.0 \text { to } 100.0 \\
\text { [\%] } \\
0.1 \% \text { of P102 }
\end{array}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P258 } \\
& \text { FDS } \\
& (\mathrm{G} 166)
\end{aligned}
\] & \begin{tabular}{l}
Delay time with automatic field current reduction \\
Delay after which the field current is reduced to the value set in parameter P257 with automatic or signal-driven "Field current reduction" function when the drive is stopped after operating state 07.0 or higher is reached.
\end{tabular} & \[
\begin{array}{|l}
\hline 0.0 \text { to } 60.0 \\
{[\mathrm{~s}]} \\
0.1 \mathrm{~s}
\end{array}
\] & \begin{tabular}{l}
Ind: 4 FS=10.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P260 } \\
& \text { FDS } \\
& (\mathrm{G} 166)
\end{aligned}
\] & \begin{tabular}{l}
Filter time for setpoint for field current precontrol [SW 1.9 and later] \\
Filtering of the field current setpoint at the input of the precontrol for the field current controller. \\
The purpose of this filter is to decouple the field current precontrol from the field current controller.
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P261 } \\
& \text { FDS } \\
& \text { (G166) }
\end{aligned}
\] & \begin{tabular}{l}
Filter time for setpoint for field current controller [SW 1.9 and later] \\
Filtering of the field current setpoint at the input of the field current controller. \\
The purpose of this filter is to decouple the field current precontrol from the field current controller.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 2 6 3} \\
& \text { * } \\
& \text { FDS } \\
& (\mathrm{G} 166)
\end{aligned}
\] & \begin{tabular}{l}
Input quantity for motor flux calculation \\
\(0 \quad\) The input quantity for the motor flux calculation is the field current controller actual value according to P612 (K0265), to be used in connection with a fully compensated DC machine \\
1 The input quantity for the motor flux calculation is the precontrol output for the EMF controller (K0293) \\
(exception: Field current controller setpoint (K0268) with active standstill field or with disabled field pulses), to be used in connection with an non-compensated DC machine. The EMF controller must be active when this setting is selected (EMF controller compensates the armature reaction). \\
2 The input quantity for the motor flux calculation is the field current controller setpoint (K0268). Advantage: Quantities derived from the setpoint are generally "steadier" than those derived from actual values.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 2 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P264 } \\
* \\
\text { FDS } \\
\text { (G166) }
\end{array}
\] & \begin{tabular}{l}
Set field current controller \(\mathbf{P}\) component to zero \\
\(0 \quad\) Set controller P component to zero (i.e. to obtain pure I controller) \\
1 Controller P component is active
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \\
FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 2 6 5} \\
& * \\
& \text { BDS } \\
& (\mathrm{G} 167)
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of external field current monitoring signal [SW 1.9 and later] \\
Selection of the binector to supply the field monitoring signal when an external field device is used. \\
(status "1" = field current is o.k., If > If-min) \\
The converter waits for this signal in state 05.0 as part of the power ON routine. If the signal disappears during operation, the drive is shut down with fault message F005, fault value 4. \\
\(0=\) binector B0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.13 Closed-loop EMF control}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { P272 } \\
& * \\
& (\mathrm{G} 165)
\end{aligned}
\] & \begin{tabular}{l}
Operating mode of closed-loop EMF control \\
0 \\
Fault message F043 ("EMF too high for braking operation") is active: If the EMF is too high when a torque direction change is requested (i.e. if the calculated firing angle (K0101) for the armature current in the new torque direction is > 165 degrees), both torque directions are disabled. If, at the same time, the absolute value of the armature current required in the new torque direction is \(>0.5 \%\) of rated converter DC current (P072), fault message F043 is activated (see Section 10 for possible fault causes). \\
Alarm A043 and automatic field reduction if EMF is too high in braking operation. \\
If the EMF is too high in braking operation (i.e. if the following applies to the armature firing angle \(\alpha\) before limitation (K0101): \(\alpha>\left(\alpha_{W}-5\right.\) degrees \()\) ), alarm A043 is activated ( \(\alpha_{W}\) is the inverter stability limit according to P151 or 165 degrees with a discontinuous armature current). \\
The field is reduced with activation of A043. This field reduction is achieved by regulating the armature firing angle to ( \(\alpha \mathrm{W}-5\) degrees) by means of a \(P\) controller, whose output reduces the EMF controller setpoint. "Field weakening operation by internal closed-loop EMF control" (P081=1) must therefore be parameterized so that the field reduction can take effect. When a torque direction change is requested, both torque directions remain disabled until the field, and thus the EMF, have been reduced accordingly (i.e. until the calculated firing angle (K0101) for the armature current required in the new torque direction is <165 degrees).
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P273 } \\
& * \\
& \text { FDS } \\
& \text { (G165) }
\end{aligned}
\] & \begin{tabular}{l}
Control word for EMF controller precontrol \\
\(0 \quad\) EMF controller precontrol disabled, precontrol output = rated motor field current (P102) \\
1 EMF controller precontrol is active
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Offline }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 2 7 4} \\
& \text { * } \\
& \text { FDS } \\
& \text { (G165) }
\end{aligned}
\] & \begin{tabular}{l}
Set EMF controller I component to zero \\
\(0 \quad\) Set controller I component to zero (i.e. to obtain pure \(P\) controller) \\
1 Controller I component is active
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\] & \begin{tabular}{l}
EMF controller \(\mathbf{P}\) gain \\
This parameter is automatically set during the field weakening optimization run (P051=27).
\end{tabular} & \[
\begin{aligned}
& \hline 0.10 \text { to } 100.00 \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.60 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P276 } \\
* \\
\text { FDS } \\
\text { (G165) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
EMF controller reset time \\
This parameter is automatically set during the field weakening optimization run (P051=27).
\end{tabular} & 0.010 to 10.000 [s] 0.001 s & \begin{tabular}{l}
Ind: 4 FS \(=0.200\) \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \mathbf{P} 277 \\
* \\
\text { FDS } \\
\text { (G165) } \\
\hline
\end{array}
\] & EMF controller droop & \[
\begin{aligned}
& 0.0 \text { to } 10.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P280 } \\
& \text { FDS } \\
& \text { (G165) }
\end{aligned}
\] & \begin{tabular}{l}
Filter time for setpoint for EMF controller precontrol [SW 1.9 and later] \\
Filtering of the EMF setpoint at the input of the EMF controller precontrol. The purpose of this filter is to decouple the EMF controller precontrol from the EMF controller.
\end{tabular} & \[
\begin{array}{|l}
\hline 0 \text { to } 10000 \\
{[\mathrm{~ms}]} \\
1 \mathrm{~ms}
\end{array}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P281 \\
FDS \\
(G165)
\end{tabular} & \begin{tabular}{l}
Filter time for setpoint for EMF controller \\
[SW 1.9 and later] \\
Filtering of the EMF setpoint at the input of the EMF controller. The purpose of this filter is to decouple the EMF controller precontrol from the EMF controller.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \mathbf{P 2 8 2} \\
\text { FDS } \\
(\text { G165 }) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Filter time for actual value for EMF controller [SW 1.9 and later] \\
Filtering of actual EMF value at the input of the EMF controller.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \begin{tabular}{l}
P283 \\
FDS \\
(G165)
\end{tabular} & \begin{tabular}{l}
Filter time for actual value for EMF controller precontrol \\
[SW 1.9 and later] \\
Filtering of actual speed value at the input of the EMF controller precontrol. The purpose of this filter is to stabilize the EMF controller precontrol, even when the actual speed signal is unsteady or distorted by harmonics.
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P284 } \\
& \text { * } \\
& \text { FDS } \\
& \text { (G165) }
\end{aligned}
\] & \begin{tabular}{l}
Set EMF controller P component to zero \\
0 Set controller P component to zero (i.e. to obtain pure I controller) \\
1 Controller P component is active
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.14 Ramp-function generator}
(see also Section 8, Sheet G136 and Section 9)
See P639 and P640 for ramp-function generator setting parameters
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { P295 } \\
& \text { FDS } \\
& \text { (G136) }
\end{aligned}
\] & \begin{tabular}{l}
Mode for rounding the ramp-function generator \\
[SW 1.9 and later] \\
0 If the setpoint is reversed during ramp-up (or ramp-down), acceleration (deceleration) is aborted and initial rounding of the deceleration (acceleration) process begins immediately. The setpoint is not increased (decreased) any further, but the signal at the ramp-function generator output has a breakpoint (i.e. a step change in the acceleration rate). \\
1 If the setpoint is reversed during ramp-up or ramp-down, acceleration/deceleration gradually changes to deceleration/acceleration. The setpoint increases/decreases further, but there is no breakpoint in the signal at the generator output (i.e. there is no step change in the acceleration rate).
\end{tabular} & 0 to 1 1 & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P296 } \\
& \text { FDS } \\
& \text { (G136) }
\end{aligned}
\] & \begin{tabular}{l}
Ramp-down time of ramp generator with emergency stop (OFF3) \\
[SW 1.9 and later] \\
When the "Emergency stop" command is issued, the drive must normally brake down to 0 speed along the current limit. If the mechanical design of the drive makes this option impermissible or undesirable, then a value of \(>0\) can be set here. In this case, the drive brakes along the deceleration ramp programmed here when the "Emergency stop" command is issued.
\end{tabular} & \[
\begin{aligned}
& \hline 0.00 \text { to } 650.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s}
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=0.00 } \\
\text { Type: O2 }
\end{array}
\] & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P297 } \\
& \text { FDS } \\
& \text { (G136) }
\end{aligned}
\] & \begin{tabular}{l}
Lower transition rounding of ramp generator with emergency stop (OFF3) \\
[SW 1.9 and later]
\end{tabular} & \[
\begin{aligned}
& 0.00 \text { to } 100.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s}
\end{aligned}
\] & Ind: 4 FS=0.00 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P298 } \\
& \text { FDS } \\
& \text { (G136) }
\end{aligned}
\] & \begin{tabular}{l}
Upper transition rounding of ramp generator with emergency stop (OFF3) \\
[SW 1.9 and later]
\end{tabular} & \[
\begin{aligned}
& 0.00 \text { to } 100.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s}
\end{aligned}
\] & Ind: 4 FS=0.00 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & See Change (Access / Status) \\
\hline \multicolumn{5}{|l|}{Limitation at ramp-function generator output (setpoint limiting)} \\
\hline \multicolumn{5}{|l|}{The effective limitations are:} \\
\hline \multicolumn{5}{|l|}{\(\begin{array}{ll}\text { Upper limit: } & \text { Minimum value of P300 and the four connectors selected with P632 } \\ \text { Lower limit: } & \text { Maximum value of P301 and the four connectors selected with P633 }\end{array}\)} \\
\hline Note: & \multicolumn{4}{|l|}{The limiting values for both the positive and negative setpoint limits can have a positive or negative sign. The negative setpoint limit, for example, can therefore be parameterized to a positive value and the positive setpoint limit to a negative value.} \\
\hline  & Positive limitation at ramp-function generator output & ```
-200.00 to 199.99
[%]
0.01%
``` & \begin{tabular}{l}
Ind: 4 FS=100.00 \\
Type: 12
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline & Negative limitation at ramp-function generator output & \[
\begin{aligned}
& \hline-200.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=-100.00 } \\
\text { Type: } 12 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P302 } \\
& * \\
& \text { FDS } \\
& \text { (G136) }
\end{aligned}
\] & \begin{tabular}{l}
Select ramp-function generator / ramp-up integrator mode \\
0 Normal ramp-function generator operation Ramp-function generator setting 1 (P303 to P306) is applied. When a binary selectable input parameterized as "Rampfunction generator setting 2" (P307 to P310)" (selected in P637) or "Ramp-function generator setting 3" (P311 to P314)" (selected in P638), generator setting 2 or 3 is applied as appropriate. \\
1 Ramp-up integrator operation: When the setpoint is reached for the first time, ramp-function generator setting 1 is switched over to a ramp-up/down times = 0 \\
2 Ramp-up integrator operation: When the setpoint is reached for the first time, ramp-function generator setting 1 is switched over to generator setting 2 (P307 to P310) \\
3 Ramp-up integrator operation: When the setpoint is reached for the first time, ramp-function generator setting 1 is switched over to generator setting 3 (P311 to P314)
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Ramp-function generator parameter set 1} \\
\hline \[
\begin{aligned}
& \hline \text { P303 } \\
& \text { FDS } \\
& \text { (G136) } \\
& \hline
\end{aligned}
\] & Ramp-up time 1 & \[
\begin{aligned}
& \hline 0.00 \text { to } 650.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s} \\
& \hline
\end{aligned}
\] & Ind: 4 \(\mathrm{FS}=10.00\) Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P304 } \\
& \text { FDS } \\
& \text { (G136) } \\
& \hline
\end{aligned}
\] & Ramp-down time 1 & \[
\begin{array}{|l}
\hline 0.00 \text { to } 650.00 \\
\text { [s] } \\
0.01 \mathrm{~s} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=10.00 } \\
& \text { Type: } 02 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P305 } \\
& \text { FDS } \\
& \text { (G136) } \\
& \hline
\end{aligned}
\] & Lower transition rounding 1 & \[
\begin{array}{|l}
\hline 0.00 \text { to } 100.00 \\
\text { [s] } \\
0.01 \mathrm{~s} \\
\hline
\end{array}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Online } \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P306 } \\
& \text { FDS } \\
& \text { (G136) }
\end{aligned}
\] & Upper transition rounding 1 & \[
\begin{aligned}
& \hline 0.00 \text { to } 100.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Ramp-function generator parameter set 2}

Ramp-function generator parameter set 2 is selected via the binector parameterized in P637.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l|}
\hline \text { P307 } \\
\text { FDS } \\
(\text { G136 }) \\
\hline
\end{array}
\] & Ramp-up time 2 & \[
\begin{aligned}
& \hline 0.00 \text { to } 650.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \(\mathrm{FS}=10.00\) \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P308 } \\
\text { FDS } \\
\text { (G136) } \\
\hline
\end{array}
\] & Ramp-down time 2 & \[
\begin{aligned}
& \hline 0.00 \text { to } 650.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s} \\
& \hline
\end{aligned}
\] & Ind: 4 FS=10.00 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P309 } \\
\text { FDS } \\
\text { (G136) } \\
\hline
\end{array}
\] & Lower transition rounding 2 & \[
\begin{aligned}
& \hline 0.00 \text { to } 100.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Online } \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& \text { P310 } \\
& \text { FDS } \\
& \text { (G136) }
\end{aligned}
\] & Upper transition rounding 2 & \[
\begin{aligned}
& \hline 0.00 \text { to } 100.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Ramp-function generator parameter set 3}

Ramp-function generator parameter set 3 is selected via the binector parameterized in P638.
\begin{tabular}{|l|l|l|l|l|}
\hline P311 & Ramp-up time 3 & 0.00 to 650.00 & Ind: 4 & P052 \(=3\) \\
FDS & & {\([\mathrm{s}]\)} & FS \(=10.00\) & P051 \(=40\) \\
(G136) & & 0.01 s & Type: O2 \\
\hline Online \\
\hline P312 & Ramp-down time 3 & 0.00 to 650.00 & Ind: 4 & P052 \(=3\) \\
FDS & & [s] & FS=10.00 & P051 \(=40\) \\
(G136) & & 0.01 s & Type: O2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P313 } \\
& \text { FDS } \\
& \text { (G136) } \\
& \hline
\end{aligned}
\] & Lower transition rounding 3 & \[
\begin{aligned}
& \hline \hline 0.00 \text { to } 100.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline P314 FDS (G136) & Upper transition rounding 3 & \[
\begin{aligned}
& 0.00 \text { to } 100.00 \\
& \text { [s] } \\
& 0.01 \mathrm{~s} \\
& \hline
\end{aligned}
\] & Ind: 4 FS=0.00 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Displays} \\
\hline \[
\begin{aligned}
& \text { r315 } \\
& \text { (G136) }
\end{aligned}
\] & \begin{tabular}{l}
Display of effective times \\
i001: Display of effective ramp-up time \\
i002: Display of effective ramp-down time \\
i003: Display of effective lower transition rounding \\
i004: Display of effective upper transition rounding
\end{tabular} & \[
\begin{array}{|l}
\hline 0.00 \text { to } \\
650.00 / 10.00 \\
\text { [s] } \\
0.01 \mathrm{~s}
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { Type: O2 }
\end{array}
\] & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \text { r316 } \\
& \text { (G136) }
\end{aligned}
\] & \begin{tabular}{l}
Display of ramp-function generator status \\
Mode of representation on operator panel (PMU):
\(\square\) \\
15 \(\square\)
\(\square\)
\(\square\)

\(\square\) 16 \(\square\)
\(\square\)
\(\square\) 10 \\
Segment: \\
\(\begin{array}{ll}0 & \text { RFG enable } \\ 1 & \text { RFG start }\end{array}\) \\
2 Setpoint enable \& /OFF1 \\
3 Set RFG \\
4 RFG tracking \\
5 Bypass RFG \\
7 Ramp-down \\
15 Ramp-up
\end{tabular} & & Ind: None Type: V2 & P052 \(=3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l|}
\hline \text { P317 } \\
\text { * } \\
\text { FDS } \\
(\text { G136) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Ramp-function generator tracking \\
0 Ramp-function generator tracking is not active \\
1 Ramp-function generator tracking is active
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P318 } \\
\text { * } \\
\text { FDS } \\
\text { (G136) }
\end{array}
\] & \begin{tabular}{l}
Set ramp-function generator output \\
This parameter determines how the ramp-function generator output is set at the commencement of a "Shutdown" process: \\
0 The ramp-function generator output is not set at the commencement of a "Shutdown" process" \\
1 At the commencement of "Shutdown", the output is set to the actual speed value K0167 (actual speed value K0167 is "unfiltered") \\
2 At the commencement of "Shutdown", the output is set to the actual speed value K0179 (value is filtered by PT1 in P200, other filters may also be active) (setting may not be used in conjunction with P205 > 0) \\
During a "Shutdown" process, the limitation at the ramp-function generator output is not effective. P318 must be set to 1 or 2 to prevent any (temporary) excess speed during "Shutdown" when the generator output is limited.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 2 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|l|}
\hline P319 & Delay time for enabling ramp-function generator & [SW 1.5 and later] & 0.00 to 10.00 & Ind: 4 & P052 \(=3\) \\
FDS & & & [s] & FS \(=0.00\) & P051 \(=40\) \\
(G136) & & 0.01 s & Type: O2 \\
\hline
\end{tabular}

\subsection*{11.15 Setpoint processing}
\begin{tabular}{|l|l|l|l|l|}
\hline P320 & Multiplier for main setpoint & -300.00 to 300.00 & Ind: 4 \\
FDS & & {\([\%]\)} & P052 \(=3\) \\
(G135) & & \(0.01 \%\) & Type: 12
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P322 } \\
& \text { * } \\
& \text { FDS } \\
& \text { (G135) }
\end{aligned}
\] & \begin{tabular}{l}
Source for multiplier for main setpoint \\
0 = Connector K0000 \\
1 = Connector K0001 etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P323 } \\
& * \\
& \text { FDS } \\
& \text { (G135) }
\end{aligned}
\] & \begin{tabular}{l}
Source for multiplier for additional setpoint \\
0 = Connector K0000 \\
1 = Connector K0001 etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.16 Setting values for monitoring functions and limits}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Setting values for monitoring functions} \\
\hline \[
\begin{aligned}
& \text { P351 } \\
& \text { FDS }
\end{aligned}
\] & \begin{tabular}{l}
Threshold for undervoltage trip \\
If the line voltage drops below a specific value (P078) and does not return to the permissible tolerance range within the "Restart time" set in P086, fault message F006 is activated. The drive dwells in operating state o4 or o5 while the line undervoltage persists.
\end{tabular} & \begin{tabular}{l}
-90 to 0 \\
[\%] \\
Armature: \\
1\% of P078.001 \\
Field: \\
1\% of P078.002
\end{tabular} & \begin{tabular}{l}
Ind: 4 FS=-20 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P352 } \\
& \text { FDS }
\end{aligned}
\] & \begin{tabular}{l}
Source for overvoltage trip \\
If the line voltage exceeds a specific value (P078) and does not return to the permissible tolerance range within the "Restart time" set in P086, fault message F007 is activated.
\end{tabular} & \begin{tabular}{l}
0 to 99 \\
[\%] \\
Armature: \\
1\% of P078.001 \\
Field: \\
1\% of P078.002
\end{tabular} & \begin{tabular}{l}
Ind: 4 FS=20 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P353 } \\
& \text { FDS }
\end{aligned}
\] & \begin{tabular}{l}
Response threshold for phase failure monitoring \\
If the line voltage drops below the permissible value in operating states of \(\leqq 04\) and does not return to an "acceptable" value within the "Restart time" set in P086, fault message F004 or F005 is activated. \\
The drive dwells in operating state 04 or 05 for the period that the line voltage remains below the threshold and during the subsequent voltage stabilization period set in P090. \\
When a switch-on command is entered, the converter dwells in operating states 04 and 05 for a maximum total delay period for both states set in P089 until the voltages in all phases exceed the threshold set in this parameter before fault message F004 or F005 is activated.
\end{tabular} & \[
\begin{aligned}
& \hline 10 \text { to } 100 \\
& \text { [\%] } \\
& \text { Armature: } \\
& 1 \% \text { of P078.001 } \\
& \text { Field: } \\
& \text { 1\% of P078.002 }
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=40 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P355 } \\
& \text { FDS }
\end{aligned}
\] & \begin{tabular}{l}
Stall protection time \\
F035 is activated if the conditions for the "Stall protection" fault message are fulfilled for longer than the period set in P355. \\
When P355=0.0, the "Drive blocked" monitoring function (F035) is deactivated and alarm A035 is likewise suppressed.
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 600.0 \\
& {[\mathrm{~s}]} \\
& 0.1 \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0,5 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P357 \\
FDS
\end{tabular} & \begin{tabular}{l}
Threshold for tachometer interruption monitoring \\
F042 is suppressed if the actual EMF value is lower than the value set in P357. \\
The setting is entered as a \% of the ideal mean DC voltage value at \(\alpha=0\), i.e. as a \% of P078.001 * 1.35
\end{tabular} & \[
\begin{aligned}
& \hline 10 \text { to } 70 \\
& {[\%]} \\
& 1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=10 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P360 } \\
& \text { (G180) } \\
& \text { (G181) }
\end{aligned}
\] & \begin{tabular}{l}
Response delay for external faults and alarms \\
The fault message or alarm is not activated on the converter until the appropriate input or corresponding control word bit (as selected in P675, P686, P688 or P689) has been in the LOW state for at least the time period set in this parameter (see also Section 8, Sheets G180 and G181). \\
i001: Delay for external fault 1 \\
i002: Delay for external fault 2 \\
i003: Delay for external alarm 1 \\
i004: Delay for external alarm 2
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P361 } \\
& \text { FDS }
\end{aligned}
\] & \begin{tabular}{l}
Delay time for the undervoltage monitoring \\
[SW 1.7 and later] \\
Activation of the fault message F006 (line undervoltage) is delayed by the time that can be set in this parameter. During this delay time firing pulses are output! \\
Another time which is parameterized for automatic restarting (P086) only begins after the time set here has elapsed.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 60000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P362 } \\
& \text { FDS }
\end{aligned}
\] & \begin{tabular}{l}
Delay time for the overvoltage monitoring \\
[SW 1.7 and later] \\
Activation of the fault message F007 (line overvoltage) is delayed by the time that can be set in this parameter. During this delay time firing pulses are output! \\
Another time which is parameterized for automatic restarting (P086) only begins after the time set here has elapsed.
\end{tabular} & \[
\begin{aligned}
& \hline \hline 0 \text { to } 60000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=10000 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P363 } \\
& \text { FDS }
\end{aligned}
\] & \begin{tabular}{l}
Threshold for the minimum line frequency \\
[SW 1.8 and later] \\
If the line frequency falls below the value set here and does not rise above it again within the "restart" time set in P086, the fault message F008 is activated. As long as the line frequency is below the value set here, the drive is kept in operating state o4 or 05 . \\
[values \(<45.0 \mathrm{~Hz}\) can be set in SW 1.9 and later] \\
CAUTION \\
Operation in the extended frequency range between 23 Hz and 110 Hz is available on request.
\end{tabular} & \[
\begin{aligned}
& 23.0 \text { to } 60.0 \\
& {[\mathrm{~Hz}]} \\
& 0.1 \mathrm{~Hz}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=45.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P364 } \\
& \text { FDS }
\end{aligned}
\] & \begin{tabular}{l}
Threshold for the maximum line frequency \\
If the line frequency rises above the value set here and does not fall below it again within the "restart" time set in P086, the fault message F009 is activated. As long as the line frequency is above the value set here, the drive is kept in operating state o4 or o5. \\
CAUTION \\
Operation in the extended frequency range between 23 Hz and 110 Hz is available on request.
\end{tabular} & \[
\begin{aligned}
& \hline 50.0 \text { to } 110.0 \\
& {[\mathrm{~Hz}]} \\
& 0.1 \mathrm{~Hz}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=65.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.17 Setting values for limit-value monitors}
(see also Section 8, Sheet G187 und G188)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\mathrm{n}<\mathrm{n}_{\text {min }}\) signal} \\
\hline \[
\begin{aligned}
& \text { P370 } \\
& \text { FDS } \\
& \text { (G187) }
\end{aligned}
\] & \begin{tabular}{l}
Speed threshold \(\mathbf{n}_{\text {min }}\) \\
Speed threshold for \(\mathrm{n}<\mathrm{n}_{\text {min }}\) limit-value monitor. \\
Note: \\
This threshold also affects the sequence of control operations for "Shutdown", "Fast stop", cancellation of the "Inching" or "Crawling" command, the "Braking with field reversal" function and the brake control operation (see Section 9).
\end{tabular} & \[
\begin{aligned}
& \hline 0.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \% \text { of maximum } \\
& \text { speed }
\end{aligned}
\] & Ind: 4 FS=0,50 Type: O2 & \[
\begin{array}{|l}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Online }
\end{array}
\] \\
\hline \begin{tabular}{l}
P371 \\
FDS \\
(G187)
\end{tabular} & Hysteresis for \(\mathbf{n}<\mathbf{n}_{\text {min }}\) signal
This value is added to the response threshold if \(\mathrm{n}<\mathrm{n}_{\min }\) is active. & \[
\begin{aligned}
& \hline 0.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \% \text { of maximum } \\
& \text { speed }
\end{aligned}
\] & Ind: 4 FS=0,50 Type: O2 & \[
\begin{array}{|l}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Online }
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\mathrm{n}<\mathrm{n}_{\text {comp }}\). signal} \\
\hline \[
\begin{array}{|l}
\hline \text { P373 } \\
\text { FDS } \\
\text { (G187) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Speed threshold \(\mathbf{n}_{\text {comp }}\). \\
Speed threshold for \(\mathrm{n}<\mathrm{n}_{\text {comp. }}\). signal
\end{tabular} & ```
0.00 to 199.99
[%]
0.01% of maximum
speed
``` & \[
\begin{array}{|l}
\hline \text { Ind: } 4 \\
\text { FS=100.00 } \\
\text { Type: O2 }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P374 \\
FDS \\
(G187)
\end{tabular} & \begin{tabular}{l}
Hysteresis for < \(\mathbf{n}_{\text {comp. }}\) signal ( \(\mathrm{n}<\mathrm{n}_{\text {comp. }}\) signal) \\
This value is added to the response threshold if \(\mathrm{n}<\mathrm{n}_{\text {comp }}\). is active.
\end{tabular} & ```
0.00 to 199.99
[%]
0.01% of maximum
speed
``` & \begin{tabular}{l}
Ind: 4 FS=3.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline & OFF delay for n < \(\mathrm{n}_{\text {comp }}\). signal & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\mathrm{~s}]} \\
& 0.1 \mathrm{~s}
\end{aligned}
\] & Ind: 4 FS=3.0 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Setpoint/actual value deviation 2}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
P376 \\
FDS \\
(G187)
\end{tabular} & Permissible setpoint/actual value deviation 2 & [SW 1.9 and later] & ```
0.00 to 199.99
[%]
0.01% of maximum
speed
``` & \begin{tabular}{l}
Ind: 4 \\
FD=3.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P377 } \\
& \text { FDS } \\
& \text { (G187) }
\end{aligned}
\] & \begin{tabular}{l}
Hysteresis for setpoint/actual value deviation 2 signal \\
[SW 1.9 and later] \\
This value is added to the response threshold if a setpoint/actual value deviation signal is active
\end{tabular} & ```
0.00 to 199.99
[%]
0.01% of maximum
speed
``` & Ind: 4 FS=1.00 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline P378 FDS (G187) & \begin{tabular}{l}
Response delay for setpoint/actual value deviation signal 2 \\
[SW 1.9 and later]
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\mathrm{~s}]} \\
& 0.1 \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=3.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Overspeed} \\
\hline \begin{tabular}{l}
P380 \\
FDS \\
(G188)
\end{tabular} & Maximum speed in positive direction of rotation & ```
0.0 to 199.9
[%]
0.1% of maximum
speed
``` & \begin{tabular}{l}
Ind: 4 FS=120.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P381 \\
FDS \\
(G188)
\end{tabular} & Maximum speed in negative direction of rotation & ```
-199.9 to 0.0
[%]
0.1% of maximum
speed
``` & \begin{tabular}{l}
Ind: 4 FS=-120.0 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \mathrm{P} 051=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Setpoint/actual value deviation 1}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
P388 \\
FDS \\
(G187)
\end{tabular} & Permissible deviation between setpoint and actual value 1 & ```
0.00 to 199.99
[%]
0.01% of maximum
speed
``` & \begin{tabular}{l}
Ind: 4 FS=3.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P389 } \\
& \text { FDS } \\
& \text { (G187) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Hysteresis for setpoint/actual value deviation signal 1 \\
This value is added to the response threshold if a setpoint/actual value deviation signal is active
\end{tabular} & ```
0.00 to 199.99
[%]
0.01% of maximum
speed
``` & \begin{tabular}{l}
Ind: 4 FS=1.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P390 } \\
& \text { FDS } \\
& \text { (G187) } \\
& \hline
\end{aligned}
\] & Response delay for setpoint/actual value deviation signal 1 & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& \text { [s] } \\
& 0.1 \mathrm{~s}
\end{aligned}
\] & Ind: 4 FS=3.0 Type: O2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\mathbf{l}_{\mathbf{f}}<\mathrm{l}_{\mathbf{f} \mathbf{~ m i n}}\) signal} \\
\hline \[
\begin{aligned}
& \text { P394 } \\
& \text { FDS } \\
& \text { (G188) }
\end{aligned}
\] & \begin{tabular}{l}
Field current threshold \(\mathrm{I}_{\mathbf{f}} \mathbf{~ m i n}\) \\
Field current threshold for \(\mathrm{I}_{\mathrm{f}}<\mathrm{I}_{\mathrm{f}}\) min limit-value monitor. \\
Note: \\
This threshold affects the sequence of control operations for the "Direction of rotation reversal using field reversal" and "Braking with field reversal" functions (see Section 9). \\
The \(I_{f}<I_{f} \min\) signal is connected to binector B0215, the actual value at field current controller input K0265 is applied as \(\mathrm{I}_{\mathrm{f}}\). \\
B0215 = 0 when K0265 > threshold set in P394 \\
B0215 = 1 when K0265 < threshold set in P394 + hysteresis set in P395 \\
\(0 \rightarrow 1\) transition takes place when K0265 < P394 \\
\(1 \rightarrow 0\) transition takes place when K0265 > P394 + P395
\end{tabular} & ```
0.00 to 199.99
[%]
0.01% of converter
rated field DC
current (r073.i02)
``` & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=3.00 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P395 } \\
& \text { FDS } \\
& \text { (G188) }
\end{aligned}
\] & \begin{tabular}{l}
Hysteresis for \(I_{f}<I_{\mathbf{f}}^{\mathbf{m i n}}\) signal \\
This value is added to the response threshold \(\mathrm{if}_{\mathrm{f}}<\mathrm{I}_{\mathrm{f}}\) min is active. (see also P394)
\end{tabular} & ```
0.00 to 100.00
[%]
0.01% of converter
rated field DC
current (r073.iO2)
``` & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=1.00 } \\
& \text { Type: } 02
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Field current monitoring}

Fault message F005 is activated if the actual field current (K0265) is lower than the percentage of the field current setpoint (K0268) set in P396 for longer than the time set in parameter P397.

Note:
Fault message F005 is only activated, however, if the field current setpoint is \(>2 \%\) of the converter rated DC current of the field (r073.i02) ist.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { P396 } \\
& \text { FDS } \\
& \text { (G167) }
\end{aligned}
\] & Threshold for field current monitoring & [SW 1.9 and later] & \begin{tabular}{l}
1 to 100 \\
[\%] \\
0.01\% of setpoint at field current controller input (K0268)
\end{tabular} & \begin{tabular}{l}
Ind: 4 FS=50 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P397 \\
FDS \\
(G167)
\end{tabular} & Field current monitoring time & [SW 1.9 and later] & \[
\begin{aligned}
& 0.02 \text { to } 60.00 \\
& \text { [s] } \\
& 0.01 \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.50 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\mathrm{I}_{\mathrm{f}}<\mathrm{I}_{\mathbf{f} \boldsymbol{x}}\) signal} \\
\hline \[
\begin{aligned}
& \hline \text { P398 } \\
& \text { FDS } \\
& \text { (G188) }
\end{aligned}
\] & \begin{tabular}{l}
Field current threshold \(\mathbf{I}_{\mathbf{x}}\) \\
Setpoint-oriented field current threshold for \(\mathrm{I}_{\mathrm{f}}<\mathrm{I}_{\mathrm{f}}\) limit-value monitor. \\
Note: \\
This threshold affects the sequence of control operations for the "Direction of rotation reversal using field reversal" and "Braking with field reversal" functions (see Section 9). \\
The \(\mathrm{I}_{\mathrm{f}}<\mathrm{I}_{\mathrm{f}}\) signal is connected to binector B0216, the actual value at field current controller input K0265 is applied as \(\mathrm{I}_{\mathrm{f}}\). \\
B0216 \(=0\) when K0265 > threshold set in P398 \\
B0216 = 1 when K0265 < threshold set in P398 + hysteresis set in P399 \\
\(0 \rightarrow 1\) transition takes place when K0265 < P398 \\
\(1 \rightarrow 0\) transition takes place when K0265 > P398 + P399
\end{tabular} & \begin{tabular}{l}
0.00 to 199.99 \\
[\%] \\
0.01\% of setpoint at field current controller input (K0268)
\end{tabular} & Ind: 4 FS=80.00 Type: O2 & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P399 } \\
& \text { FDS } \\
& \text { (G188) }
\end{aligned}
\] & \begin{tabular}{l}
Hysteresis for \(I_{f}<I_{f}\) signal \\
This value is added to the response threshold if \(\mathrm{I}_{\mathrm{f}}<\mathrm{I}_{\mathrm{f}}\) is active. (see also P398)
\end{tabular} & \begin{tabular}{l}
0.00 to 100.00 \\
[\%] \\
0.01\% of converter \\
rated field DC \\
current (r073.i02)
\end{tabular} & Ind: 4 FS=1.00 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.18 Settable fixed values}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Function: The value set in the parameter is applied to the specified connector} \\
\hline \[
\begin{array}{|l|}
\hline \text { P401 } \\
\text { FDS } \\
\text { (G120) } \\
\hline
\end{array}
\] & K401 fixed value is applied to connector K0401 & \[
\begin{aligned}
& \text {-199.99 to } 199.99 \\
& \text { [\%] } \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=0.00 } \\
\text { Type: } 12 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P402 } \\
\text { FDS } \\
(G 120)
\end{array}
\] & K402 fixed value is applied to connector K0402 & \[
\begin{aligned}
& -199.99 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P403 FDS (G120) & K403 fixed value is applied to connector K0403 & \[
\begin{aligned}
& -199.99 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& P 052=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline & K404 fixed value is applied to connector K0404 & \[
\begin{aligned}
& -199.99 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: 12
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \mathbf{P 4 0 5} \\
\text { FDS } \\
\text { (G120) } \\
\hline
\end{array}
\] & K405 fixed value is applied to connector K0405 & \[
\begin{aligned}
& -199.99 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & Ind: 4 FS=0.00 Type: 12 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline & K406 fixed value is applied to connector K0406 & \[
\begin{aligned}
& -199.99 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: 12
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline & K407 fixed value is applied to connector K0407 & \[
\begin{aligned}
& -199.99 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: 12
\end{tabular} & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline & K408 fixed value is applied to connector K0408 & \[
\begin{aligned}
& -199.99 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: I2
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Online } \\
\hline
\end{array}
\] \\
\hline & K409 fixed value is applied to connector K0409 & \[
\begin{aligned}
& -199.99 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: 12
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P410 FDS (G120) & K410 fixed value is applied to connector K0410 & \[
\begin{aligned}
& -199.99 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& P 052=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline & K411 fixed value is applied to connector K0411 & \[
\begin{aligned}
& -199.99 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: 12
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P412 FDS (G120) & K412 fixed value is applied to connector K0412 & \[
\begin{aligned}
& -32768 \text { to } 32767 \\
& 1
\end{aligned}
\] & Ind: 4 FS=0 Type: 12 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P413 FDS (G120) & K413 fixed value is applied to connector K0413 & \[
\begin{aligned}
& -32768 \text { to } 32767 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: 12
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P414 FDS (G120) & K414 fixed value is applied to connector K0414 & \[
\begin{aligned}
& -32768 \text { to } 32767 \\
& 1
\end{aligned}
\] & Ind: 4 FS=0 Type: 12 & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P415 FDS (G120) & K415 fixed value is applied to connector K0415 & \[
\begin{aligned}
& -32768 \text { to } 32767 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} \\
\hline \hline P416 & K416 fixed value & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\begin{tabular}{llll}
FDS \\
(G120)
\end{tabular} & is applied to connector K0416 & -32768 to 32767 & \begin{tabular}{l}
Ind: 4 \\
FS \(=0\) \\
Type: 12
\end{tabular} & \begin{tabular}{l}
P051 \(=3\) \\
Online
\end{tabular} \\
\hline
\end{tabular}

\subsection*{11.19 Fixed control bits}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Function: The value set in the parameter is applied to the specified binector} \\
\hline \[
\begin{array}{|l|}
\hline \text { P421 } \\
\text { FDS } \\
(\mathrm{G} 120) \\
\hline
\end{array}
\] & B421 fixed bit is applied to binector B0421 & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P422 } \\
\text { FDS } \\
\text { (G120) } \\
\hline
\end{array}
\] & B422 fixed bit is applied to binector B0422 & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P423 } \\
\text { FDS } \\
(\text { G120 }) \\
\hline
\end{array}
\] & B423 fixed bit is applied to binector B0423 & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \mathbf{P 4 2 4} \\
\text { FDS } \\
\text { (G120) } \\
\hline
\end{array}
\] & B424 fixed bit is applied to binector B0424 & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \mathbf{P 4 2 5} \\
\text { FDS } \\
\text { (G120) } \\
\hline
\end{array}
\] & B425 fixed bit is applied to binector B0425 & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P426 } \\
\text { FDS } \\
(\text { G120 }) \\
\hline
\end{array}
\] & B426 fixed bit is applied to binector B0426 & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \mathbf{P 4 2 7} \\
\text { FDS } \\
\text { (G120) } \\
\hline
\end{array}
\] & B427 fixed bit is applied to binector B 0427 & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \mathbf{P 4 2 8} \\
\text { FDS } \\
(\mathrm{G} 120) \\
\hline
\end{array}
\] & B428 fixed bit is applied to binector B0428 & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.20 Digital setpoint input (fixed setpoint, inching and crawling setpoints)}
(see also Section 8, Sheets G127, G129 and G130)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} \\
\hline Function & \multicolumn{4}{|l|}{\begin{tabular}{l}
Up to 8 connectors can be selected in P431 indices .01 to .08 . These can be applied as an additional fixed setpoint (K0204, K0209) via the binectors selected in P430, indices .01 to .08 (setpoint is applied when binector switches to log. "1" state). P432 indices .01 to .08 can be set to define for each setpoint individually whether the ramp-function generator must be bypassed on setpoint injection. \\
If fixed setpoint injection is not selected, the connector set in P433 is applied to K0209.
\end{tabular}} \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 4 3 0} \\
& * \\
& (\mathrm{G} 127)
\end{aligned}
\] & \begin{tabular}{l}
Source for fixed-setpoint injection \\
Selection of binector to control injection of the fixed setpoint ("1" state = fixed setpoint injected). \\
0 = binector B0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 8 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 4 3 1} \\
& * \\
& \text { (G127) }
\end{aligned}
\] & \begin{tabular}{l}
Source for fixed setpoint \\
Selection of connector to be injected as the fixed setpoint
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 8 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \mathbf{P 4 3 2} \\
* \\
\text { (G127) }
\end{array}
\] & \begin{tabular}{l}
Source for selection of ramp-function generator bypass \\
Selection as to whether or not ramp-function generator must be bypassed when the fixed setpoint is injected. \\
The ramp-function generator is bypassed if the AND operation between the binector selected via an index of P430 and the setting in the same index of P432 produces a log. "1"
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 8 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P433 } \\
& \text { * } \\
& \text { FDS } \\
& \text { (G127) }
\end{aligned}
\] & \begin{tabular}{l}
Source for standard setpoint \\
Selection of the connector to be applied if fixed-setpoint injection is not selected
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS=11 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Inching setpoint}

Function: Up to 8 connectors can be selected in P436 indices .01 to .08. These can be applied as an inching setpoint (K0202, K0207) via the binectors selected in P435, indices .01 to .08 (setpoint is applied when binector switches to log. "1" state). P437 indices .01 to .08 can be set to define for each setpoint individually whether the ramp-function generator must be bypassed on setpoint injection. If more than one inching setpoint is injected, an output value corresponding to inching setpoint \(=0 \%\) is applied.

If inching setpoint injection is not selected, the connector set in P438 is applied to K0207.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \mathbf{P 4 3 5} \\
& * \\
& \text { (G129) }
\end{aligned}
\] & \begin{tabular}{l}
Source for injection of inching setpoint \\
Selection of binector to control injection of the inching setpoint ("1" state = inching setpoint injected). \\
0 = binector B0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & All binector numbers 1 & Ind: 8 FS=0 Type: L2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 4 3 6} \\
& * \\
& \text { (G129) }
\end{aligned}
\] & \begin{tabular}{l}
Source for inching setpoint \\
Selection of connector to be injected as the inching setpoint
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 8 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 4 3 7} \\
& * \\
& \text { (G129) }
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of ramp-function generator bypass \\
Selection as to whether or not ramp-function generator must be bypassed when the inching setpoint is injected. \\
The ramp-function generator is bypassed if the AND operation between the binector selected via an index of P435 and the setting in the same index of P437 produces a log. "1".
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 8 \\
& \text { FS=0 } \\
& \text { Type: } 02
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P438 } \\
& \text { * } \\
& \text { FDS } \\
& \text { (G129) }
\end{aligned}
\] & \begin{tabular}{l}
Source for standard setpoint \\
Selection of the connector to be applied if inching-setpoint injection is not selected
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS=208 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Crawling setpoint}

Function: Up to 8 connectors can be selected in P441 indices .01 to .08 . These can be applied as an additional crawling setpoint (K0201, K0206) via the binectors selected in P440, indices . 01 to . 08 . P445 can be set to define whether the setpoint must be applied when the selected binectors have reached the log. " 1 " state (when \(\mathrm{P} 445=0\)) or in response to a \(0 \rightarrow 1\) transition (when P445=1). When setpoint injection in response to a \(0 \rightarrow 1\) transition is selected, the setpoint injection function is reset when the binector selected in P444 switches to the log. "0" state. P442 indices .01 to .08 can be set to define for each setpoint individually whether the ramp-function generator must be bypassed on setpoint injection.

If crawling setpoint injection is not selected, the connector set in P443 is applied to K0206.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { P440 } \\
& \text { * } \\
& \text { (G130) }
\end{aligned}
\] & \begin{tabular}{l}
Source for injection of crawling setpoint \\
Selection of binector to control injection of the crawling setpoint.
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & Ind: 8 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P441 } \\
& \text { (G130) }
\end{aligned}
\] & \begin{tabular}{l}
Source for crawling setpoint \\
Selection of connector to be injected as the crawling setpoint
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & Ind: 8 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P442 } \\
& \text { * } \\
& \text { (G130) }
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of ramp-function generator bypass \\
Selection as to whether or not ramp-function generator must be bypassed when the crawling setpoint is injected. \\
The ramp-function generator is bypassed if the AND operation between the binector selected via an index of P440 and the setting in the same index of P442 produces a log. "1".
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 8 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P443 } \\
& \text { * } \\
& \text { FDS } \\
& \text { (G130) }
\end{aligned}
\] & \begin{tabular}{l}
Source for standard setpoint \\
Selection of the connector to be applied if crawling-setpoint injection is not selected \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS=207 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P444 } \\
& \text { * } \\
& \text { BDS } \\
& \text { (G130) }
\end{aligned}
\] & \begin{tabular}{l}
Source for standstill command \\
Selection of the binector to control the standstill operation (OFF1) or resetting of crawling setpoint injection when P445=1 (log. "0" state = reset).
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P445 } \\
& \text { * } \\
& \text { (G130) }
\end{aligned}
\] & \begin{tabular}{l}
Selection of level/edge for switch-on/crawling \\
Selection to define whether ON command must be input via terminal 37 and the crawling setpoint injected in response to a log. "1" level or to a 0 \(\rightarrow 1\) transition \\
ON with log. "1" state at terminal 37 and injection of crawling setpoint with binectors selected in P440 in log. "1" state \\
\(1 \quad\) ON in response to \(0 \rightarrow 1\) transition at terminal 37 and injection of crawling setpoint in response to \(0 \rightarrow 1\) transition of binectors selected in P440 \\
With this setting, the ON command or injection command for the crawling setpoint is stored. The memory is reset when the binector selected in P444 switches to the log. "0" state.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.21 Position sensing with pulse encoder}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{See parameters P140 to P148 for pulse encoder definition and monitoring} \\
\hline \[
\begin{aligned}
& \hline \text { P450 } \\
& * \\
& \text { FDS } \\
& \text { (G145) }
\end{aligned}
\] & \begin{tabular}{l}
Resetting of position counter \\
0 Reset position counter OFF \\
1 Reset position counter with zero marker \\
2 Reset position counter with zero marker when LOW signal is applied to terminal 39 \\
3 Reset position counter when LOW signal is applied to terminal 39 \\
Note: Counter resetting with P450 = 2 and 3 is executed in the hardware and is not affected by how the binectors controlled by terminal 39 are interconnected
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P451 } \\
& * \\
& \text { FDS } \\
& \text { (G145) }
\end{aligned}
\] & \begin{tabular}{l}
Position counter hysteresis \\
\(0 \quad\) Hysteresis for rotational direction reversal OFF \\
1 Hysteresis for rotational direction reversal ON (the first pulse encoder input pulse after a change in rotational direction is not counted)
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P452 } \\
& * \\
& \text { BDS } \\
& \text { (G145) }
\end{aligned}
\] & \begin{tabular}{l}
Source for "Reset position counter" command \\
[SW 1.9 and later] \\
Selection of binector to control resetting of the position counter.
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P453 } \\
& \text { * } \\
& \text { BDS } \\
& \text { (G145) }
\end{aligned}
\] & Source for "Enable zero marker counter" command [SW 1.9 and later] Selection of binector to control enabling of the zero marker counter
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.22 Connector selector switches}
(see also Section 8, Function Diagram Sheet G124)
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { P455 } \\
& \text { * } \\
& \text { (G124) }
\end{aligned}
\] & \begin{tabular}{l}
Source for inputs of connector selector switch 1 \\
[SW 1.9 and later] \\
Selection of connectors for the input signals for connector selector switch 1.
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & Ind: 3 FS=0 Type: L2 & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P456 } \\
& \text { * } \\
& \text { (G124) }
\end{aligned}
\] & \begin{tabular}{l}
Source for control of connector selector switch 1 [SW 1.9 and later] \\
Selection of binectors to control connector selector switch 1.
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P457 } \\
& \text { * } \\
& \text { (G124) }
\end{aligned}
\] & \begin{tabular}{l}
Source for inputs of connector selector switch 2 [SW 1.9 and later] \\
Selection of connectors for the input signals for connector selector switch 2.
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P458 } \\
& \text { * } \\
& \text { (G124) }
\end{aligned}
\] & \begin{tabular}{l}
Source for control of connector selector switch 2 [SW 1.9 and later] \\
Selection of binectors to control connector selector switch 2.
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.23 Motorized potentiometer}
(see also Section 8, Sheet G126)
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \mathbf{P 4 6 0} \\
& * \\
& \text { FDS } \\
& \text { (G126) }
\end{aligned}
\] & \begin{tabular}{l}
Control word for motorized potentiometer ramp-function generator \\
\(0 \quad\) The motorized potentiometer ramp generator is bypassed in Automatic mode (same effect as for P462 and P463 \(=0.01\), i.e. the generator output is made to follow the automatic setpoint without delay) \\
1 Motorized potentiometer ramp generator is active in Manual and Automatic modes
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=1 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P461 } \\
& * \\
& \text { FDS } \\
& \text { (G126) }
\end{aligned}
\] & \begin{tabular}{l}
Source for setpoint in Automatic mode \\
Selection of the connector to be applied as the Automatic setpoint to the ramp-function generator in the motorized potentiometer \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 4 6 2} \\
& \text { FDS } \\
& (\mathrm{G} 126) \\
& \hline
\end{aligned}
\] & Ramp-up time for motorized potentiometer & \[
\begin{aligned}
& \hline 0.01 \text { to } 300.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s} \\
& \hline
\end{aligned}
\] & Ind: 4 FS=10.00 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P463 } \\
& \text { FDS } \\
& \text { (G126) } \\
& \hline
\end{aligned}
\] & Ramp-down time for motorized potentiometer & \[
\begin{aligned}
& \hline 0.01 \text { to } 300.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s} \\
& \hline
\end{aligned}
\] & Ind: 4 FS=10.00 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P464 } \\
& \text { FDS } \\
& \text { (G126) }
\end{aligned}
\] & \begin{tabular}{l}
Time difference for dy/dt \\
Setting of dt for the output of \(\mathrm{dy} / \mathrm{dt}\) at a connector, i.e. on K0241 the change in the output quantity (K0240) is output within the time set in P464, multiplied by the factor set in P465 (unit of time setting is [s] if P465=0 or [min] if P465=1) \\
Example: The ramp-function generator is currently ramping up with a rampup time of \(P 462=5\) s, i.e. a ramp-up operation from \(y=0 \%\) to \(y=100 \%\) takes 5 s . \\
- A time difference dt of \(\mathrm{P} 464=2 \mathrm{~s}\) is set. \\
- A dy/dt of \(40 \%\) appears at connector K0241 since the dy within the set dt of 2 s equals \((2 \mathrm{~s} / 5 \mathrm{~s})^{*} 100 \%\).
\end{tabular} & \[
\begin{aligned}
& \hline 0.01 \text { to } 300.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=10.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = 3 } \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P465 } \\
& * \\
& \text { FDS } \\
& \text { (G126) }
\end{aligned}
\] & \begin{tabular}{l}
Factor of expansion for motorized potentiometer \\
The effective ramp-up time, ramp-down time or time difference for dy/dt is the product of the time setting in parameter P462, P463 and P464 respectively, multiplied by the factor set in this parameter. \\
0 Parameters P462, P463 and P464 are multiplied by a factor of 1 \\
1 Parameters P462, P463 and P464 are multiplied by a factor of 60
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P466 } \\
& * \\
& \text { FDS } \\
& \text { (G126) }
\end{aligned}
\] & \begin{tabular}{l}
Source for motorized potentiometer setting value \\
Selection of the connector to be injected as the motorized potentiometer setting value
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P467 } \\
& \text { FDS } \\
& \text { (G126) }
\end{aligned}
\] & \begin{tabular}{l}
Motorized potentiometer starting value \\
Starting value of motorized potentiometer after ON when P473 \(=0\)
\end{tabular} & \[
\begin{aligned}
& \hline-199.9 \text { to } 199.9 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: 12
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P468 } \\
& \text { FDS } \\
& \text { (G126) }
\end{aligned}
\] & \begin{tabular}{l}
Setpoint for "Raise motorized potentiometer" \\
Motorized potentiometer manual operation: Setpoint for "Raise motorized potentiometer"
\end{tabular} & \[
\begin{aligned}
& \hline-199.99 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=100.00 } \\
\text { Type: } 12
\end{array}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P469 } \\
& \text { FDS } \\
& \text { (G126) }
\end{aligned}
\] & \begin{tabular}{l}
Setpoint for "Lower motorized potentiometer" \\
Motorized potentiometer manual operation: Setpoint for "Lower motorized potentiometer"
\end{tabular} & \[
\begin{aligned}
& \hline-199.99 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=-100.00 } \\
\text { Type: } 12
\end{array}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 4 7 0} \\
& * \\
& \text { BDS } \\
& (\mathrm{G} 126)
\end{aligned}
\] & \begin{tabular}{l}
Source for clockwise/counter-clockwise switchover \\
Selection of binector to control "Clockwise/counter-clockwise switchover" \\
("0" state = clockwise).
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 4 7 1} \\
& * \\
& \text { BDS } \\
& \text { (G126) }
\end{aligned}
\] & \begin{tabular}{l}
Source for manual/automatic switchover \\
Selection of binector to control "Manual/automatic switchover" ("0" state = manual).
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 4 7 2} \\
& * \\
& \text { BDS } \\
& \text { (G126) }
\end{aligned}
\] & \begin{tabular}{l}
Source for set motorized potentiometer \\
Selection of binector to control "Set motorized potentiometer" ("0" to "1" transition = set motorized potentiometer).
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 4 7 3} \\
& * \\
& \text { FDS } \\
& \text { (G126) }
\end{aligned}
\] & \begin{tabular}{l}
Storage of output value \\
\(0 \quad\) No storage of output value: \\
The output is set to 0 in all operating states of \(>05\). \\
The starting point after ON is determined by P467 (MOP starting value). \\
1 Non-volatile storage of output value: \\
The output value remains stored in all operating states and after voltage disconnection or failure. The last value stored is output again after voltage recovery/reconnection.
\end{tabular} & \[
\begin{array}{|l|}
\hline 0 \text { to } 1 \\
1
\end{array}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 = } 3 \\
\text { P051 = } 40 \\
\text { Offline }
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.24 Oscillation}

Function:
Parameters P480 to P483 define the waveshape of a rectangular signal (oscillation setpoint K0203). The value set in P480 determines the signal level for the time period set in P481 and the value set in P482 the signal level for the time period set in P483.

Oscillation: Selected in P485. The free-running rectangular signal is switched through to the output K0208.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { P480 } \\
& \text { FDS } \\
& \text { (G128) }
\end{aligned}
\] & Oscillation setpoint 1 & ```
-199.9 to 199.9
[%]
0.1% of maximum
speed
``` & \begin{tabular}{l}
Ind: 4 FS=0,5 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P481 FDS (G128) & Oscillation time 1 & \[
\begin{aligned}
& \hline 0.1 \text { to } 300.0 \\
& {[\mathrm{~s}]} \\
& 0.1 \mathrm{~s} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P482 } \\
& \text { FDS } \\
& \text { (G128) } \\
& \hline
\end{aligned}
\] & Oscillation setpoint 2 & ```
-199.9 to 199.9
[%]
0.1% of maximum
speed
``` & \begin{tabular}{l}
Ind: 4 FS=-0,4 \\
Type: 12
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P483 } \\
& \text { FDS } \\
& \text { (G128) } \\
& \hline
\end{aligned}
\] & Oscillation time 2 & \[
\begin{array}{|l}
\hline 0.1 \text { to } 300.0 \\
{[\mathrm{~s}]} \\
0.1 \mathrm{~s} \\
\hline
\end{array}
\] & \begin{tabular}{l}
Ind: 4 FS=0.1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P484 } \\
& * \\
& \text { FDS } \\
& \text { (G128) }
\end{aligned}
\] & \begin{tabular}{l}
Source for standard setpoint \\
Selection of connector to be injected as the output value when the "Oscillation" function is not selected
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS=209 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 4 8 5} \\
& * \\
& \text { BDS } \\
& \text { (G128) }
\end{aligned}
\] & \begin{tabular}{l}
Source for oscillation selection \\
Selection of binector to control activation of the "Oscillation" function (log. "1" state = oscillation active) \\
\(0=\) binector B 0000 \\
1 = binector B0001 etc.
\end{tabular} & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.25 Definition of "Motor interface"}
(see also Section 8, Sheets G185 und G186)

\section*{CAUTION}

The encoders for measurement and monitoring of the brush length, bearing condition, air flow and motor temperature must be safely isolated from the power circuit.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { P490 } \\
& \text { * } \\
& (\mathrm{G} 185)
\end{aligned}
\] & \begin{tabular}{l}
Selection of temperature sensor for analog monitoring of motor temperature \\
i001: Temperature sensor at terminals 22 / 23: \\
i002: Temperature sensor at terminals 204 / 205: \\
Settings: \\
1) PTC thermistor according to DIN 44081 / 44082 with specified \(R\) at rated response temperature, \(1330 \Omega\) on Siemens motors (setting 4 must be selected). When a PTC thermistor is selected as the temperature sensor, it is not necessary to set parameters P491 and P492 (alarm and trip temperatures). These two temperatures are predetermined by the type of PTC thermistor installed. Whether an alarm or fault is output when the operating point of the PTC thermistor is reached depends on how the relevant input is parameterized (P493.F or P494.F).
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 5 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P491 } \\
& \text { FDS } \\
& \text { (G185) }
\end{aligned}
\] & Analog monitoring of motor temperature: Alarm temperature Operative only when P490.x=1. & \[
\begin{aligned}
& 0 \text { to } 200 \\
& {\left[{ }^{\circ} \mathrm{C}\right]} \\
& 1^{\circ} \mathrm{C}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = 3 } \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P492 } \\
& \text { FDS } \\
& \text { (G185) }
\end{aligned}
\] & Analog monitoring of motor temperature: Trip temperature Operative only when P490.x=1. & \[
\begin{aligned}
& 0 \text { to } 200 \\
& {\left[{ }^{\circ} \mathrm{C}\right]} \\
& 1^{\circ} \mathrm{C}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P493 } \\
& * \\
& \text { FDS } \\
& \text { (G185) }
\end{aligned}
\] & \begin{tabular}{l}
Motor temperature analog 1 (temperature sensor at terminals 22 / 23): Tripping of alarm or fault message \\
Motor temperature grasped with KTY84 \\
Monitoring deactivated \\
Alarm (A029) at temperature > P491 \\
Fault message (F029) at temperature > P492 \\
Alarm (A029) at temperature > P491 and fault message (F029) at temperature > P492 \\
Motor temperature grasped with PTC thermistor \\
\(0 \quad\) Monitoring deactivated \\
1 Alarm message (A029) when operating point of PTC thermistor is reached \\
2 Fault message (F029) when operating point of PTC thermistor is reached \\
3 Illegal setting
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P494 } \\
& * \\
& \text { FDS } \\
& \text { (G185) }
\end{aligned}
\] & \begin{tabular}{l}
Motor temperature analog 2 (temperature sensor at terminals 204 / \\
205): Tripping of alarm or fault message \\
Motor temperature grasped with KTY84 \\
Monitoring deactivated \\
Alarm (A029) at temperature > P491 \\
Fault message (F029) at temperature > P492 \\
Alarm (A029) at temperature > P491 and fault message (F029) at temperature > P492 \\
Motor temperature grasped with PTC thermistor \\
0 Monitoring deactivated \\
1 Alarm message (A029) when operating point of PTC thermistor is reached \\
2 Fault message (F029) when operating point of PTC thermistor is reached \\
3 Illegal setting
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P495 } \\
& * \\
& \text { FDS } \\
& \text { (G186) }
\end{aligned}
\] & Brush length sensing: Tripping of alarm or fault message & \[
\begin{aligned}
& 0 \text { to } 2 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P496 } \\
& * \\
& \text { FDS } \\
& \text { (G186) }
\end{aligned}
\] & \begin{tabular}{cl}
Bearing condition: Tripping of alarm or fault message \\
0 & No bearing condition sensing (terminal 212 is not scanned) \\
1 & \begin{tabular}{l}
Bearing condition sensing (terminal 212 is scanned) \\
Alarm (A026) in response to 1 signal
\end{tabular} \\
2 & \begin{tabular}{l}
Bearing condition sensing (terminal 212 is scanned) \\
Fault message (F026) in response to 1 signal
\end{tabular}
\end{tabular} & \[
\begin{array}{|l|}
\hline 0 \text { to } 2 \\
1
\end{array}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P 4 9 7} \\
& * \\
& \text { FDS } \\
& \text { (G186) }
\end{aligned}
\] & Air flow: Tripping of alarm or fault message & \[
\begin{aligned}
& \hline 0 \text { to } 2 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \begin{tabular}{l}
P498 \\
FDS \\
(G186)
\end{tabular} & Temperature switch: Tripping of alarm or fault message & \[
\begin{aligned}
& \hline 0 \text { to } 2 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.26 Configuring of torque shell input}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \text { P500 } \\
* \\
\text { BDS } \\
\text { (G160) }
\end{array}
\] & \begin{tabular}{l}
Source for torque setpoint for slave drive \\
Selection of the connector to be injected as the torque setpoint for a slave drive \\
\(0=\) connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=170 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P501 } \\
& * \\
& \text { BDS } \\
& \text { (G160) }
\end{aligned}
\] & \begin{tabular}{l}
Source for additional torque setpoint \\
Selection of connector to be injected as the additional torque setpoint
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 2
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { P502 } \\
& * \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for value to be added to speed controller output \\
Selection of connector to be injected as the value to be added to the speed controller output (in addition to friction and moment of inertia compensation) \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P503 } \\
& \text { FDS } \\
& \text { (G160) }
\end{aligned}
\] & Multiplier for torque setpoint in slave mode & \[
\begin{aligned}
& -300.00 \text { to } 300.00 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: 4 FS=100.00 Type: 12 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.27 Speed limiting controller}
(see also Section 8, Sheet G160)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{The output of the speed limiting controller comprises a positive (K0136) and a negative (K0137) torque limit. These limits are applied to the torque limitation.} \\
\hline \[
\begin{aligned}
& \hline \text { P509 } \\
& \text { * } \\
& \text { (G160) }
\end{aligned}
\] & Source for input quantity (n -act) of speed limiting controller
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=167 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P510 } \\
& * \\
& \text { (G160) }
\end{aligned}
\] & \begin{tabular}{l}
Source for pos. torque limit of speed limiting controller \\
Selection of the connector to be injected as the limit value for torque limitation 1 \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None
\[
\mathrm{FS}=2
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P511 } \\
& \text { * } \\
& \text { (G160) }
\end{aligned}
\] & \begin{tabular}{l}
Source for neg. torque limit of speed limiting controller \\
Selection of the connector to be injected as the limit value for torque limitation 2
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=4 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline P512 FDS (G160) & Maximum speed in positive direction of rotation & \[
\begin{aligned}
& 0.0 \text { to } 199.9 \\
& {[\%]} \\
& 0.1 \% \text { of rated speed }
\end{aligned}
\] & Ind: 4 FS=105.0 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P513 } \\
& \text { FDS } \\
& \text { (G160) }
\end{aligned}
\] & Maximum speed in negative direction of rotation & \[
\begin{array}{|l|}
\hline-199.9 \text { to } 0.0 \\
{[\%]} \\
0.1 \% \text { of rated speed } \\
\hline
\end{array}
\] & Ind: 4 FS=-105.0 Type: I2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} \\
\hline \hline P515 & P gain of speed limiting controller & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
FDS & & 0.10 to 200.00 & \begin{tabular}{l}
Ind: 4 \\
(G160)
\end{tabular} & 0.01 \\
FS \(=3.00\) & P052 =3 \(=40\) \\
Type: O2 \\
\hline
\end{tabular}

\subsection*{11.28 Friction compensation}
(see also Section 8, Sheet G153)
Parameters P520 to P530 are the armature current and torque setpoint required for a stationary input signal (factory setting: speed controller actual value K0179) of \(0 \%, 10 \%\) to \(100 \%\) of the maximum value (in steps of \(10 \%\)).
These parameters are intermediate points along the friction curve. Depending on P170 (0 or 1) they are either an armature current or a torque setpoint and are set automatically when the friction and moment of inertia compensation (P051=28) are optimized. P520 is then set to \(0.0 \%\).
The intermediate points are interpolated linearly during which the output of the friction compensation assumes the sign of the input signal. P530 is specified by the friction compensation even for input signals \(>100 \%\) of the maximum signal.
During operation in both directions we recommend leaving P520 at \(0.0 \%\) in order to avoid armature current vibration at \(0 \%\) of the input signal.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { P519 } \\
& * \\
& \text { (G153) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signal of the friction compensation \\
[SW 2.0 and later] \\
Selection of the input signals that are added and led to the input of the friction compensation. \\
i001 Input signal, with sign \\
i002 Input signal with absolute value generator \\
Settings: \\
\(0=\) Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & Ind: 2 FS= i001: 179 i002: 0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P520 } \\
& \text { FDS } \\
& (\mathrm{G} 153) \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Friction at 0\% speed \\
Setting as \% of converter rated DC current or rated torque
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P521 } \\
& \text { FDS } \\
& \text { (G153) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Friction at 10\% speed \\
Setting as \% of converter rated DC current or rated torque
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P522 } \\
& \text { FDS } \\
& \text { (G153) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Friction at 20\% speed \\
Setting as \% of converter rated DC current or rated torque
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P523 } \\
& \text { FDS } \\
& \text { (G153) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Friction at 30\% speed \\
Setting as \% of converter rated DC current or rated torque
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P524 } \\
& \text { FDS } \\
& \text { (G153) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Friction at 40\% speed \\
Setting as \% of converter rated DC current or rated torque
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P525 } \\
& \text { FDS } \\
& \text { (G153) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Friction at 50\% speed \\
Setting as \% of converter rated DC current or rated torque
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P526 } \\
& \text { FDS } \\
& \text { (G153) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Friction at 60\% speed \\
Setting as \% of converter rated DC current or rated torque
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P527 } \\
& \text { FDS } \\
& \text { (G153) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Friction at 70\% speed \\
Setting as \% of converter rated DC current or rated torque
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P528 } \\
& \text { FDS } \\
& (\mathrm{G} 153) \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Friction at \(80 \%\) speed \\
Setting as \% of converter rated DC current or rated torque
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 = } 3 \\
\text { P051 }=40 \\
\text { Online }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P529 } \\
& \text { FDS } \\
& \text { (G153) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Friction at \(90 \%\) speed \\
Setting as \% of converter rated DC current or rated torque
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P530 } \\
& \text { FDS } \\
& \text { (G153) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Friction at 100\% speed and higher \\
Setting as \% of converter rated DC current or rated torque
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 100.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.29 Compensation of moment of inertia (dv/dt injection)}
(see also Section 8, Sheet G153)
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { P540 } \\
& \text { FDS } \\
& \text { (G153) }
\end{aligned}
\] & \begin{tabular}{l}
Acceleration time \\
The acceleration time is the time that would be needed to accelerate the drive from \(0 \%\) to \(100 \%\) of maximum speed (with no friction) at \(100 \%\) converter rated DC current (armature) and 100\% rated motor field current (i.e. \(100 \%\) flux). It is a measure of the moment of inertia on the motor shaft. This parameter is set automatically during the optimization run for friction and moment of inertia compensation (P051=28).
\end{tabular} & \[
\begin{aligned}
& \hline 0.00 \text { to } 650.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s}
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=0.00 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P541 \\
FDS \\
(G153)
\end{tabular} & \begin{tabular}{l}
\(\mathbf{P}\) gain of acceleration \\
Proportional gain for "SAD-dependent acceleration" function (see also parameter P543)
\end{tabular} & \[
\begin{aligned}
& 0.00 \text { to } 650.00 \\
& 0.01
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=0.00 } \\
& \text { Type: } 02
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P542 } \\
& \text { FDS } \\
& \text { (G136) }
\end{aligned}
\] & \begin{tabular}{l}
Time difference for dy/dt of ramp-function generator \\
Ramp-function generator: \\
Setting of dt for the output of dy/dt at a connector, i.e. at K0191, the change in the output quantity of the ramp-function generator (K0190) is output within the period set in P542 \\
Example: The ramp-function generator is currently ramping up with a rampup time of \(\mathrm{P} 311=5\) s, i.e. a ramp-up operation from \(\mathrm{y}=0 \%\) to \(y=100 \%\) takes 5 s . \\
- A time difference dt of \(P 542=2 \mathrm{~s}\) is set. \\
- A dy/dt of \(40 \%\) appears at connector K0191 since the dy within the set dt of 2 s equals (\(2 \mathrm{~s} / 5 \mathrm{~s})^{*} 100 \%\)..
\end{tabular} & \[
\begin{aligned}
& \hline 0.01 \text { to } 300.00 \\
& {[\mathrm{~s}]} \\
& 0.01 \mathrm{~s}
\end{aligned}
\] & Ind: 4 FS=0.01 Type: O2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P543 } \\
& \text { FDS } \\
& \text { (G153) }
\end{aligned}
\] & \begin{tabular}{l}
Threshold for SAD-dependent acceleration \\
With respect to the SAD-dependent acceleration function, only the component of the speed controller setpoint/actual value difference which has an absolute value in excess of the threshold set in this parameter is switched through (see also parameter P541). \\
Output (value to be multiplied by P541)
\end{tabular} & ```
0.00 to 100.00
[%]
0.01% of maximum
speed
``` & Ind: 4 FS=0.00 Type: O 2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P546 } \\
& \text { FDS } \\
& \text { (G153) }
\end{aligned}
\] & Filter time for compensation of moment of inertia & \[
\begin{aligned}
& \hline 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms} \\
& \hline
\end{aligned}
\] & Ind: 4
FS=0
Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.30 Speed controller}
(see also Section 8, Sheet G151)
further parameters for the speed controller P200-P236

\section*{Speed controller adaptation}

The parameters of the speed controller ( \(\mathrm{Kp}, \mathrm{Tn}\), droop) can be altered as a function of any connector to adapt the speed controller optimally to a changing controlled system.
The diagrams below show the active P gain, the active Integration time and the active droop depending on the value of the set connector.
Adaptation of the P gain:


Adaptation of the integration time:


Adaptation of the droop:


For parameter pairs P225/P550, P226/P551 and P227/P552 all values can be set completely mutually independently, e.g., P550 does not have to be greater than P225. The above diagrams show only the effect of the individual parameters.
Threshold 1 must always be set smaller than threshold 2, otherwise the fault message F058 is activated.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { P550 } \\
& \text { FDS } \\
& \text { (G151) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
\(\mathbf{P}\) gain in the adaptation range \\
Value of Kp, if Influencing quantity \(\leq\) Threshold 1
\end{tabular} & \[
\begin{aligned}
& 0.10 \text { to } 200.00 \\
& 0.01
\end{aligned}
\] & Ind: 4 FS=3.00 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P551 } \\
& \text { FDS } \\
& \text { (G151) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{ll} 
Integration time in the adaptation range & [SW 1.7 and later] \\
Value of Tn, if Influencing quantity \(\leq\) Threshold 1 &
\end{tabular} & \begin{tabular}{l}
0.010 to 10.000 [s] \\
0.001s
\end{tabular} & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=0.650 } \\
& \text { Type: O2 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P552 } \\
& \text { FDS } \\
& \text { (G151) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{ll} 
Droop in the adaptation range & [SW 1.7 and later] \\
Value of droop, if Influencing quantity \(\leq\) Threshold 1 & \\
\hline
\end{tabular} & \[
\begin{aligned}
& 0.0 \text { to } 10.0 \\
& {[\%]} \\
& 0.1 \% \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=0.0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P553 } \\
& \text { * } \\
& \text { FDS } \\
& \text { (G151) }
\end{aligned}
\] & \begin{tabular}{l}
Source for the Influencing quantity of the Kp adaptation \\
Selection of which connector is connected at the influencing quantity for adaptation of the n controllers P gain \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P554 } \\
& * \\
& \text { FDS } \\
& \text { (G151) }
\end{aligned}
\] & \begin{tabular}{l}
Source for the Influencing quantity of the Tn-adaptation \\
[SW 1.7 and later] \\
Selection of which connector is connected at the influencing quantity for adaptation of the n controllers integration time
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P555 } \\
& \text { FDS } \\
& \text { (G151) }
\end{aligned}
\] & \begin{tabular}{l}
Source for the Influencing quantity of the droop adaptation \\
[SW 1.7 and later] \\
Selection of which connector is connected at the influencing quantity for adaptation of the n controllers droop \\
\(0=\) Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & Ind: 4 FS=0 Type: L2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P556 } \\
& \text { FDS } \\
& \text { (G151) }
\end{aligned}
\] & Adaptation n controller P gain: Threshold 1 & \[
\begin{aligned}
& \hline 0.00 \text { to } 100.00 \\
& {[\%] \text { [ }} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P557 \\
FDS \\
(G151)
\end{tabular} & Adaptation \(\mathbf{n}\) controller integration time: Threshold 1 [SW 1.7 and later] & \[
\begin{aligned}
& \hline 0.00 \text { to } 100.00 \\
& {[\%]} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P558 } \\
& \text { FDS } \\
& \text { (G151) } \\
& \hline
\end{aligned}
\] & Adaptation \(\mathbf{n}\) controller droop: Threshold 1 [SW 1.7 and later] & \[
\begin{aligned}
& \hline 0.00 \text { to } 100.00 \\
& {[\%] \text { ] }} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=0.00 } \\
\text { Type: O2 } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { on-line } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P559 } \\
& \text { FDS } \\
& \text { (G151) } \\
& \hline
\end{aligned}
\] & Adaptation n controller P gain: Threshold 2 & \[
\begin{aligned}
& \hline 0.00 \text { to } 100.00 \\
& {[\%] \text { ] }} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P560 } \\
& \text { FDS } \\
& \text { (G151) } \\
& \hline
\end{aligned}
\] & Adaptation \(\mathbf{n}\) controller integration time: Threshold 2 [SW 1.7 and later] & \[
\begin{aligned}
& \hline 0.00 \text { to } 100.00 \\
& {[\%] \text { [ }} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P561 } \\
& \text { FDS } \\
& \text { (G151) }
\end{aligned}
\] & Adaptation \(\mathbf{n}\) controller droop: Threshold 2 [SW 1.7 and later] & \[
\begin{aligned}
& \hline 0.00 \text { to } 100.00 \\
& {[\%] \text { ] }} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & Ind: 4 FS=0.00 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Speed controller - speed droop limitation} \\
\hline P562 FDS (G151) & Positive speed droop limitation & \[
\begin{aligned}
& 0.00 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=100.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& P 052=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P563 FDS (G151) & Negative speed droop limitation & \[
\begin{aligned}
& -199.99 \text { to } 0.00 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & Ind: 4 FS=-100.00 Type: 12 & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Speed controller optimization for drives with oscillating mechanical system}

On drives with oscillating mechanical components, it can be useful to optimize the speed controller using optimization run \(\mathrm{P} 051=29\). The frequency response of the controlled system for frequencies from 1 Hz to 100 Hz is recorded during optimization.
The drive is first accelerated up to a base speed (P565, FS=20\%). A sinusoidal speed setpoint with low amplitude ( \(\mathrm{P} 566, \mathrm{FS}=1 \%\) ) is then injected. The frequency of this supplementary setpoint is incremented in 1 Hz steps from 1 Hz up to 100 Hz . An average per frequency is calculated over a parameterizable number of current peaks (P567, FS=300).
\begin{tabular}{|c|c|c|c|c|}
\hline P565 & Base speed for frequency response recording [SW 1.9 and later] & \[
\begin{aligned}
& 1.0 \text { to } 30.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & Ind: None FS=20.0 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline P566 & Amplitude for frequency response recording [SW 1.9 and later] & \[
\begin{aligned}
& 0.01 \text { to } 5.00 \\
& {[\%]} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=1.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline P567 & \begin{tabular}{l}
Number of current peaks for frequency response recording [SW 1.9 and later] \\
While the frequency response is being recorded, an average over the number of current peaks set here is calculated for each measuring frequency. High values improve the result, but extend the measuring time. When P567 = 1000, the frequency response recording takes about 9 minutes.
\end{tabular} & \[
\begin{aligned}
& 100 \text { to } 1000 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=300 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.31 Field reversal}
(see also Section 9)
\begin{tabular}{|c|c|c|c|c|}
\hline P580
*
BDS
(G200) & \begin{tabular}{l}
Source for selection of "Direction of rotation reversal using field reversal" \\
Selection of binector to control the "Direction of rotation reversal using field reversal" function \\
\(0=\) binector \(B 0000\) \\
1 = binector B0001 \\
etc. \\
Signal 0: Positive field direction is selected \((B 0260=1, B 0261=0)\), actual speed value is not inverted \\
Signal 1: Negative field direction is selected (B0260 = \(0, B 0261=1\) ), actual speed value is inverted
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline P581
*
BDS
(G200) & \begin{tabular}{l}
Source for selection of "Braking with field reversal" \\
Selection of binector to control the "Braking with field reversal" function
```

 0 = binector B0000
 1 = binector B0001
 etc.
    ``` \\
Signal change \(0 \rightarrow 1\) : Reversal of field direction (causes braking); When \(n<n-m i n\) is reached, the original field direction is selected again. The drive switches to state 07.2
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P582 } \\
& \text { * } \\
& \text { BDS } \\
& \text { (G200) }
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of "Field reversal" \\
[SW 1.9 and later] \\
Selection of binector to control "Field reversal" function \\
\(0=\) binector B0000 \\
1 = binector B0001 \\
etc. \\
Signal 0: Positive field direction is selected \((B 0260=1, B 0261=0)\) \\
Signal 1: Negative field direction is selected \((B 0260=0, B 0261=1)\)
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P583 } \\
& \text { * }{ }^{\prime} \text { (200) }
\end{aligned}
\] & \begin{tabular}{l}
Source for actual speed signal for field reversal logic \\
[SW 1.9 and later] \\
Selection of connector to be used as actual speed value for the field reversal logic.
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=167 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.32 Input quantities for signals}
(see also Section 8, Sheet G187 and G188)
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { P590 } \\
& * \\
& \text { (G187) }
\end{aligned}
\] & \begin{tabular}{l}
Source for setpoint of "nset = nact signal 1" \\
Setpoint/actual value deviation signal: \\
Selection of connector to be injected as input quantity " \(\mathrm{n}_{\text {set }}\) " for the setpoint/actual value deviation signal. \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & Ind: None FS=174 Type: L2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { P591 } \\
*
\end{array} \\
\text { (G187) }
\end{array}
\] & \begin{tabular}{l}
Source for actual value of " n -set \(=\mathrm{n}\)-act signal 1 " \\
Setpoint/actual value deviation signal: \\
Selection of connector to be injected as input quantity " \(\mathrm{n}_{\text {act }}\) " for the setpoint/actual value deviation signal. \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=167 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\(\left.\begin{array}{|l|l|l|l|l|}\hline \text { PNU } & \begin{array}{l}\text { Description }\end{array} & \begin{array}{l}\text { Value range } \\ \text { [Unit] } \\ \text { Steps }\end{array} & \begin{array}{l}\text { No. indices } \\ \text { Factory } \\ \text { setting } \\ \text { Type }\end{array} \\ \text { Change } \\ \text { (Access } / \\ \text { Status) }\end{array}\right]\)

\subsection*{11.33 Configuring of closed-loop control}

\section*{Setting values for configuring of torque shell}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { P600 } \\
& \text { * } \\
& (\mathrm{G} 163)
\end{aligned}
\] & \begin{tabular}{l}
Source for gating unit input (armature) \\
i001 to i004: \\
Selects which connectors are applied as the gating unit input (armature). All four values are added. \\
Settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS= i001: 102 \\
i002: 0 \\
i003: 0 \\
i004: 0 \\
Typ: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P601 } \\
& * \\
& \text { (G160) } \\
& \text { (G161) } \\
& \text { (G162) }
\end{aligned}
\] & \begin{tabular}{l}
Source for armature current controller setpoint \\
i001,i002 Speed limiting controller: \\
Selection of connectors to be injected as input quantities for the speed limiting controller. Both values are added. \\
i003,i004 Current limitation: \\
Selection of connectors to be injected as armature current controller setpoint (before current limitation). Both values are added. \\
i005,i006 Current control: \\
[SW 1.8 and later] Selection of which connectors are connected as the armature current controller setpoint (before current controller). The two values are added. The magnitude is formed from the value selected with index 6 . \\
Settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 6 \\
FS= \\
i001: 141 \\
i002: 0 \\
i003: 134 \\
i004: 0 \\
i005: 125 \\
i006: 0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P602 } \\
& * \\
& \text { (G162) }
\end{aligned}
\] & \begin{tabular}{l}
Source for armature current controller actual value \\
Selection of connector to be injected as armature current controller actual value
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=117 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P603 } \\
& * \\
& \text { (G161) }
\end{aligned}
\] & \begin{tabular}{l}
Source for variable current limit in torque direction I \\
i001..i004Selection of connector to be injected as variable current limit in torque direction I \\
Normalization: +100\% corresponds to P100*P171 \\
i005 Selection of connector to be injected as current limit in torque direction I with Fast Stop or Shutdown \\
Normalization: +100\% corresponds to P100*P171 \\
i006 Selection of connector to be injected as variable current limit in torque direction I \\
Normalization: +100\% corresponds to r072.002 \\
[can be set in SW 1.9 and later] \\
i007 Selection of connector to be injected as current limit in torque direction I with Emergency Stop or Shutdown \\
Normalization: +100\% corresponds to r072.002 \\
[can be set in SW 1.9 and later] \\
Settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 7 \\
FS= \\
i001: 1 \\
i002: 1 \\
i003: 1 \\
i004: 1 \\
i005: 1 \\
i006: 2 \\
i007: 2 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P604 } \\
& * \\
& \text { (G161) }
\end{aligned}
\] & \begin{tabular}{l}
Source for variable current limit in torque direction II \\
i001..i004Selection of connector to be injected as variable current limit in torque direction II \\
Normalization: -100\% corresponds to P100*P172 \\
i005 Selection of connector to be injected as current limit in torque direction II with Fast Stop or Shutdown \\
Normalization: -100\% corresponds to P100*P172 \\
i006 Selection of connector to be injected as variable current limit in torque direction II \\
Normalization: -100\% corresponds to r072.002 \\
[can be set in SW 1.9 and later] \\
i007 Selection of connector to be injected as current limit in torque direction II with Emergency Stop or Shutdown \\
Normalization: -100\% corresponds to r072.002 \\
[can be set in SW 1.9 and later] \\
Settings:
\[
\begin{array}{ll}
0 & =\text { connector K0000 } \\
\cdots & \\
8 & =\text { connector K0008 } \\
9 & =\text { value as set in parameter P603.ixx } *(-1) \\
10 & =\text { connector K0010 } \\
\text { etc. }
\end{array}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 7
FS=9 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P605 } \\
& * \\
& \text { (G160) }
\end{aligned}
\] & \begin{tabular}{l}
Source for variable positive torque limit \\
Torque limitation: \\
Selection of connectors to be injected as the variable positive torque limit \\
i001..i004 Normalization: \(100 \%\) of the connector value corresponds to the positive system torque limit according to \(\mathrm{I}_{\mathrm{a}}=\mathrm{P} 171\) and \(\mathrm{I}_{\mathrm{f}}=\mathrm{P} 102\) \\
i005 Normalization: \\
\(100 \%\) of the connector value corresponds to the positive torque limit according to la=r072.002 and If \(=\mathrm{P} 102\) [can be set in SW 1.9 and later] \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 5 FS=2 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P606 } \\
& { }_{*} \\
& \text { (G160) }
\end{aligned}
\] & \begin{tabular}{l}
Source for variable negative torque limit \\
Torque limitation: \\
Selection of connectors to be injected as the variable negative torque limit \\
i001..i004Normalization: \(100 \%\) of the connector value corresponds to the negative system torque limit according to \(\mathrm{I}=\mathrm{P} 172\) and \(\mathrm{If}=\mathrm{P} 102\) \\
i005 Normalization: \\
\(100 \%\) of the connector value corresponds to the negative torque limit according to la=r072.002 and If = P102 \\
[can be set in SW 1.9 and later] \\
0 = connector K0000 \\
... \\
8 = connector K0008 \\
9 = value as set in parameter P605 * (-1) \\
10 = connector K0010 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 5 FS=9 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P607 } \\
& * \\
& \text { BDS } \\
& \text { (G160) }
\end{aligned}
\] & \begin{tabular}{l}
Source for torque setpoint for master drive \\
Torque limitation: \\
Selection of connector to be injected as the torque setpoint for a master drive \\
\(0=\) connector \(K 0000\) \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & Ind: 2 FS=148 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \multicolumn{5}{|l|}{Speed controller} \\
\hline \[
\begin{aligned}
& \hline \text { P609 } \\
& * \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for actual speed controller value \\
Selection of connector to be injected as the actual speed controller value when P083=4
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Setting values for configuring of closed-loop field and EMF control} \\
\hline \[
\begin{aligned}
& \hline \text { P610 } \\
& \text { * } \\
& \text { (G166) }
\end{aligned}
\] & \begin{tabular}{l}
Source for gating unit input (field) \\
Selection of connector to be applied to the gating unit input (field)
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & Ind: None FS=252 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P611 } \\
& \text { * } \\
& \text { (G165) }
\end{aligned}
\] & \begin{tabular}{l}
Source for field current controller setpoint \\
Limitation at EMF controller output: \\
Selection of connectors to be injected as the field current controller setpoint. The connectors selected in the four indices are added.
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS= i001: 277 \\
i002: 0 \\
i003: 0 \\
i004: 0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P612 } \\
& \text { * } \\
& \text { (G166) }
\end{aligned}
\] & \begin{tabular}{l}
Source for actual field current controller value \\
Selection of connector to be injected as the actual field current controller value \\
\(0=\) connector K 0000 \\
1 = connector K0001 etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=266 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P613 } \\
& \text { * } \\
& \text { (G165) }
\end{aligned}
\] & \begin{tabular}{l}
Source for variable field current setpoint upper limit \\
Limitation at EMF controller output \\
Selection of connector to be injected as the variable field current setpoint upper limit \\
i001..i004 Normalization: \(100 \%\) of the connector value corresponds to the rated excitation current of the motor (P102) \\
i005 Normalization: \\
\(100 \%\) of the connector value corresponds to the actual converter rated DC current (field) (r073.002) \\
[can be set in SW 1.9 and later] \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 5 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P614 } \\
& \text { * } \\
& \text { (G165) }
\end{aligned}
\] & \begin{tabular}{l}
Source for variable field current setpoint lower limit \\
Limitation at EMF controller output \\
Selection of connector to be injected as the variable field current setpoint lower limit \\
i001..i004 Normalization: \(100 \%\) of the connector value corresponds to the minimum excitation current of the motor (P103) \\
i005 Normalization: \\
\(100 \%\) of the connector value corresponds to the actual converter rated DC current (field) (r073.002) \\
[can be set in SW 1.9 and later] \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & Ind: 5 FS=1 Type: L2 & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P615 } \\
& \text { (G165) }
\end{aligned}
\] & \begin{tabular}{l}
Source for EMF controller setpoint \\
Selection of connectors to be injected as the EMF controller setpoint. The connectors selected in the four indices are added.
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS= i001: 289 \\
i002: 0 \\
i003: 0 \\
i004: 0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P616 } \\
& \text { * } \\
& \text { (G165) }
\end{aligned}
\] & \begin{tabular}{l}
Source for actual EMF controller value \\
Selection of connector to be injected as the actual EMF controller value
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=286 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Configuring of injection of acceleration value} \\
\hline \[
\begin{aligned}
& \begin{array}{l}
\text { P619 } \\
*
\end{array} \\
& \text { (G153) }
\end{aligned}
\] & \begin{tabular}{l}
Source for acceleration injection value \\
Selection of connector to be applied as the acceleration injection value
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & Ind: None FS=191 Type: L2 & \[
\begin{array}{|l}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Offline }
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Speed controller} \\
\hline \multicolumn{5}{|l|}{Speed controller, setpoint/actual value deviation} \\
\hline \[
\begin{aligned}
& \hline \text { P620 } \\
& * \\
& \text { (G152) }
\end{aligned}
\] & Source for speed controller setpoint/actual value deviation Selection of connector to be injected as the control deviation
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & All connector numbers 1 & Ind: None FS=165 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P621 } \\
& * \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for speed controller setpoint \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & Ind: None FS=176 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P622 } \\
& * \\
& \text { (G152) }
\end{aligned}
\] & Source for speed controller setpoint
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=174 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P623 } \\
& * \\
& \text { (G152) }
\end{aligned}
\] & Source for actual speed controller value
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & All connector numbers 1 & Ind: None FS=179 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P624 } \\
* \\
\text { (G152) }
\end{array}
\] & Source for actual speed controller value
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: None
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{Speed controller: Filtering of setpoint and actual value, band-stop filters} \\
\hline \[
\begin{aligned}
& \hline \text { P625 } \\
& * \\
& \text { FDS } \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for speed controller setpoint \\
Selection of connector to be injected as the input signal for speed setpoint filtering \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS=170 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P626 } \\
& * \\
& \text { FDS } \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for actual speed controller value \\
Selection of connector to be injected as the input signal for actual speed value filtering
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS=167 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P627 } \\
& * \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input of D element \\
Selection of connector to be injected as the input signal for the D element
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & Ind: None FS=178 Type: L2 & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P628 } \\
& \text { * } \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input of band-stop filter 1 \\
Selection of connector to be injected as the input signal for band-stop filter 1 \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=179 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P629 } \\
& \text { * } \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for band-stop filter 2 \\
Selection of connector to be injected as the input signal for band-stop filter 2 \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & Ind: None FS=177 Type: L2 & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{Speed controller droop} \\
\hline \[
\begin{aligned}
& \hline \text { P630 } \\
& \text { * } \\
& \text { (G151) }
\end{aligned}
\] & \begin{tabular}{l}
Source for influencing quantity for speed droop \\
Selection of connector to be injected as the influencing quantity
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & Ind: None FS=162 Type: L2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Setting \\
Function
\end{tabular} & \begin{tabular}{l}
e speed controller I component \\
When the binector selected in P695 switches state from log. "0" to log. "1", the value of the connector selected in P631. \\
With this function it is possible, for example, to use the same signal (binector) setting of the I component.
\end{tabular} & \begin{tabular}{l}
e I component \\
to control con
\end{tabular} & \begin{tabular}{l}
eed controll \\
abling comm
\end{tabular} & \begin{tabular}{l}
is set to \\
ds and
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline \text { P631 } \\
& { }_{*} \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for setting value for speed controller integrator \\
Selection of connector to be injected as the setting value for the I component \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Setting values for configuring the setpoint processing function and ramp-function generator} \\
\hline \multicolumn{5}{|l|}{Limitation at ramp-function generator output (setpoint limitation) (see also Section 8, Sheet G136)} \\
\hline \multicolumn{5}{|l|}{The effective limitations are:} \\
\hline \multicolumn{5}{|l|}{\(\begin{array}{ll}\text { Upper limit: } & \text { Minimum value of P300 and the four connectors selected with P632 } \\ \text { Lower limit: } & \text { Maximum value of P301 and the four connectors selected with P633 }\end{array}\)} \\
\hline Note: & \multicolumn{4}{|l|}{The limiting values for both the positive and negative setpoint limits can have a positive or negative sign. The negative setpoint limit, for example, can therefore be parameterized to a positive value and the positive setpoint limit to a negative value.} \\
\hline \[
\begin{aligned}
& \hline \text { P632 } \\
& \text { * } \\
& \text { (G136) }
\end{aligned}
\] & \begin{tabular}{l}
Source for variable positive limitation at ramp-function generator output \\
Selection of connectors to be injected at the variable positive limitation at the ramp-function generator output (setpoint limitation). \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\(\left.\begin{array}{|l|l|l|l|l|}\hline \text { PNU } & \begin{array}{l}\text { Description }\end{array} & \begin{array}{l}\text { Value range } \\ \text { [Unit] } \\ \text { Steps }\end{array} & \begin{array}{l}\text { Factory } \\ \text { setting } \\ \text { Type }\end{array} \\ \text { Change } \\ \text { (Access } / \\ \text { Status) }\end{array}\right]\)
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \begin{tabular}{l} 
P639 \\
\hline (G136)
\end{tabular} & \begin{tabular}{l}
Source for the ramp-function generator setting values \\
Selection of the connectors that are connected as the ramp-function generator setting values. \\
i001 Setting value for the ramp-function generator output in state log. "1" of the binector selected via P640 \\
i002 Setting value for the ramp-function generator output if the drive is not in state "Operating" (B0104=0) and the binector selected via P640 is in state log. "0" \\
[i002 only available with SW 1.6 and later] \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & Ind: 2 FS=167 Type: L2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \geq \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P640 } \\
& \text { BDS } \\
& \text { (G136) }
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of "Set ramp-function generator" \\
Selection of binector to control the "Set ramp-function generator" function \\
\(0=\) binector B 0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline P641
\(*\)
BDS
(G136) & \begin{tabular}{l}
Source for selection of "Bypass ramp-function generator" \\
Selection of binector to control the "Bypass ramp-function generator" function
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { P642 } \\
& * \\
& \text { (G135) }
\end{aligned}
\] & \begin{tabular}{l}
Source for variable positive limitation of main setpoint \\
Selection of connectors to be injected at the variable positive limitation of the main setpoint. \\
The lowest value in each case of the connectors selected via the 4 indices is applied as the limit. \\
Note: Negative values at the selected connectors result in a negative maximum value at the output of the limitation. \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & Ind: 4 FS=2 Type: L2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P643 } \\
& * \\
& \text { (G135) }
\end{aligned}
\] & \begin{tabular}{l}
Source for variable negative limitation of main setpoint \\
Selection of connectors to be injected at the variable negative limitation of the main setpoint. \\
The lowest value in each case of the connectors selected via the 4 indices is applied as the limit. \\
Note: Positive values at the selected connectors result in a positive minimum value at the output of the limitation.
\[
\begin{array}{ll}
0 & =\text { connector K0000 } \\
\cdots & \\
8 & =\text { connector K0008 } \\
9 & =\text { value as set in parameter P642 } *(-1) \\
10 & =\text { connector K0010 } \\
\text { etc. }
\end{array}
\]
\end{tabular} & All connector numbers 1 & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=9 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P644 } \\
& * \\
& \text { FDS } \\
& \text { (G135) }
\end{aligned}
\] & \begin{tabular}{l}
Source for main setpoint \\
Selection of connector to be injected as the main setpoint
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & Ind: 4 FS=206 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P645 } \\
& * \\
& \text { FDS } \\
& \text { (G135) }
\end{aligned}
\] & \begin{tabular}{l}
Source for additional setpoint \\
Selection of connector to be injected as an additional setpoint
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} \\
\hline \begin{tabular}{l} 
P646 \\
\(*\)
\end{tabular} & \begin{tabular}{l} 
Source for enable signal for ramp-up integrator switchover \\
Change \\
(Access / \\
Status)
\end{tabular} \\
BDS & \begin{tabular}{l} 
Selection of binector to control enabling of the ramp-function integrator \\
switchover function. \\
\(0=\) binector B0000 \\
\(1=\) binector B0001 \\
etc.
\end{tabular} & 1 & All binector numbers & \begin{tabular}{l} 
Ind: 2 \\
FS \(=1\) \\
Type: L2
\end{tabular} \\
\hline \begin{tabular}{ll} 
P052 \(=3\) \\
Offline
\end{tabular} \\
\hline
\end{tabular}

\subsection*{11.34 Control word, status word}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Selection of sources of control words 1 and 2} \\
\hline \[
\begin{aligned}
& \hline \text { P648 } \\
& \text { * } \\
& \text { BDS } \\
& \text { (G180) }
\end{aligned}
\] & \begin{tabular}{l}
Source for control word 1 \\
Selection of connector to act as the source for control word 1.
```

0 = connector K0000
...
8 = connector K0008
9 = parameters P654 to P675 are effective
(every individual bit of control word 1 is input by a binector)
10 = connector K0010
etc.

```
\end{tabular} & All connector numbers 1 & Ind: 2 FS=9 Type: L2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P649 } \\
& * \\
& \text { BDS } \\
& \text { (G181) }
\end{aligned}
\] & \begin{tabular}{l}
Source for control word 2 \\
Selection of connector to act as the source for control word 2.
```

0 = connector K0000
...
8 = connector K0008
9 = parameters P676 to P691 are effective
(every individual bit of control word 2 is input by a binector)
10 = connector K0010
etc.

```
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=9 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \multicolumn{5}{|l|}{Display of status words 1 and 2} \\
\hline \[
\begin{aligned}
& \hline \text { r652 } \\
& \text { (G182) }
\end{aligned}
\] & \begin{tabular}{l}
Display of status word 1 \\
Mode of representation on operator panel (PMU):
\(\square\) 1 0 \\
Segments 0 to 15 correspond to bits 0 to 15 of the status word
\end{tabular} & & Ind: None Type: V2 & P052 = 3 \\
\hline \begin{tabular}{l}
r653 \\
(G183)
\end{tabular} & \begin{tabular}{l}
Display of status word 2 \\
Mode of representation on operator panel (PMU): \\
Segments 0 to 15 correspond to bits 16 to 31 of the status word
\end{tabular} & & Ind: None Type: V2 & P052 = 3 \\
\hline
\end{tabular}

The following parameters are used to select the binectors (some of which are gated with one another or with other signals) to be applied to the individual bits of the control word.
The settings of all these parameters are as follows:
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]

The functions and logic operations are also shown on Sheets G180 and G181 in Section 8.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Control word 1} \\
\hline \[
\begin{aligned}
& \hline \text { P654 } \\
& * \\
& \text { BDS } \\
& \text { (G130) } \\
& \hline
\end{aligned}
\] & Source for control word 1, bit0 (0=OFF1, 1=ON; ANDed with terminal 37) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P655 } \\
& * \\
& \text { BDS } \\
& \text { (G180) }
\end{aligned}
\] & 1st source for control word 1, bit1 ( \(0=\) OFF2; ANDed with \(2^{\text {nd }}\) and \(3^{\text {rd }}\) sources for bit 1 ) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Offline }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P656 } \\
& \text { * } \\
& \text { BDS } \\
& \text { (G180) }
\end{aligned}
\] & 2nd source for control word 1, bit1 ( \(0=\) OFF2; ANDed with \(1^{\text {st }}\) and \(3^{\text {rd }}\) sources for bit 1 ) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P657 } \\
& \text { * } \\
& \text { BDS } \\
& \text { (G180) } \\
& \hline
\end{aligned}
\] & 3rd source for control word 1, bit1 ( \(0=\) OFF2; ANDed with \(1^{\text {st }}\) and \(2^{\text {nd }}\) sources for bit 1 ) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Offline }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P658 } \\
& * \\
& \text { BDS } \\
& \text { (G180) } \\
& \hline
\end{aligned}
\] & 1st source for control word 1, bit2 ( \(0=\) OFF3=Fast stop; ANDed with \(2^{\text {nd }}\) and \(3^{\text {rd }}\) sources for bit2) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P659 } \\
& * \\
& \text { BDS } \\
& \text { (G180) } \\
& \hline
\end{aligned}
\] & 2nd source for control word 1, bit2 ( \(0=\) OFF3=Fast stop; ANDed with \(1^{\text {st }}\) and \(3^{\text {rd }}\) sources for bit2) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P660 } \\
& * \\
& \text { BDS } \\
& \text { (G180) }
\end{aligned}
\] & 3rd source for control word 1, bit2 ( \(0=\) OFF3=Fast stop; ANDed with \(1^{\text {st }}\) and \(2^{\text {nd }}\) sources for bit2) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P661 } \\
& * \\
& \text { BDS } \\
& \text { (G180) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for control word 1, bit3 \\
(0=pulse disable, \(1=\) enable; ANDed with terminal 38)
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{array}{|l}
\hline \hline \text { P662 } \\
* \\
\text { BDS } \\
\text { (G180) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for control word 1, bit4 \\
( \(0=\) set ramp-function generator to zero, \(1=\) enable ramp-function generator)
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = 3 } \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P663 } \\
* \\
\text { BDS } \\
\text { (G180) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for control word 1, bit5 \\

\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P664 } \\
* \\
\text { BDS } \\
(\mathrm{G} 180) \\
\hline
\end{array}
\] & Source for control word 1, bit6 (0=enable setpoint, \(1=\) disable setpoint) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P665 } \\
* \\
\text { BDS } \\
\text { (G180) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
1st source for control word 1, bit7 \\
( \(0 \rightarrow 1\) transition=acknowledge; ORed with \(2^{\text {nd }}\) and \(3^{\text {rd }}\) sources for bit7)
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P666 } \\
* \\
\text { BDS } \\
\text { (G180) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
2nd source for control word 1, bit7 \\
( \(0 \rightarrow 1\) transition=acknowledge; ORed with \(1^{\text {st }}\) and \(3^{\text {rd }}\) sources for bit7)
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P667 } \\
* \\
\text { BDS } \\
\text { (G180) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
3rd source for control word 1, bit7 \\
( \(0 \rightarrow 1\) transition=acknowledge; ORed with \(1^{\text {st }}\) and \(2^{\text {nd }}\) sources for bit7)
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P668 } \\
* \\
\text { BDS } \\
\text { (G180) } \\
\hline
\end{array}
\] & Source for control word 1, bit8 (1=inching bit0) & All binector numbers 1 & \[
\begin{aligned}
& \text { Ind: } 2 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P669 } \\
* \\
\text { BDS } \\
(\text { G180 ) } \\
\hline
\end{array}
\] & Source for control word 1, bit9 (1=inching bit1) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \mathbf{P 6 7 1} \\
* \\
\text { BDS } \\
\text { (G180) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for control word 1, bit11 \\
( \(0=\) pos. direction of rotation disabled, \(1=\) pos. direction of rotation enabled)
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P672 } \\
* \\
\text { BDS } \\
\text { (G180) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for control word 1, bit12 \\
( \(0=\) neg. direction of rotation disabled, \(1=\) neg. direction of rotation enabled)
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P673 } \\
* \\
\text { BDS } \\
\text { (G180) } \\
\hline
\end{array}
\] & Source for control word 1, bit13 (1=raise motorized potentiometer) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P674 } \\
* \\
\text { BDS } \\
\text { (G180) } \\
\hline
\end{array}
\] & Source for control word 1, bit14 (1=lower motorized potentiometer) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P675 } \\
* \\
\text { BDS } \\
\text { (G180) } \\
\hline
\end{array}
\] & Source for control word 1, bit15 ( \(0=\) external fault, \(1=\) no external fault) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Control word 2} \\
\hline \[
\begin{array}{|l}
\hline \text { P676 } \\
* \\
\text { BDS } \\
\text { (G181) } \\
\hline
\end{array}
\] & Source for control word 2, bit16 (select function data set bit 0) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P677 } \\
* \\
\text { BDS } \\
\text { (G181) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for control word 2, bit17 \\
(select function data set bit 1)
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P680 } \\
* \\
\text { BDS } \\
\text { (G181) } \\
\hline
\end{array}
\] & Source for control word 2, bit20 (select fixed setpoint 0) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P681 } \\
\text { * } \\
\text { BDS } \\
\text { (G181) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for control word 2, bit21 \\
(select fixed setpoint 1)
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P684 } \\
& * \\
& \text { BDS } \\
& (\text { G181 ) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for control word 2, bit24 \\
( \(0=\mathrm{n}\) controller speed droop disabled, \(1=\) enabled)
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P685 } \\
& * \\
& \text { BDS } \\
& \text { (G181) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for control word 2, bit25 \\
( \(0=\mathrm{n}\) controller disabled, \(1=\mathrm{n}\) controller enabled)
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P686 } \\
& * \\
& \text { BDS } \\
& \text { (G181) } \\
& \hline
\end{aligned}
\] & Source for control word 2, bit26 ( \(0=\) external fault \(2,1=\) no external fault 2 ) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P687 } \\
& * \\
& \text { BDS } \\
& \text { (G181) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for control word 2, bit27 \\
( \(0=\) master drive, speed control, \(1=\) slave drive, torque control)
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P688 } \\
& * \\
& \text { BDS } \\
& \text { (G181) } \\
& \hline
\end{aligned}
\] & Source for control word 2, bit28 ( \(0=\) external alarm 1, \(1=\) no external alarm 1) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P689 } \\
& \text { * } \\
& \text { BDS } \\
& \text { (G181) } \\
& \hline
\end{aligned}
\] & Source for control word 2, bit29 (0=external alarm 2, 1=no external alarm 2) & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P690 } \\
& \star \\
& (\mathrm{G} 181) \\
& \hline
\end{aligned}
\] & Source for control word 2, bit30 ( \(0=\) select Bico data set \(1,1=\) select Bico data set 2 ) & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 }=40 \\
& \text { Offline } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P691 } \\
& \text { * } \\
& \text { BDS } \\
& \text { (G181) }
\end{aligned}
\] & \begin{tabular}{l}
Source for control word 2, Bit31 \\
Main contactor checkback signal: \\
( \(0=\) main contactor dropped out, \(1=\) main contactor picked up) \\
This control input is intended as a means of looping an auxiliary contact of the main contactor into the device control. \\
During the Power ON routine, this signal must switch to "1" within the time period set in P095. If it does not, or it disappears during operation, fault message F004 with fault value 6 is activated. \\
P691 = 0: Bit 31 of control word 2 is inoperative. \\
(This setting of P691 is always active, regardless of whether control word 2 is input in word mode [P649 = 9] or bit mode [P649 <> 9]) \\
P691 = 1: Bit 31 of control word 2 is inoperative. \\
(This setting of P691 is active only when control word 2 is input in bit mode, i.e. when P649 <> 9)
\end{tabular} & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.35 Further configuring measures}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { P692 } \\
& * \\
& \text { BDS } \\
& \text { (G166) }
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of injection of standstill field \\
Selection of binector to control injection of the standstill field ("0" state \(=\) inject standstill field) \\
Note: The delay time set in P258 is not effective when this function is active. \\
\(0=\) binector B 0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P693 } \\
& * \\
& \text { BDS } \\
& \text { (G165) }
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of enabling command for EMF controller \\
Selection of binector which is to control enabling of the EMF controller
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & Ind: 2 FS=1 Type: L2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P694 } \\
& \text { BDS } \\
& \text { (G160) }
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of enabling command for "Torque limit switchover" \\
Selection of binector which is to control enabling of the "Torque limit switchover" function (1=enable, see also Sheet G160 in Section 8 and P180 to P183)
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline P695
*
BDS
(G152) & \begin{tabular}{l}
Source for selection of "Set speed controller I component" function \\
Selection of binector to control the "Set I component" function \\
\(0=\) binector B 0000 \\
1 = binector B0001 \\
etc. \\
When the binector selected in P695 switches from log. "0" to log. "1", the I component of the speed controller is set to the value of the connector selected in P631. \\
With this function it is possible, for example, to use the same signal (binector) to control controller enabling commands and setting of the I component.
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline P696
*
BDS
(G152) & \begin{tabular}{l}
Source for selection of "Stop speed controller I component" function \\
Selection of binector to control the "Stop I component" function
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\] \\
When the binector selected in P696 changes to the log. "1" state, the I component of the speed controller is stopped.
\end{tabular} & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P697 } \\
& \text { * } \\
& \text { BDS } \\
& \text { (G153) }
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of enabling of dv/dt injection \\
Selection of binector to control enabling of dv/dt injection (state "1" = enable)
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P698 } \\
& \text { * } \\
& \text { BDS } \\
& \text { (G152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of enabling command for speed controller PI / P function switchover \\
Selection of binector to control enabling of the PI / P controller switchover function (see also P222) \\
\(0=\) binector B 0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & All binector numbers 1 & Ind: 2 FS=1 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.36 Analog inputs (main actual value, main setpoint, selectable inputs)}
(see also Section 8, Sheets G113 and G114)
Analog input terminals 4 / 5 (main setpoint)
\begin{tabular}{|l|l|l|l|l|l|l}
\hline P700 \\
\(*\)
\end{tabular}\(\quad\)\begin{tabular}{ll} 
Signal type of "Main setpoint" analog input \\
(G113) & \begin{tabular}{l}
\(1=\) Voltage input 0 to \(\pm 10 \mathrm{~V}\) \\
\(2=\) Current input 0 to 20 mA
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \text { P701 } \\
& \text { FDS } \\
& \text { (G113) }
\end{aligned}
\] & \begin{tabular}{l}
Normalization of "Main setpoint" analog input \\
This parameter specifies the percentage value which is generated for an input voltage of 10 V (or an input current of 20 mA ) at the analog input. \\
The following generally applies: \\
For voltage input:
\[
P 701[\%]=10 \mathrm{~V} * \frac{Y}{X}
\] \\
X .. Input voltage in volts \\
Y .. \% value which is generated for input voltage \(X\) \\
With current input:
\[
P 701[\%]=20 m A * \frac{Y}{X}
\] \\
X .. Input current in mA \\
Y .. \% value which is generated for input current X
\end{tabular} & \[
\begin{aligned}
& \hline-1000.0 \text { to } 1000.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=100.0 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline  & Offset for "Main setpoint" analog input & \[
\begin{aligned}
& \hline-200.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.00 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P703 } \\
& \text { * } \\
& \text { (G113) }
\end{aligned}
\] & \begin{tabular}{l}
Mode of signal injection at "Main setpoint" analog input \\
\(0=\) Injection of signal with sign \\
1 = Injection of absolute value of signal \\
\(2=\) Injection of signal with sign, inverted \\
3 = Injection of absolute value of signal, inverted
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P704 } \\
* \\
\text { (G113) }
\end{array}
\] & \begin{tabular}{l}
Source for selection of sign reversal at "Main setpoint" analog input \\
Selection of binector to control sign reversal at the analog input ("1" state = reverse sign)
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline P705
(G113) & \begin{tabular}{l}
Filtering time for "Main setpoint" analog input \\
Note: Hardware filtering of approximately 1 ms is applied as standard.
\end{tabular} & \[
\begin{array}{|l}
\hline 0 \text { to } 10000 \\
{[\mathrm{~ms}]} \\
1 \mathrm{~ms} \\
\hline
\end{array}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P706 } \\
& \text { * } \\
& \text { (G113) }
\end{aligned}
\] & \begin{tabular}{l}
Source for enabling of "Main setpoint" analog input \\
Selection of binector to control enabling of the analog input ("1" state = enabled)
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P707 } \\
& * \\
& \text { (G113) }
\end{aligned}
\] & \begin{tabular}{l}
Resolution of "Main setpoint" analog input \\
The voltage applied to the analog input is converted to a digital value (A/D conversion) for further processing. The method used calculates an average value of the input voltage over a specific measuring time. \\
The A/D conversion process produces a scale for the voltage range of 0 to \(\pm 10 \mathrm{~V}\), the number of steps (divisions) along this scale can be set in P707 (i.e. the smallest possible differentiable change in the input voltage (quantization) can be set in this parameter). The number of scale steps or intervals is referred to as "Resolution". \\
The resolution is normally specified in bits: \\
\(\pm 11\) bits means 2 * 2048 scale divisions \\
\(\pm 12\) bits means 2 * 4096 scale divisions \\
\(\pm 13\) bits means 2 * 8192 scale divisions \\
\(\pm 14\) bits means 2 * 16384 scale divisions \\
The following applies: \\
The higher the resolution, the longer the averaging time and thus also the delay period between the application of an analog step change and the earliest possible moment of availability of the digital value for further processing. \\
For this reason, it is important to find a compromise between the resolution and delay period. \\
If the analog input is operating as a current input ( 0 to 20 mA or 4 to 20 mA ), the above applies analogously.
\end{tabular} & \begin{tabular}{l}
11 to 14 [Bit] \\
1 bit
\end{tabular} & \begin{tabular}{l}
Ind: None FS=12 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Analog input terminals 6 / 7 (analog selectable input 1)} \\
\hline \[
\begin{aligned}
& \hline \text { P710 } \\
& \text { * } \\
& \text { (G113) }
\end{aligned}
\] & \begin{tabular}{l}
Signal type of "Analog selectable input 1" \\
\(0=\) Voltage input 0 to \(\pm 10 \mathrm{~V}\) \\
1 = Current input 0 to 20 mA \\
\(2=\) Current input 4 to 20 mA
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 2 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P711 } \\
& \text { FDS } \\
& \text { (G113) }
\end{aligned}
\] & \begin{tabular}{l}
Normalization of "Analog selectable input 1" \\
This parameter specifies the percentage value which is generated for an input voltage of 10 V (or an input current of 20 mA ) at the analog input. \\
The following generally applies: \\
For voltage input:
\[
P 711[\%]=10 V * \frac{Y}{X}
\] \\
X .. Input voltage in volts \\
Y .. \% value which is generated for input voltage \(X\) \\
With current input:
\[
P 711[\%]=20 m A * \frac{Y}{X}
\] \\
X .. Input current in mA \\
Y .. \% value which is generated for input current X
\end{tabular} & ```
-1000.0 to 1000.0
[%]
0.1%
``` & Ind: 4 FS=100.0 Type: 12 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P712 } \\
& \text { (G113) }
\end{aligned}
\] & Offset for "Analog selectable input 1" & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & Ind: None FS=0.00 Type: I2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P713 } \\
& \text { * } \\
& \text { (G113) }
\end{aligned}
\] & \begin{tabular}{l}
Mode of signal injection at "Analog selectable input 1" \\
\(0=\) Injection of signal with sign \\
1 = Injection of absolute value of signal \\
\(2=\) Injection of signal with sign, inverted \\
3 = Injection of absolute value of signal, inverted
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \begin{array}{l}
\text { P714 } \\
*
\end{array} \\
& \text { (G113) }
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of sign reversal at "Analog selectable input 1" \\
Selection of binector to control sign reversal at the analog input ("1" state = reverse sign)
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P715 } \\
& \text { (G113) }
\end{aligned}
\] & \begin{tabular}{l}
Filtering time for "Analog selectable input 1" \\
Note: Hardware filtering of approximately 1 ms is applied as standard.
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \begin{array}{l}
\text { P716 } \\
*
\end{array} \\
& \text { (G113) }
\end{aligned}
\] & \begin{tabular}{l}
Source for enabling of "Analog selectable input 1" \\
Selection of binector to control enabling of the analog input ("1" state = enabled) \\
\(0=\) binector B0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: None \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P717 \\
(G113)
\end{tabular} & Resolution of "Analog selectable input 1" See P707 & \[
\begin{aligned}
& 10 \text { to } 14 \\
& \text { [Bit] } \\
& 1 \text { bit }
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=12 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Analog input terminals 8 / 9 (analog selectable input 2)} \\
\hline \[
\begin{aligned}
& \text { P721 } \\
& \text { FDS } \\
& \text { (G114) }
\end{aligned}
\] & \begin{tabular}{l}
Normalization of "Analog selectable input 2" \\
This parameter specifies the percentage value which is generated for an input voltage of 10 V (or an input current of 20 mA) at the analog input. \\
The following generally applies: \\
For voltage input:
\[
P 721[\%]=10 \mathrm{~V} * \frac{Y}{X}
\] \\
\(X\).. Input voltage in volts \\
\(Y\).. \% value which is generated for input voltage X \\
With current input:
\[
P 721[\%]=20 \mathrm{~mA} * \frac{Y}{X}
\] \\
X .. Input current in mA \\
Y .. \% value which is generated for input current X
\end{tabular} & \[
\begin{aligned}
& -1000.0 \text { to } 1000.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=100.0 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P722 & Offset for "Analog selectable input 2" & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & Ind: None FS=0.00 Type: 12 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P723 } \\
& * \\
& \text { (G114) }
\end{aligned}
\] & \begin{tabular}{l}
Mode of signal injection at "Analog selectable input 2" \\
\(0=\) Injection of signal with sign \\
1 = Injection of absolute value of signal \\
\(2=\) Injection of signal with sign, inverted \\
\(3=\) Injection of absolute value of signal, inverted
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P724 } \\
* \\
(\mathrm{G} 114)
\end{array}
\] & \begin{tabular}{l}
Source for selection of sign reversal at "Analog selectable input 2" \\
Selection of binector to control sign reversal at the analog input ("1" state = reverse sign)
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{P} 725 \\
& (\mathrm{G} 114)
\end{aligned}
\] & \begin{tabular}{l}
Filtering time for "Analog selectable input 2" \\
Note: Hardware filtering of approximately 1 ms is applied as standard.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P726 } \\
& \text { * } \\
& \text { (G114) }
\end{aligned}
\] & \begin{tabular}{l}
Source for enabling of "Analog selectable input 2" \\
Selection of binector to control enabling of the analog input ("1" state = enabled)
```

0 = binector B0000
1 = binector B0001
etc.

```
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \multicolumn{5}{|l|}{Analog input terminals 10 / 11 (analog selectable input 3)} \\
\hline \[
\begin{aligned}
& \hline \text { P731 } \\
& \text { FDS } \\
& \text { (G114) }
\end{aligned}
\] & \begin{tabular}{l}
Normalization of "Analog selectable input 3" \\
This parameter specifies the percentage value which is generated for an input voltage of 10 V (or an input current of 20 mA) at the analog input. \\
The following generally applies: \\
For voltage input:
\[
P 731[\%]=10 \mathrm{~V} * \frac{Y}{X}
\] \\
\(X\).. Input voltage in volts \\
Y .. \% value which is generated for input voltage X \\
With current input:
\[
P 731[\%]=20 \mathrm{~mA} * \frac{Y}{X}
\] \\
X .. Input current in mA \\
Y .. \% value which is generated for input current X
\end{tabular} & \[
\begin{aligned}
& -1000.0 \text { to } 1000.0 \\
& {[\%]} \\
& 0.1 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=100.0 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P732 } \\
& (\text { G114 })
\end{aligned}
\] & Offset for "Analog selectable input 3" & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: None FS=0.00 Type: I2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \begin{array}{l}
\text { P733 } \\
*
\end{array} \\
& \text { (G114) }
\end{aligned}
\] & \begin{tabular}{l}
Mode of signal injection at "Analog selectable input 3" \\
\(0=\) Injection of signal with sign \\
\(1=\) Injection of absolute value of signal \\
\(2=\) Injection of signal with sign, inverted \\
3 = Injection of absolute value of signal, inverted
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P734 } \\
& * \\
& \text { (G114) }
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of sign reversal at "Analog selectable input 3" \\
Selection of binector to control sign reversal at the analog input ("1" state = reverse sign)
```

0 = binector B0000
1 = binector B0001
etc.

```
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P735 } \\
& (\text { G114) }
\end{aligned}
\] & \begin{tabular}{l}
Filtering time for "Analog selectable input 3" \\
Note: Hardware filtering of approximately 1 ms is applied as standard.
\end{tabular} & 0 to 10000
\([\mathrm{~ms}]\)
1 ms & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \begin{array}{l}
\text { P736 } \\
*
\end{array} \\
& \text { (G114) }
\end{aligned}
\] & \begin{tabular}{l}
Source for enabling of "Analog selectable input 3" \\
Selection of binector to control enabling of the analog input ("1" state = enabled) \\
\(0=\) binector B0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Analog input terminals 103 / 104 (main actual value)} \\
\hline \[
\begin{aligned}
& \hline \text { P741 } \\
& \text { FDS } \\
& \text { (G113) }
\end{aligned}
\] & \begin{tabular}{l}
Normalization for "Main actual value" \\
Rated value of input voltage at \(\mathrm{n}_{\text {max }}\) (=tachometer voltage at maximum speed) \\
This parameter defines the maximum speed when \(\mathrm{P} 083=1\).
\end{tabular} & \[
\begin{aligned}
& -270.00 \text { to } 270.00 \\
& {[\mathrm{~V}]} \\
& 0.01 \mathrm{~V}
\end{aligned}
\] & Ind: 4 FS=60.00 Type: I2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P742 } \\
& \text { (G113) }
\end{aligned}
\] & Offset for "Main actual value" analog input & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & Ind: None FS=0.00 Type: I2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P743 } \\
& * \\
& \text { (G113) }
\end{aligned}
\] & \begin{tabular}{l}
Mode of signal injection at "Main actual value" analog input \\
\(0=\) Injection of signal with sign \\
\(1=\) Injection of absolute value of signal \\
\(2=\) Injection of signal with sign, inverted \\
3 = Injection of absolute value of signal, inverted
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P744 } \\
& * \\
& \text { (G113) }
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of sign reversal at "Main actual value" analog input \\
Selection of binector to control sign reversal at the analog input ("1" state = reverse sign)
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P745 } \\
& (\mathrm{G} 113)
\end{aligned}
\] & \begin{tabular}{l}
Filtering time for "Main actual value" analog input \\
Note: Hardware filtering of approximately 1 ms is applied as standard.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & Ind: None FS=0 Type: O2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P746 } \\
& * \\
& \text { (G113) }
\end{aligned}
\] & \begin{tabular}{l}
Source for enabling of "Main actual value" analog input \\
Selection of binector to control enabling of the analog input ("1" state = enabled)
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.37 Analog outputs}
(see also Section 8, Sheets G115 and G116)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Analog output terminals 12 / 13 (actual current display)} \\
\hline \[
\begin{aligned}
& \hline \text { P749 } \\
& \text { * } \\
& \text { (G115) }
\end{aligned}
\] & Control word for terminal 12 (actual current display) & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Analog output terminals 14 / 15} \\
\hline \[
\begin{aligned}
& \hline \text { P750 } \\
& \text { * } \\
& \text { (G115) }
\end{aligned}
\] & \begin{tabular}{l}
Source for output value at analog output 1 \\
Selection of connector whose value is to applied to the analog output
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P751 } \\
& * \\
& \text { (G115) }
\end{aligned}
\] & \begin{tabular}{l}
Mode of signal injection at analog output 1 \\
\(0=\) Injection of signal with correct sign \\
1 = Injection of absolute value of signal \\
\(2=\) Injection of signal with sign, inverted \\
3 = Injection of absolute value of signal, inverted
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P752 } \\
& \text { (G115) }
\end{aligned}
\] & Filtering time for analog output 1 & \[
\begin{aligned}
& \hline 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P753 } \\
& \text { (G115) }
\end{aligned}
\] & Normalization of analog output 1
\[
\begin{aligned}
& y[V]=x * \frac{P 753}{100 \%} \\
& x= \text { Normalization input (corresponds to filtering output) } \\
& y= \text { Normalization output (corresponds to output voltage at analog output } \\
&\text { with offset }=0)
\end{aligned}
\] & \[
\begin{aligned}
& \hline-200.00 \text { to } 199.99 \\
& {[\mathrm{~V}]} \\
& 0.01 \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=10.00 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P754 \\
(G115)
\end{tabular} & Offset for analog output 1 & \[
\begin{aligned}
& \hline-10.00 \text { to } 10.00 \\
& {[\mathrm{~V}]} \\
& 0.01 \mathrm{~V} \\
& \hline
\end{aligned}
\] & Ind: None FS=0.00 Type: I2 & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Analog output terminals 16 / 17} \\
\hline \[
\begin{array}{|l}
\hline \text { P755 } \\
* \\
\text { (G115) }
\end{array}
\] & \begin{tabular}{l}
Source for output value at analog output 2 \\
Selection of connector whose value is to applied to the analog output
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P756 } \\
* \\
(\mathrm{G} 115)
\end{array}
\] & \begin{tabular}{l}
Mode of signal injection at analog output 2 \\
\(0=\) Injection of signal with correct sign \\
1 = Injection of absolute value of signal \\
\(2=\) Injection of signal with sign, inverted \\
3 = Injection of absolute value of signal, inverted
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P757 } \\
\text { (G115) }
\end{array}
\] & Filtering time for analog output 2 & \[
\begin{aligned}
& \hline 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P758 } \\
& \text { (G115) }
\end{aligned}
\] & \begin{tabular}{l}
Normalization of analog output 2
\[
y[V]=x * \frac{P 758}{100 \%}
\] \\
\(x=\) Normalization input (corresponds to filtering output) \\
\(y=\) Normalization output (corresponds to output voltage at analog output with offset \(=0\))
\end{tabular} & \[
\begin{aligned}
& \hline-200.00 \text { to } 199.99 \\
& \text { [V] } \\
& 0.01 \mathrm{~V}
\end{aligned}
\] & Ind: None FS=10.00 Type: 12 & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P759 } \\
& (\text { G115 })
\end{aligned}
\] & Offset for analog output 2 & \[
\begin{aligned}
& \hline-10.00 \text { to } 10.00 \\
& {[\mathrm{~V}]} \\
& 0.01 \mathrm{~V} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.00 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Analog output terminals 18 / 19} \\
\hline \[
\begin{aligned}
& \hline \text { P760 } \\
& \text { * } \\
& \text { (G116) }
\end{aligned}
\] & \begin{tabular}{l}
Source for output value at analog output 3 \\
Selection of connector whose value is to applied to the analog output
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P761 } \\
& \text { (G116) }
\end{aligned}
\] & \begin{tabular}{l}
Mode of signal injection at analog output 3 \\
\(0=\) Injection of signal with correct sign \\
1 = Injection of absolute value of signal \\
\(2=\) Injection of signal with sign, inverted \\
3 = Injection of absolute value of signal, inverted
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: None } \\
& \text { FS=0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P762 \\
(G116)
\end{tabular} & Filtering time for analog output 3 & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 }=40 \\
& \text { Online } \\
& \hline
\end{aligned}
\] \\
\hline P763 (G116) & Normalization of analog output 3
\[
\begin{aligned}
& y[V]=x * \frac{P 763}{100 \%} \\
& x= \text { Normalization input (corresponds to filtering output) } \\
& y= \text { Normalization output (corresponds to output voltage at analog output } \\
&\text { with offset }=0)
\end{aligned}
\] & \[
\begin{aligned}
& \hline-200.00 \text { to } 199.99 \\
& \text { [V] } \\
& 0.01 \mathrm{~V}
\end{aligned}
\] & Ind: None FS=10.00 Type: I2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
P764 \\
(G116)
\end{tabular} & Offset for analog output 3 & \[
\begin{aligned}
& \hline-10.00 \text { to } 10.00 \\
& {[\mathrm{~V}]} \\
& 0.01 \mathrm{~V}
\end{aligned}
\] & Ind: None FS=0.00 Type: I2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Analog output terminals \(20 / 21\)} \\
\hline \[
\begin{aligned}
& \hline \text { P765 } \\
& * \\
& \text { (G116) }
\end{aligned}
\] & \begin{tabular}{l}
Source for output value at analog output 4 \\
Selection of connector whose value is to applied to the analog output
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P766 } \\
& * \\
& \text { (G116) }
\end{aligned}
\] & \begin{tabular}{l}
Mode of signal injection at analog output 4 \\
\(0=\) Injection of signal with correct sign \\
\(1=\) Injection of absolute value of signal \\
\(2=\) Injection of signal with sign, inverted \\
3 = Injection of absolute value of signal, inverted
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P767 } \\
& \text { (G116) }
\end{aligned}
\] & Filtering time for analog output 4 & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& \text { [ms] } \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P768 } \\
& \text { (G116) }
\end{aligned}
\] & Normalization of analog output 4
\[
\begin{aligned}
& y[V]=x * \frac{P 768}{100 \%} \\
& x= \text { Normalization input (corresponds to filtering output) } \\
& y= \text { Normalization output (corresponds to output voltage at analog output } \\
&\text { with offset }=0)
\end{aligned}
\] & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& {[\mathrm{~V}]} \\
& 0.01 \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=10.00 \\
Type: 12
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P769 } \\
& \text { (G116) }
\end{aligned}
\] & Offset for analog output 4 & \[
\begin{aligned}
& -10.00 \text { to } 10.00 \\
& {[\mathrm{~V}]} \\
& 0.01 \mathrm{~V}
\end{aligned}
\] & Ind: None FS=0.00 Type: I2 & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.38 Binary outputs}
(see also Section 8, Sheet G112)
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { P770 } \\
& \text { * } \\
& \text { (G112) } \\
& \text { (G200) }
\end{aligned}
\] & \begin{tabular}{l}
Control word for binary selectable outputs \\
i001: 0 Binary selectable output at terminal 46 is not inverted \\
1 Binary selectable output at terminal 46 is inverted \\
i002: 0 Binary selectable output at terminal 48 is not inverted \\
1 Binary selectable output at terminal 48 is inverted \\
i003: 0 Binary selectable output at terminal 50 is not inverted \\
1 Binary selectable output at terminal 50 is inverted \\
i004: 0 Binary selectable output at terminal 52 is not inverted 1 Binary selectable output at terminal 52 is inverted
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { P771 } \\
* \\
\\
\text { (G112) } \\
\text { (G200) }
\end{array}
\] & \begin{tabular}{l}
Source for output value at binary output 1 \\
Selection of binector to be injected at binary selectable output, terminal 46
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P772 } \\
& * \\
& \text { (G112) } \\
& \text { (G200) }
\end{aligned}
\] & \begin{tabular}{l}
Source for output value at binary output 2 \\
Selection of binector to be injected at binary selectable output, terminal 48
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P773 } \\
& * \\
& \text { (G112) }
\end{aligned}
\] & \begin{tabular}{l}
Source for output value at binary output 3 \\
Selection of binector to be injected at binary selectable output, terminal 50
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P774 } \\
& * \\
& \text { (G112) }
\end{aligned}
\] & \begin{tabular}{l}
Source for output value at binary output 4 \\
Selection of binector to be injected at binary selectable output, terminal 52
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P775 } \\
& \text { (G112) } \\
& \text { (G200) }
\end{aligned}
\] & \begin{tabular}{l}
Delay for output value at binary output 1 \\
The logic level at the binary selectable output changes only if the internal signal level remains constant for the set delay period (internal signal level changes which do not last as long as this delay period are not switched through to the output)
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& \text { [ms] } \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P776 } \\
& \text { (G112) } \\
& \text { (G200) }
\end{aligned}
\] & \begin{tabular}{l}
Delay for output value at binary output 2 \\
The logic level at the binary selectable output changes only if the internal signal level remains constant for the set delay period (internal signal level changes which do not last as long as this delay period are not switched through to the output)
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P777 } \\
& (\text { G112 })
\end{aligned}
\] & \begin{tabular}{l}
Delay for output value at binary output 3 \\
The logic level at the binary selectable output changes only if the internal signal level remains constant for the set delay period (internal signal level changes which do not last as long as this delay period are not switched through to the output)
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& \text { [ms] } \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P778 } \\
& \text { (G112) }
\end{aligned}
\] & \begin{tabular}{l}
Delay for output value at binary output 4 \\
The logic level at the binary selectable output changes only if the internal signal level remains constant for the set delay period (internal signal level changes which do not last as long as this delay period are not switched through to the output)
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit \(]\) \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.39 Configuration of serial interfaces on basic converter}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{G-SST 1 (RS485 / RS232 on X300) (see also Section 8, Sheet G170 and Section 9)} \\
\hline \[
\begin{aligned}
& \hline \text { P780 } \\
& * \\
& (\mathrm{G} 170)
\end{aligned}
\] & Selection of protocol for G-SST1 basic converter interface & \[
\begin{aligned}
& 0,2,8,9 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=2 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P781 } \\
& \text { * } \\
& \text { (G170) }
\end{aligned}
\] & \begin{tabular}{l}
Number of process data for G-SST1 \\
When P780 \(=0\) or 9 is selected: Parameter is irrelevant \\
When USS protocol (P780=2) is selected: Number of PZD elements \\
0 No process data are expected or sent in the USS protocol \\
1... 16 Number of process data words in USS protocol (same number applies to transmission and receipt) \\
The received PZD elements (1 to max. 16) are available at connectors (K2001 to K2016) and, in some cases, bit-serially at binectors for "internal wiring" purposes. \\
The PZD elements to be transmitted (1 to max. 16) are selected in parameters P784.01 to P784.16.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 16 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=2 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P782 } \\
& * \\
& (\mathrm{G} 170)
\end{aligned}
\] & \begin{tabular}{l}
Length of parameter jobs for G-SST1 \\
This parameter is effective only when \(\mathrm{P} 780=2\) (USS protocol). \\
\(0 \quad\) No PKW data are expected or sent in the USS protocol. \\
3,4 3 or 4 PKW data words are expected in the USS protocol and 3 or 4 PKW data words are also sent (for transmission of parameter values). \\
127 Number of PKWs is determined by the telegram length
\end{tabular} & \[
\begin{aligned}
& 0,3,4,127 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=127 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P783 } \\
& * \\
& \text { (G170) }
\end{aligned}
\] & \begin{tabular}{cl}
\multicolumn{2}{c}{ Baud rate for G-SST1 } \\
1 & 300 baud \\
2 & 600 baud \\
3 & 1200 baud \\
4 & 2400 baud \\
5 & 4800 baud \\
6 & 9600 baud \\
7 & 19200 baud \\
8 & 38400 baud \\
9 & 56700 baud \\
11 & 93750 baud \\
13 & 187500 baud
\end{tabular} & \[
\begin{aligned}
& 1 \text { to } 13 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=6 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P784 } \\
& \text { * } \\
& \text { (G170) }
\end{aligned}
\] & \begin{tabular}{l}
Source for transmit data for G-SST1 \\
Selection of connectors to be transferred as transmit data to the USS master via USS interface 1. \\
i001: Selection for word 1 \\
i002: Selection for word 2 \\
... \\
i016: Selection for word 16 \\
Applicable settings:
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 16 FS= i001: 32 i002: 167 \\
i003: 0 \\
i004: 33 \\
i005-i016: 0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P785 } \\
& \text { (G170) }
\end{aligned}
\] & \begin{tabular}{l}
Options for G-SST1 \\
i001: \(0=\) Bus terminator OFF \\
1 = Bus terminator ON \\
i002: \(\quad 0=\) Bit 10 of the \(1^{\text {st }}\) receive word does not function as "Control by PLC". \\
\(1=\) Bit 10 of the \(1^{\text {st }}\) receive word does function as "Control by PLC", i.e. when bit \(10=0\), all other bits of the \(1^{\text {st }}\) receive word, as well as receive words 2 to 16, are not written to connectors K2001 to K2016, or to binectors B2100 to B2915. All these connectors and binectors retain their old values.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline & \begin{tabular}{l}
USS bus address for G-SST1 \\
This parameter is functional only when \(\mathrm{P} 780=2\) (USS protocol). Address via which the unit can be addressed in USS bus operation.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 30 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = 3 } \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P787 } \\
& (\mathrm{G} 170)
\end{aligned}
\] & \begin{tabular}{l}
Telegram failure time for G-SST1 \\
The failure time set in this parameter is valid when setting P780=2 (USS protocol) is selected. \\
\(0.000 \quad\) No time monitoring \\
0.001...65.000 Time which may elapse between the receipt of two telegrams addressed to the unit before a fault message is activated. \\
Fault message F011 is activated if no valid telegram is received within this time period. \\
Note: \\
The telegram monitoring function is active \\
- from the receipt of the first error-free telegram after connection of the electronics power supply \\
- from the receipt of the first error-free telegram after the telegram monitor has responded (i.e. monitoring timeout).
\end{tabular} & \[
\begin{array}{|l|}
\hline 0.000 \text { to } 65.000 \\
{[\mathrm{~s}]} \\
0.001 \mathrm{~s} \\
\hline
\end{array}
\] & \begin{tabular}{l}
Ind: None FS=0.000 \\
Type: 02
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P788 } \\
& \text { * } \\
& \text { (G170) }
\end{aligned}
\] & \begin{tabular}{l}
Source for activation of F011 \\
Selection of binector which will activate fault message F011 when it switches to log. "1"
\[
\begin{aligned}
& 2030=\text { binector B2030 } \\
& 2031=\text { binector B2031 }
\end{aligned}
\]
\end{tabular} & 2030, 2031 & \begin{tabular}{l}
Ind: None FS=2030 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { r789 } \\
& (\mathrm{G} 170)
\end{aligned}
\] & \begin{tabular}{l}
Diagnostic information for G-SST1 \\
Free-running counter, overflow at 65535 \\
i001: Number of error-free telegrams \\
i002: Number of errored telegrams: \\
Byte frame, parity, overrun or BCC error \\
i003: Number of byte frame errors \\
i004: Number of overrun errors \\
i005: Parity error \\
i006: STX error: \\
Start interval before STX not observed, telegram residual transfer time not observed, delay time of LGE character too long, \\
erroneous STX, i.e. \(\neq 02\) \\
i007: Violation of telegram residual transfer time \\
i008: Block check error \\
i009: Incorrect telegram length: \\
With P782=3 or 4 only: \\
The length of the received telegram is \(\neq\) P781 + P782 \\
(Note: If the received values are correct, they will be processed even when this error has been detected) \\
i010: Timeout error: \\
No valid telegram has been received for a period exceeding the setting in P787. After the occurrence of a timeout error, this counter is not activated again until the next valid telegram is received.
\end{tabular} & & Ind: 10 Type: O2 & P052 = 3 \\
\hline
\end{tabular}

G-SST 2 (RS485 on X172) (see also Section 8, Sheets G171 and G173 and Section 9)
\begin{tabular}{|l|cc|l|l|l|}
\hline P790 & Selection of protocol for G-SST2 basic converter interface & \(0,2,5,9\) & Ind: None & P052 \(=3\) \\
\(*\) & 0 & Setting has no function & 1 & FS=0 \\
(G171) & 2 & USS protocol & Type: O2 & Offline \\
(G173) & 5 & "Peer-to-peer" communication & & \\
& 9 & For internal factory test purposes & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P791 } \\
& \star \\
& \text { (G171) } \\
& (\text { G173 })
\end{aligned}
\] & \begin{tabular}{l}
Number of process data for G-SST2 \\
When P790 \(=0\) or 9 is selected: Parameter is irrelevant \\
When USS protocol (P790=2) is selected: Number of PZD elements \\
0 No process data are expected or sent in the USS protocol \\
1... 16 Number of process data words in USS protocol (same number applies to transmission and receipt) \\
The received PZD elements (1 to max. 16) are available at connectors (K6001 to K6016) and, in some cases, bit-serially at binectors for "internal wiring" purposes. \\
The PZD elements to be transmitted (1 to max. 16) are selected in parameters P794.01 to P794.16. \\
When peer-to-peer (P790=5) is selected: Number of transferred words \\
\(0 \quad\) Illegal setting \\
1... 5 Number of transferred words \\
6... 16 Illegal setting
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 16 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=2 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P792 } \\
\star \\
(\text { G171 })
\end{array}
\] & \begin{tabular}{l}
Length of parameter jobs for G-SST2 \\
This parameter is effective only when \(\mathrm{P} 790=2\) (USS protocol). \\
\(0 \quad\) No PKW data are expected or sent in the USS protocol. \\
\(3,4 \quad 3\) or 4 PKW data words are expected in the USS protocol and 3 or 4 PKW data words are also sent (for transmission of parameter values). \\
127 Number of PKWs is determined by the telegram length
\end{tabular} & \[
\begin{aligned}
& 0,3,4,127 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=127 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P793 } \\
\star \\
\text { (G171) } \\
\text { (G173) }
\end{array}
\] & \begin{tabular}{|cc|}
\hline \multicolumn{2}{|c}{ Baud rate for G-SST2 } \\
1 & 300 baud \\
2 & 600 baud \\
3 & 1200 baud \\
4 & 2400 baud \\
5 & 4800 baud \\
6 & 9600 baud \\
7 & 19200 baud \\
8 & 38400 baud \\
9 & 56700 baud \\
11 & 93750 baud \\
13 & 187500 baud
\end{tabular} & \[
\begin{aligned}
& 1 \text { to } 13 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=6 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P794 } \\
& \text { * } \\
& \text { (G171) } \\
& \text { (G173) }
\end{aligned}
\] & \begin{tabular}{l}
Source for transmit data for G-SST2 \\
Selection of connectors to be transferred as transmit data via basic converter interface 2 \\
When USS protocol (\(\mathrm{P} 790=2\)) is selected: \\
i001: Selection for word 1 \\
i002: Selection for word 2 \\
... \\
i016: Selection for word 16 \\
When peer-to-peer (P790=5) is selected: \\
i001: Selection for word 1 \\
i002: Selection for word 2 \\
i005: Selection for word 5 \\
i006: Not used \\
... \\
i016: Not used \\
Applicable settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 16 \\
FS= \\
i001: 32 \\
i002: 167 \\
i003: 0 \\
i004: 33 \\
i005-i016: 0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P795 } \\
& \text { (G171) } \\
& (\mathrm{G} 173)
\end{aligned}
\] & \begin{tabular}{l}
Options for G-SST2 \\
i001: \(0=\) Bus terminator OFF \\
1 = Bus terminator ON \\
i002: \(\quad 0=\) Bit 10 of the \(1^{\text {st }}\) receive word does not function as "Control by PLC". \\
\(1=\) Bit 10 of the \(1^{\text {st }}\) receive word does function as "Control by PLC", i.e. when bit \(10=0\), all other bits of the \(1^{\text {st }}\) receive word, as well as receive words 2 to 16 , are not written to connectors K6001 to K6016, or to binectors B6100 to B6915. All these connectors and binectors retain their old values.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\] & \begin{tabular}{l}
USS bus address for G-SST2 \\
This parameter is functional only when P790=2 (USS protocol). Address via which the unit can be addressed in USS bus operation.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 30 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P797 } \\
& \text { (G171) } \\
& \text { (G173) }
\end{aligned}
\] & \begin{tabular}{l}
Telegram failure time for G-SST2 \\
The failure time set in this parameter is valid when setting P790=2 (USS protocol) or \(\mathrm{P} 790=5\) (peer-to-peer) is selected. \\
\(0.000 \quad\) No time monitoring \\
\(0.001 \ldots 65.000\) Time which may elapse between the receipt of two telegrams addressed to the unit before a fault message is activated. \\
Fault message F012 is activated if no valid telegram is received within this time period. \\
Note: \\
The telegram monitoring function is active \\
- from the receipt of the first error-free telegram after connection of the electronics power supply \\
- from the receipt of the first error-free telegram after the telegram monitor has responded (i.e. monitoring timeout). \\
Since the telegram transfer time is dependent on the set baud rate, the following minimum setting values for P797 are recommended: \\
Note: \\
If the "Automatic restart" function is selected (P086>0) on the peer-to-peer communication partner, then only a parameter setting of P797>P086 (on the communication partner) is meaningful.
\end{tabular} & \[
\begin{aligned}
& \hline 0.000 \text { to } 65.000 \\
& {[\mathrm{~s}]} \\
& 0.001 \mathrm{~s}
\end{aligned}
\] & Ind: None FS=0.000 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P798 } \\
\star \\
\text { (G171) } \\
\text { (G173) }
\end{array}
\] & \begin{tabular}{l}
Source for activation of F012 \\
Selection of binector which will activate fault message F012 when it switches to log. "1"
\[
\begin{aligned}
& 6030=\text { binector } B 6030 \\
& 6031=\text { binector B6031 }
\end{aligned}
\]
\end{tabular} & 6030, 6031 & Ind: None FS=6030 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { r799 } \\
& \\
& \text { (G171) } \\
& \text { (G173) }
\end{aligned}
\] & \begin{tabular}{l}
Diagnostic information for G-SST2 \\
Free-running counter, overflow at 65535 \\
i001: Number of error-free telegrams \\
i002: Number of errored telegrams: \\
Byte frame, parity, overrun or BCC error \\
i003: Number of byte frame errors \\
i004: Number of overrun errors \\
i005: Parity error \\
i006: STX error: \\
Start interval before STX not observed, telegram residual transfer time not observed, delay time of LGE character too long, erroneous STX, i.e. \(\neq 02\) \\
i007: Violation of telegram residual transfer time (USS prot. only) \\
i008: Block check error \\
i009: Incorrect telegram length: \\
With P792=3 or 4 only: \\
The length of the received telegram is \(\neq \mathrm{P} 791+\mathrm{P} 792\) \\
(Note: If the received values are correct, they will be processed even when this error has been detected) \\
i010: Timeout error: \\
No valid telegram has been received for a period exceeding the setting in P797. After the occurrence of a timeout error, this counter is not activated again until the next valid telegram is received.
\end{tabular} & & Ind: 10 Type: O2 & P052 = 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{G-SST 3 (RS485 on X162) (see also Section 8, Sheets G172 and G174 and Section 9)} \\
\hline P800
\(\star\)
(G172)
(G174) & Selection of protocol for G-SST3 basic converter interface & \[
\begin{aligned}
& 0,2,5,9 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P801 } \\
& * \\
& \text { (G172) } \\
& \text { (G174) }
\end{aligned}
\] & \begin{tabular}{l}
Number of process data for G-SST3 \\
When P800 \(=0\) or 9 is selected: Parameter is irrelevant \\
When USS protocol (\(\mathrm{P} 800=2\)) is selected: Number of PZD elements \\
0 No process data are expected or sent in the USS protocol \\
1... 16 Number of process data words in USS protocol (same number applies to transmission and receipt) \\
The received PZD elements (1 to max. 16) are available at connectors (K6001 to K6016) and, in some cases, bit-serially at binectors for "internal wiring" purposes. \\
The PZD elements to be transmitted (1 to max. 16) are selected in parameters P804.01 to P804.16. \\
When peer-to-peer \((P 800=5)\) is selected: Number of transferred words \\
0 Illegal setting \\
1... 5 Number of transferred words \\
6... 16 Illegal setting
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 16 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=2 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
Length of parameter jobs for G-SST3 \\
This parameter is effective only when \(\mathrm{P} 800=2\) (USS protocol). \\
\(0 \quad\) No PKW data are expected or sent in the USS protocol. \\
3,4 4 or 4 PKW data words are expected in the USS protocol and 3 or 4 PKW data words are also sent (for transmission of parameter values). \\
127 Number of PKWs is determined by the telegram length
\end{tabular} & \[
\begin{aligned}
& 0,3,4,127 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=127 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \text { P803 } \\
& \text { * } \\
& (\mathrm{G} 172) \\
& (\mathrm{G} 174)
\end{aligned}
\] & \begin{tabular}{cc}
\multicolumn{2}{c}{ Baud rate for G-SST3 } \\
1 & 300 baud \\
2 & 600 baud \\
3 & 1200 baud \\
4 & 2400 baud \\
5 & 4800 baud \\
6 & 9600 baud \\
7 & 19200 baud \\
8 & 38400 baud \\
9 & 56700 baud \\
11 & 93750 baud \\
13 & 187500 baud
\end{tabular} & \[
\begin{aligned}
& 1 \text { to } 13 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=13 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P804 } \\
* \\
\text { (G172) } \\
(\mathrm{G} 174)
\end{array}
\] & \begin{tabular}{l}
Source for transmit data for G-SST3 \\
Selection of connectors to be transferred as transmit data via basic converter interface 3 \\
When USS protocol (\(\mathrm{P} 800=2\)) is selected: \\
i001: Selection for word 1 \\
i002: Selection for word 2 \\
꾼: Selection for word 16 \\
When peer-to-peer (\(P 800=5\)) is selected: \\
i001: Selection for word 1 \\
i002: Selection for word 2 \\
ㄲ005: Selection for word 5 \\
i006: Not used \\
i016: Not used \\
Applicable settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & Ind: 16
FS=
io01: 32
i002: 167
i003: 0
i004: 33
iO05-i016: 0
Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P805 } \\
\\
\text { (G172) } \\
\text { (G174) }
\end{array}
\] & \begin{tabular}{l}
Options for G-SST3 \\
i001: \(\quad 0=\) Bus terminator OFF \\
1 = Bus terminator ON \\
i002: \(\quad 0=\) Bit 10 of the \(1^{\text {st }}\) receive word does not function as "Control by PLC". \\
\(1=\) Bit 10 of the \(1^{\text {st }}\) receive word does function as "Control by PLC", i.e. when bit \(10=0\), all other bits of the \(1^{\text {st }}\) receive word, as well as receive words 2 to 16 , are not written to connectors K9001 to K9016, or to binectors B9100 to B9915. All these connectors and binectors retain their old values.
\end{tabular} & \[
\begin{array}{|l|}
\hline 0 \text { to } 1 \\
1
\end{array}
\] & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P806 } \\
\text { * } \\
(\mathrm{G} 172)
\end{array}
\] & \begin{tabular}{l}
USS bus address for G-SST3 \\
This parameter is functional only when \(\mathrm{P} 800=2\) (USS protocol). Address via which the unit can be addressed in USS bus operation.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 30 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { P807 } \\
& \\
& \text { (G172) } \\
& \text { (G174) }
\end{aligned}
\] & \begin{tabular}{l}
Telegram failure time for G-SST3 \\
The failure time set in this parameter is valid when setting P800=2 (USS protocol) or \(\mathrm{P} 800=5\) (peer-to-peer) is selected. \\
\(0.000 \quad\) No time monitoring \\
0.001 ...65.000 Time which may elapse between the receipt of two telegrams addressed to the unit before a fault message is activated. \\
Fault message F013 is activated if no valid telegram is received within this time period. \\
Note: \\
The telegram monitoring function is active \\
- from the receipt of the first error-free telegram after connection of the electronics power supply \\
- from the receipt of the first error-free telegram after the telegram monitor has responded (i.e. monitoring timeout). \\
Since the telegram transfer time is dependent on the set baud rate, the following minimum setting values for P807 are recommended: \\
Note: \\
If the "Automatic restart" function is selected (P086>0) on the peer-to-peer communication partner, then only a parameter setting of P807>P086 (on the communication partner) is meaningful.
\end{tabular} & \[
\begin{aligned}
& \hline 0.000 \text { to } 65.000 \\
& {[\mathrm{~s}]} \\
& 0.001 \mathrm{~s}
\end{aligned}
\] & Ind: None FS=0.000 Type: O 2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P808 } \\
& * \\
& \text { (G172) } \\
& \text { (G174) }
\end{aligned}
\] & \begin{tabular}{l}
Source for activation of F013 \\
Selection of binector which will activate fault message F013 when it switches to log. "1"
\[
\begin{aligned}
& 9030=\text { binector B9030 } \\
& 9031=\text { binector B9031 }
\end{aligned}
\]
\end{tabular} & 9030, 9031 & Ind: None FS=9030 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { r809 } \\
& \\
& \text { (G172) } \\
& \text { (G174) }
\end{aligned}
\] & \begin{tabular}{l}
Diagnostic information for G-SST3 \\
Free-running counter, overflow at 65535 \\
i001: Number of error-free telegrams \\
i002: Number of errored telegrams: \\
Byte frame, parity, overrun or BCC error \\
i003: Number of byte frame errors \\
i004: Number of overrun errors \\
i005: Parity error \\
i006: STX error: \\
Start interval before STX not observed, telegram residual transfer time not observed, delay time of LGE character too long, erroneous STX, i.e. \(\neq 02\) \\
i007: Violation of telegram residual transfer time (USS prot. only) \\
i008: Block check error \\
i009: Incorrect telegram length: \\
With PP802=3 or 4 only: \\
The length of the received telegram is \(\neq\) P801 + P802 \\
(Note: If the received values are correct, they will be processed even when this error has been detected) \\
i010: Timeout error: \\
No valid telegram has been received for a period exceeding the setting in P807. After the occurrence of a timeout error, this counter is not activated again until the next valid telegram is received.
\end{tabular} & & Ind: 10 Type: O2 & P052 = 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { r810 } \\
& (\mathrm{G} 170)
\end{aligned}
\] & \begin{tabular}{l}
Receive data on G-SST1 \\
Display of data received via USS interface 1
\end{tabular} & & \begin{tabular}{l}
Ind: 20 \\
Type: L2
\end{tabular} & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { r811 } \\
& (\mathrm{G} 170)
\end{aligned}
\] & \begin{tabular}{l}
Transmit data on G-SST1 \\
Display of the data to be transmitted via USS interface 1 \\
i001: Display process data word 1 \\
... \\
i016 Display process data word 16 \\
i017: Display parameter data word 1 \\
iO20: Display parameter data word 4
\end{tabular} & & \begin{tabular}{l}
Ind: 20 \\
Type: L2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{array}{|l|}
\hline \text { r812 } \\
\\
\text { (G171) } \\
\text { (G173) }
\end{array}
\] & \begin{tabular}{l}
Receive data on G-SST2 \\
When USS protocol (\(\mathrm{P} 790=2\)) is selected: \\
Display of data received via USS interface 2 \\
i001: Display process data word 1 \\
…16 Display process data word 16 \\
i017: Display parameter data word 1 \\
iO20: Display parameter data word 4 \\
When peer-to-peer (P790=5) is selected: \\
Display of data received via peer-to-peer interface 2 \\
i001: Receive data word 1 \\
... \\
i005 Receive data word 5 \\
i006: Not used \\
... \\
i020 Not used
\end{tabular} & & \begin{tabular}{l}
Ind: 20 \\
Type: L2
\end{tabular} & P052 = 3 \\
\hline \[
\begin{array}{|l|}
\hline \text { r813 } \\
\\
\text { (G171) } \\
\text { (G173) }
\end{array}
\] & \begin{tabular}{l}
Transmit data on G-SST2 \\
When USS protocol (\(\mathrm{P} 790=2\)) is selected: \\
Display of the data to be transmitted via USS interface 2 \\
i001: Display process data word 1 \\
... \\
i016 Display process data word 16 \\
i017: Display parameter data word 1 \\
… \\
i020: Display parameter data word 4 \\
When peer-to-peer (P790=5) is selected: \\
Display of the data to be transmitted via peer-to-peer interface 2
\end{tabular} & & \begin{tabular}{l}
Ind: 20 \\
Type: L2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { r814 } \\
& \\
& \text { (G172) } \\
& \text { (G174) }
\end{aligned}
\] & \begin{tabular}{l}
Receive data on G-SST3 \\
When USS protocol (\(\mathrm{P} 800=2\)) is selected: \\
Display of data received via USS interface 3 \\
When peer-to-peer (\(\mathrm{P} 800=5\)) is selected: \\
Display of data received via peer-to-peer interface 3
\end{tabular} & & Ind: 20 Type: L2 & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { r815 } \\
& \\
& \text { (G172) } \\
& \text { (G174) }
\end{aligned}
\] & \begin{tabular}{l}
Transmit data on G-SST3 \\
When USS protocol (\(\mathrm{P} 800=2\)) is selected: \\
Display of the data to be transmitted via USS interface 3 \\
When peer-to-peer (P800=5) is selected: \\
Display of the data to be transmitted via peer-to-peer interface 3
\end{tabular} & & \begin{tabular}{l}
Ind: 20 \\
Type: L2
\end{tabular} & P052 \(=3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Peer-to-peer interfaces: Enable transmission and receipt of telegrams: \\
If transmission on a peer-to-peer interface is disabled, the associated output drivers are connected to high impedance. If reception is disabled on a peer-to-peer interface, then the telegram failure monitoring function is deactivated.
\end{tabular}} \\
\hline P816 (G173) & Peer-to-peer 2: Source for data reception enabling command
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { P817 } \\
& \text { (G173) }
\end{aligned}
\] & Peer-to-peer 2: Source for data transmission enabling command
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P818 } \\
& \text { (G174) }
\end{aligned}
\] & Peer-to-peer 3: Source for data reception enabling command
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline P819 (G174) & Peer-to-peer 3: Source for data transmission enabling command
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.40 Deactivation of monitoring functions}

41 \(\boldsymbol{Z}_{\text {warning }}\)
If monitoring functions are deactivated, there may be a risk to the safety of operating personnel or of substantial property damage if a fault or error actually occurs!
\begin{tabular}{|c|c|c|c|c|}
\hline P820 & \begin{tabular}{l}
Deactivation of fault messages \\
The numbers of all fault messages to be deactivated must be entered in this parameter. Fault numbers can be entered in any order. 0 must be entered for any unused indices of the parameter. \\
Factory setting:
\end{tabular} & \[
\begin{array}{|l|}
\hline 0 \text { to } 147 \\
1
\end{array}
\] & \begin{tabular}{l}
Ind: 99 \\
FS= \\
see column \\
on left \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline P821 & \begin{tabular}{l}
Deactivation of alarms \\
The numbers of all alarm messages to be deactivated must be entered in this parameter. Alarm numbers can be entered in any order. 0 must be entered for any unused indices of the parameter.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 147 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 99 \\
& \text { FS }=0 \\
& \text { Type: } 02
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.41 Compensation values}
\begin{tabular}{|c|c|c|c|c|}
\hline r824 & \begin{tabular}{l}
A7006 compensation values \\
These data contain compensation values for the analog section of electronics board A7006
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 10 \\
& \text { Type: } 02
\end{aligned}
\] & P052 \(=3\) \\
\hline P825 & \begin{tabular}{l}
Offset compensation for actual field current channel \\
These data contain compensation values for the actual field current sensing function. They are automatically set during "Restore factory settings" (\(\mathrm{P} 051=21\)) and during the automatic offset compensation run (\(\mathrm{P} 051=22\)).
\end{tabular} & \[
\begin{aligned}
& 13000 \text { to } 25000 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 3 FS=19139 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { P826 } \\
& \text { (G163) }
\end{aligned}
\] & \begin{tabular}{l}
Correction of natural commutation timing \\
If there is a variation in the armature current peak value (in spite of a constant firing angle), it can be corrected by offsetting the firing angle reference time of the appropriate line phase in parameter P826. One line phase (UV, UW, VW, VU, WU, WV) is assigned to each parameter index (i001 to i006). \\
Increasing the parameter setting by a value of 1 corresponds to an increase of \(1.333 \mu \mathrm{~s}\) in the firing angle (0.024 degrees at 50 Hz line frequency), consequently reducing the armature current peak in the appropriate line phase. \\
P826 is automatically set during the optimization run for precontrol and current controller (armature and field) (P051=25) (only when U800=0; when U800=1 or 2, parameters P826.001 to 006 are set to 0). \\
Caution: \\
Even an asymmetrical system causes variations in the magnitude of armature current peaks. However, the system asymmetry may also change.
\end{tabular} & \[
\begin{aligned}
& -100 \text { to } 100 * 1.333 \\
& {[\mu \mathrm{~s}]} \\
& 1.333 \mu \mathrm{~s}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 6 FS=0 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \mathrm{P} 052=3 \\
& \mathrm{P} 051=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline r827 & \begin{tabular}{l}
Internal diagnosis \\
i001: Number of write access operations to EEPROM \\
i002: Number of Page-Write access operations to EEPROM \\
i003: Counter for DUAL-PORT RAM timeouts
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 3 \\
Type: O2
\end{tabular} & P052 \(=3\) \\
\hline r828 & \begin{tabular}{l}
MLFB data \\
These data contain details about the power section design (model)
\end{tabular} & \[
\begin{array}{|l|}
\hline 0 \text { to } 65535 \\
1
\end{array}
\] & Ind: 16 Type: O2 & P052 \(=3\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline r829 & \begin{tabular}{l}
A7001 compensation values \\
These data contain compensation values for the analog section of \\
electronics board A7001
\end{tabular} & 0 to 65535 & \begin{tabular}{l}
Ind: 68 \\
Type: O2
\end{tabular} & P052 = \\
& & \\
\hline
\end{tabular}

\subsection*{11.42 Thyristor diagnosis}
\begin{tabular}{|c|c|c|c|c|}
\hline P830 & \begin{tabular}{l}
Control word for thyristor diagnosis \\
\(0 \quad\) Thyristor check function deactivated \\
1 Thyristors are checked on initial SWITCH-ON or INCHING command after connection of the electronics supply voltage. \\
2 Thyristors are checked on every SWITCH-ON or INCHING command. \\
3 Thyristors will be checked on the next SWITCH-ON or INCHING command. Parameter P830 is set to 0 if no fault is detected. \\
Note: \\
The thyristor check function may not be activated (setting P830=0 must be selected) \\
- when the "Enable a torque direction for torque direction change by parallel drive" function is in use (see also parameter P165) or \\
- when the converter is used to supply large inductances (e.g. field supply from armature terminals, supply of lifting solenoids, etc.).
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.43 Parameters for DriveMonitor and OP1S}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
P831 \\
to \\
r849
\end{tabular} & \begin{tabular}{l}
Parameters for the Trace function of DriveMonitor \\
These parameters are settings for the data exchange between DriveMonitor \\
and the SIMOREG converter. They must not be changed!
\end{tabular} & & P052 = \\
\hline \begin{tabular}{l}
r850 \\
to \\
P899
\end{tabular} & \begin{tabular}{l}
Parameters for the OP1S \\
These parameters are settings for the data exchange between OP1S and \\
the SIMOREG converter. They must not be changed!
\end{tabular} & P052 = & \\
\hline
\end{tabular}

\subsection*{11.44 Profile parameters}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \mathbf{P 9 1 8} \\
& \\
& (\text { Z110 }) \\
& (\text { Z111 })
\end{aligned}
\] & \begin{tabular}{l}
CB bus address \\
Protocol-dependent bus address for communication boards \\
Note: \\
The validity of the bus address is monitored by the communication board. (Bus addresses 0 to 2 are reserved for Master stations on PROFIBUS boards and must not therefore be set for other purposes). If the value is not accepted by the COM BOARD, fault F080 is displayed with fault value 5
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 200 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 \\
FS=3 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { P927 } \\
* \\
\text { (G170) } \\
\text { (G171) } \\
\text { (G172) } \\
\text { (Z110) } \\
(\text { Z111) }
\end{array}
\] & \begin{tabular}{l}
Parameterization enable \\
Enabling of interfaces for parameterization. A parameter value can only be altered via an enabled interface. \\
Setting information: \\
Every interface has a numeric code. \\
The number for one specific interface, or the sum of various numbers assigned to several interfaces, must be entered in this parameter in order to enable the relevant interface(s) for use as a parameterization interface. \\
Example: \\
Factory setting value \(6(=4+2)\) means that the PMU and G-SST1 interfaces are enabled for parameterization purposes.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 127 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
\mathrm{FS}=6
\] \\
Type: V2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.45 Fault memory}

\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & See Change (Access / Status) \\
\hline P952 & \begin{tabular}{l}
Number of faults \\
Settings: \\
\(0 \quad\) Deletes the entire fault memory (r947, r949 and r049) by resetting to 0 \\
Note: P952 cannot be reset while a fault is pending \\
\(>0 \quad\) Display of the faults stored in the fault memory (r947, r949 and r049)
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.46 Visualization parameters: Alarms}
\begin{tabular}{|c|c|c|c|c|}
\hline r953 & \begin{tabular}{l}
Alarm parameter 1 \\
Display of active alarms in bit-coded form (A001 to A016). \\
If one of the alarms between 1 and 16 is generated, the corresponding segment in the display lights up. \\
See Section 10.2 for meaning of individual alarms.
\end{tabular} & & Ind: None Type: V2 & P052 = 3 \\
\hline r954 & \begin{tabular}{l}
Alarm parameter 2 \\
Display of active alarms in bit-coded form (A017 to A032). \\
If one of the alarms between 17 and 32 is generated, the corresponding segment in the display lights up. \\
See Section 10.2 for meaning of individual alarms
\end{tabular} & & Ind: None Type: V2 & P052 = 3 \\
\hline r955 & \begin{tabular}{l}
Alarm parameter 3 \\
Parameter alarms 3 \\
If one of the alarms between 33 and 48 is generated, the corresponding segment in the display lights up.
\end{tabular} & & Ind: None Type: V2 & P052 = 3 \\
\hline r956 & \begin{tabular}{l}
Alarm parameter 4 \\
Parameter alarms 4 \\
If one of the alarms between 49 and 64 is generated, the corresponding segment in the display lights up. \\
64 63 \(\square\) \\
\(62 \quad 61\) \\
60 \\
59 \\
58 57 \\
52 \\
50 \\
49
\end{tabular} & & Ind: None Type: V2 & P052 = 3 \\
\hline r957 & \begin{tabular}{l}
Alarm parameter 5 \\
Parameter alarms 5 \\
If one of the alarms between 65 and 80 is generated, the corresponding segment in the display lights up..
\end{tabular} & & Ind: None Type: V2 & P052 = 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline r958 & \begin{tabular}{l}
Alarm parameter 6 \\
Parameter alarms 6 (CB alarms) \\
If one of the alarms between 81 and 96 is generated, the corresponding segment in the display lights up.
\end{tabular} & & Ind: None Type: V2 & P052 = 3 \\
\hline r959 & \begin{tabular}{l}
Alarm parameter 7 \\
Parameter alarms 7 (TB alarms 1) \\
If one of the alarms between 97 and 112 is generated, the corresponding segment in the display lights up.
\end{tabular} & & Ind: None Type: V2 & P052 = 3 \\
\hline r960 & \begin{tabular}{l}
Alarm parameter 8 \\
Parameter alarms 8 (TB alarms 2) \\
If one of the alarms between 113 and 128 is generated, the corresponding segment in the display lights up.
\end{tabular} & & Ind: None Type: V2 & P052 = 3 \\
\hline
\end{tabular}

\subsection*{11.47 Device identification}
\begin{tabular}{|c|c|c|c|c|}
\hline r964 & \begin{tabular}{l}
Parameters for device identification on the PROFIBUS \\
[SW 2.0 and later] \\
Display parameters to support overview and diagnosis of all nodes on the PROFIBUS-DP during and after commissioning (coding according to PROFIBUS profile V3) \\
i001: Display of the manufacturer of the SIMOREG DC Master 6RA70 : SIEMENS = 42 \\
i002: Display of device type: SIMOREG DC Master 6RA70 \(=4110\) \\
i003: Display of the software version of the SIMOREG DC Master 6RA70 (see r060.001) \\
i004: Display of year of generation of the software of the SIMOREG DC Master 6RA70: y y y y (see r061.001) \\
i005: Display of the month and day of generation of the software of the SIMOREG DC Master 6RA70: d d m m (see r061.003 and r061.002) \\
i006: Display of the controlled axes of the SIMOREG DC Master 6RA70: 1
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & Ind: 6 Type: O2 & \(\mathrm{P} 052=1\) \\
\hline
\end{tabular}

\subsection*{11.48 Visualization parameters: Control and status word}
\begin{tabular}{|l|l|l|l|}
\hline r967 & \begin{tabular}{l}
Display of control word 1 \\
Visualization parameter for control word 1 (bits 0-15) \\
Identical to r650 (control word 1)
\end{tabular} & \begin{tabular}{l}
Ind: None \\
Type: V2
\end{tabular} & \begin{tabular}{l}
P052 = 3 \\
\hline r968 \\
\end{tabular} \begin{tabular}{l}
Display of status word 1 \\
Visualization parameter for status word 1 (bits 0-15) \\
Identical to r652 (status word 1)
\end{tabular}
\end{tabular} \begin{tabular}{l}
Ind: None \\
Type: V2
\end{tabular} P052 = 3 \(\quad\).
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.49 Resetting and storing parameters, list of existing and modified \(P\) and \(r\) parameters}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l|}
\hline \text { P970 } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Restore factory setting \\
Reset parameters to factory setting (default) \\
0: Parameter reset: All parameters are reset to their original values (factory setting). This parameter is then automatically reset to 1. \\
1: No parameter reset \\
Note: Function can also be selected by setting P051=21.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline P971 & \begin{tabular}{l}
EEPROM transfer \\
Transfer of parameter values from RAM to EERPROM on switchover from 0 to 1. \\
It takes approximately 15 s to process all values. The PMU remains in value mode for this period.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline r980 & \begin{tabular}{l}
List of existing parameter numbers, start \\
Visualization parameter for displaying the first 100 parameter numbers in the P or \(r\) parameter range (0 to 999). The parameter numbers are listed in ascending sequence. \\
Repetition of a number over several indices means that there are no further parameter numbers in the 0 to 999 range. \\
The list is continued at the parameter whose number is displayed under index 101. \\
See also r989
\end{tabular} & & \[
\begin{aligned}
& \hline \text { Ind: } 101 \\
& \text { Type: O2 }
\end{aligned}
\] & \(\mathrm{P} 052=3\) \\
\hline r981 & List of existing parameter numbers, continuation See r980. & & \[
\begin{aligned}
& \text { Ind: } 101 \\
& \text { Type: } 02
\end{aligned}
\] & \(\mathrm{P} 052=3\) \\
\hline r982 & List of existing parameter numbers, continuation See r980. & & \[
\begin{aligned}
& \text { Ind: } 101 \\
& \text { Type: O2 }
\end{aligned}
\] & P052 = 3 \\
\hline r983 & List of existing parameter numbers, continuation See r980. & & \[
\begin{aligned}
& \text { Ind: } 101 \\
& \text { Type: } 02
\end{aligned}
\] & \(\mathrm{P} 052=3\) \\
\hline r984 & List of existing parameter numbers, continuation See r980. & & \begin{tabular}{l}
Ind: 101 \\
Type: O2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline r985 & List of existing parameter numbers, continuation See r980. & & \[
\begin{aligned}
& \hline \text { Ind: } 101 \\
& \text { Type: O2 }
\end{aligned}
\] & \(\mathrm{P} 052=3\) \\
\hline r986 & List of existing parameter numbers, continuation See r980. & & \[
\begin{aligned}
& \text { Ind: } 101 \\
& \text { Type: O2 }
\end{aligned}
\] & \(\mathrm{P} 052=3\) \\
\hline r987 & List of existing parameter numbers, continuation See r980. & & \[
\begin{aligned}
& \hline \text { Ind: } 101 \\
& \text { Type: O2 }
\end{aligned}
\] & \(\mathrm{P} 052=3\) \\
\hline r988 & List of existing parameter numbers, continuation See r980. & & \[
\begin{aligned}
& \text { Ind: } 101 \\
& \text { Type: O2 }
\end{aligned}
\] & \(\mathrm{P} 052=3\) \\
\hline r989 & \begin{tabular}{l}
List of existing parameter numbers, continuation \\
Continuation of the list can be found under index 101. Please note:
\[
\begin{aligned}
& 860=\text { r860 (TECH BOARD installed) } \\
& 2980=\text { n980 }
\end{aligned}
\] \\
See also r980.
\end{tabular} & & \[
\begin{aligned}
& \hline \text { Ind: } 101 \\
& \text { Type: } 02
\end{aligned}
\] & P052 = 3 \\
\hline r990 & \begin{tabular}{l}
List of modified parameter numbers, start \\
Visualization parameter for displaying the first 100 modified parameters in the \(P\) or \(r\) parameter range (0 to 999). The parameter numbers are listed in ascending sequence. \\
Repetition of a number over several indices means that there are no further modified parameters in the 0 to 999 range. \\
The list is continued at the parameter whose number is displayed under index 101. \\
See also r999.
\end{tabular} & & \[
\begin{aligned}
& \hline \text { Ind: } 101 \\
& \text { Type: } 02
\end{aligned}
\] & \(\mathrm{P} 052=3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & See Change (Access / Status) \\
\hline r991 & List of modified parameter numbers, continuation See r990. & & Ind: 101 Type: O2 & P052 = 3 \\
\hline r992 & List of modified parameter numbers, continuation See r990. & & Ind: 101 Type: O2 & \(\mathrm{P} 052=3\) \\
\hline r993 & List of modified parameter numbers, continuation See r990. & & Ind: 101 Type: O2 & P052 \(=3\) \\
\hline r994 & List of modified parameter numbers, continuation See r990. & & \[
\begin{aligned}
& \text { Ind: } 101 \\
& \text { Type: O2 }
\end{aligned}
\] & \(\mathrm{P} 052=3\) \\
\hline r995 & List of modified parameter numbers, continuation See r990. & & \[
\begin{aligned}
& \hline \text { Ind: } 101 \\
& \text { Type: O2 }
\end{aligned}
\] & \(\mathrm{P} 052=3\) \\
\hline r996 & List of modified parameter numbers, continuation See r990. & & \[
\begin{aligned}
& \hline \text { Ind: } 101 \\
& \text { Type: O2 }
\end{aligned}
\] & \(\mathrm{P} 052=3\) \\
\hline r997 & List of modified parameter numbers, continuation See r990. & & \[
\begin{aligned}
& \hline \text { Ind: } 101 \\
& \text { Type: O2 }
\end{aligned}
\] & \(\mathrm{P} 052=3\) \\
\hline r998 & List of modified parameter numbers, continuation See r990. & & Ind: 101 Type: O2 & P052 = 3 \\
\hline r999 & \begin{tabular}{l}
List of modified parameter numbers, continuation \\
Continuation of the list can be found under index 101. Please note:
\[
2990=\mathrm{n} 990
\] \\
See also r990.
\end{tabular} & & Ind: 101 Type: O2 & P052 = 3 \\
\hline
\end{tabular}

\subsection*{11.50 Password protection, key/lock mechanism}

\section*{Key/lock mechanism}

To prevent unintended parameterization of the devices and to protect the know-how stored in the parameterization, you can restrict access to the (basic converter) parameters and define your own passwords (=pairs of numbers that you can choose). This done in parameters:
- U005 key and
- U006 lock.

If U005 and U006 are parameterized differently, it is only possible to access the following parameters:
All visualization parameters (\(\mathrm{rxxx}, \mathrm{nxxx}\))
All parameters that can be changed with P051 = 0 (See parameter list)
All "user parameters" (see Parameter U007)
All other parameters neither be read nor altered.
Only when U005 and U006 are parameterized to the same values, are these restrictions removed again.
When using the key-lock-mechanism you should follow this procedure:
1. Program the den lock parameter U006 in both parameter indices with your specific password
2. Set Parameter P051 to the value 0. This activates the password you have just set (in U006).

After that, P051 can be set to 40 again and the password protection remains active.
Examples:
\begin{tabular}{lll}
Lock & Key & Result \\
U006.1 \(=0\) (factory setting) & U005.1 \(=0\) (factory setting) & The key and lock are parameterized identically, \\
U006.2 \(=0\) & U005.2 \(=0\) & all parameters are accessible \\
U006.1 \(=12345\) & U005.1 \(=0\) & The key and lock are parameterized differently, \\
U006.2 \(=54321\) & U005.2 \(=0\) & \begin{tabular}{l}
only the visualization parameters, the parameters that can be \\
altered with P051=0, and the "user parameters" are accessible
\end{tabular} \\
U006.1 = 12345 & & The key and lock are parameterized identically, \\
U006.2 \(=54321\) & U005.1 \(=12345\) & all parameters are accessible
\end{tabular}

NOTE: If you forget or lose your password, you can only regain access to all parameters by restoring the factory setting (P051=21).
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l}
U005 \\
\((2005)\) \\
\(*\)
\end{tabular} & Key & [SW 1.7 and later] & 0 to 65535 \\
1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline U006 (2006) & \begin{tabular}{l}
Lock [SW 1.7 and later] \\
Parameter for entering the password for the key/lock mechanism
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U007 } \\
& (2007)
\end{aligned}
\] & \begin{tabular}{l}
Numbers of the user parameters \\
[SW 1.7 and later] \\
Parameters for entering the numbers of those parameters that are to be accessible if the key and lock are set differently. \\
NOTE: Parameters U000 to U999 must be entered as 2000 to 2999
\end{tabular} & 0 to 999
2000 to 2005
2008 to 2999
1 & \[
\begin{aligned}
& \hline \text { Ind: } 100 \\
& \text { FS=0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.51 Processor utilization}

\subsection*{11.52 Display parameters for technology functions with S00}

Only active with optional technology software S00

\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} \\
\hline \begin{tabular}{l}
n014 \\
\((2014)\) \\
S00 \\
(B121)
\end{tabular} & Ainector/connector converter 2 (bit field 5) & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \begin{tabular}{l}
n015 \\
(2015) \\
S00
\end{tabular} & Binector/connector converter 3 (bit field 6) & FB 14 & & \begin{tabular}{l}
Ind: None \\
Type: V2
\end{tabular} \\
(B121)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Technology controller} \\
\hline \[
\begin{array}{|l|}
\hline \text { n016 } \\
(2016) \\
\text { S00 } \\
\text { (B170) } \\
\hline
\end{array}
\] & Actual value display & FB 260 & \[
\begin{aligned}
& -200.0 \text { to } 199.9 \\
& \text { [\%] } \\
& 0.1
\end{aligned}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{array}{|l|}
\hline \text { n017 } \\
(2017) \\
\text { S00 } \\
\text { (B170) } \\
\hline
\end{array}
\] & Setpoint display & FB 260 & \[
\begin{aligned}
& -200.0 \text { to } 199.9 \\
& {[\%]} \\
& 0.1
\end{aligned}
\] & Ind: None Type: I2 & P052 = 3 \\
\hline \begin{tabular}{l}
n018 \\
(2018) \\
S00 \\
(B170)
\end{tabular} & Display of effective Kp factor & FB 260 & \[
\begin{aligned}
& 0.00 \text { to } 30.00 \\
& 0.01
\end{aligned}
\] & Ind: None Type: O2 & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{array}{|l}
\hline \text { n019 } \\
(2019) \\
\text { S00 } \\
\text { (B170) } \\
\hline
\end{array}
\] & Display of technology controller output & FB 260 & \[
\begin{aligned}
& -200.0 \text { to } 199.9 \\
& {[\%]} \\
& 0.1
\end{aligned}
\] & Ind: None Type: I2 & P052 \(=3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Velocity/speed calculator} \\
\hline \[
\begin{aligned}
& \hline \text { n020 } \\
& (2020) \\
& \text { S00 } \\
& \text { (B190) } \\
& \hline
\end{aligned}
\] & Display of actual speed & FB 261 & \[
\begin{aligned}
& \hline-200.0 \text { to } 199.9 \\
& {[\%]} \\
& 0.1
\end{aligned}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \hline \text { n021 } \\
& (2021) \\
& \text { S00 } \\
& \text { (B190) } \\
& \hline
\end{aligned}
\] & Display of actual velocity & FB 261 & \[
\begin{aligned}
& -32.768 \text { to } 32767 \\
& {[\mathrm{~m} / \mathrm{s}]} \\
& 0.001
\end{aligned}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \hline \text { n022 } \\
& (2022) \\
& \text { S00 } \\
& \text { (B190) } \\
& \hline
\end{aligned}
\] & Display of setpoint velocity & FB 261 & \[
\begin{aligned}
& \hline-32.768 \text { to } 32767 \\
& {[\mathrm{~m} / \mathrm{s}]} \\
& 0.001
\end{aligned}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline n023
(2023)
S00
(B190) & Display of setpoint speed & FB 261 & \[
\begin{aligned}
& -200.0 \text { to } 199.9 \\
& {[\%]} \\
& 0.1
\end{aligned}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline
\end{tabular}

\subsection*{11.53 Miscellaneous}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
n024 \\
(2024)
\end{tabular} & \begin{tabular}{l}
Display of the speed actual value in rpm \\
[SW 2.0 and later] \\
i001: Display of the speed actual value from the pulse generator input of basic device X173 \\
i002: Display of speed actual value from tacho module SBP
\end{tabular} & -32768 to 32767 [rpm] 1 & \begin{tabular}{l}
Ind: 2 \\
Type: I2
\end{tabular} & P052 = 2 \\
\hline \[
\begin{array}{|l}
\hline \text { U040 } \\
\text { to } \\
\text { U041 }
\end{array}
\] & \begin{tabular}{l}
Reserved for later use \\
[SW 2.0 and later] \\
These parameters must not be changed by the user!
\end{tabular} & & & P052 \(=3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \begin{tabular}{l}
n042 \\
(2042)
\end{tabular} & \begin{tabular}{l}
Warning memory \\
[SW 2.0 and later] \\
Warning memory for flagging warnings that have occurred since the electronics supply voltage was last switched on. \\
The contents of the warning memory are lost when the electronics supply voltage is switched off and can be deleted with U043. \\
The warnings are displayed in bit code as for r953 to r960 \\
i001: Display of warnings 1 to 16 \\
i002: Display of warnings 17 to 32 \\
i003: Display of warnings 33 to 48 \\
i004: Display of warnings 49 to 64 \\
i005: Display of warnings 65 to 80 \\
i006: Display of warnings 81 to 96 \\
i007: Display of warnings 97 to 112 \\
i008: Display of warnings 113 to 128 \\
See Section 10.2 for the meaning of the individual warnings
\end{tabular} & & Ind: 8 Type: V2 & P052 = 2 \\
\hline \[
\begin{aligned}
& \hline \text { U043 } \\
& \text { * } \\
& (2043)
\end{aligned}
\] & \begin{tabular}{ll}
Deleting the warning memory \\
Settings: & [SW 2.0 and later] \\
0 & \begin{tabular}{l}
Deletes the entire warning memory n042 by resetting it to 0. \\
\\
\\
1
\end{tabular} \\
\begin{tabular}{l}
Subsequently the parameter is automatically set back to value \\
1.
\end{tabular} & Not active
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: none FS=1 \\
Type: O2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U044 } \\
& \text { (2044) }
\end{aligned}
\] & \begin{tabular}{l}
Connector display, decimal \\
[SW 2.0 and later] \\
Selects those connectors whose value is to be displayed as a decimal with n045 \\
i001: Selects the connector to be displayed with n045.01 \\
i002: Selects the connector to be displayed with n045.02 \\
i003: Selects the connector to be displayed with n045.03 \\
i004: Selects the connector to be displayed with n045.04 \\
i005: Selects the connector to be displayed with n045.05
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 5 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { n045 } \\
& (2045)
\end{aligned}
\] & \begin{tabular}{l}
Connector display, decimal \\
[SW 2.0 and later] \\
Decimal display with sign of the values of the connectors selected with U044. In the case of double-word connectors the H word is displayed. \\
i001: Display of the connector selected with U044.01 \\
i002: Display of the connector selected with U044.02 \\
i003: Display of the connector selected with U044.03 \\
i004: Display of the connector selected with U044.04 \\
i005: Display of the connector selected with U044.05
\end{tabular} & \[
\begin{aligned}
& -32768 \text { to } 32767 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind:5 \\
Type: I2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \hline \text { U046 } \\
& \text { * } 2046 \text {) }
\end{aligned}
\] & \begin{tabular}{l}
Connector display, hexadecimal \\
Selection of connectors whose value is to be displayed as a hexadecimal value with n0471 \\
i001: Selection of the connector to be displayed with n047.01 \\
i002: Selection of the connector to be displayed with n047.02 \\
i003: Selection of the connector to be displayed with n047.03 \\
i004: Selection of the connector to be displayed with n047.04 \\
i005: Selection of the connector to be displayed with n047.05
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 5 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { n047 } \\
& (2047)
\end{aligned}
\] & \begin{tabular}{l}
Connector display, hexadecimal \\
[SW 2.0 and later] \\
Hexadecimal display of values of connectors selected with U046. In the case of double-word connectors the H word is displayed. \\
i001: Display of the connector selected with U046.01 \\
i002: Display of the connector selected with U046.02 \\
i003: Display of the connector selected with U046.03 \\
i004: Display of the connector selected with U046.04 \\
i005: Display of the connector selected with U046.05
\end{tabular} & 0000h to FFFFh 1 & \begin{tabular}{l}
Ind:5 \\
Type: L2
\end{tabular} & P052 \(=3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \text { U049 } \\
& (2049)
\end{aligned}
\] & \begin{tabular}{l}
OP1S operating display \\
Function parameter for selecting parameters whose values must be included in the operating display of the optional \\
OP1S convenience operator panel. \\
```

i001: $1^{\text {st }}$ line on left <br>
i002: $1^{\text {st }}$ line on right <br>
i003: $2^{\text {nd }}$ line (actual value), visualization parameter only <br>
i004: $3^{\text {rd }}$ line (setpoint) <br>
i005: $4^{\text {th }}$ line

```
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3999 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind:5 FS= \\
i001: 19 \\
i002: 38 \\
i003: 25 \\
i004: 28 \\
i005: 59 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 =40 } \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}

Connector type converters
2 connectors are converted into one double word connector.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U098 } \\
& (2098) \\
& { }_{*} \\
& \text { S00 } \\
& \text { (B151) }
\end{aligned}
\] & Operands for \(1^{\text {st }}\) connector type converter (result = K9498)
Operands for \(2^{\text {nd }}\) connector type converter (result = K9499)
[SW 1.9 298
and later]
i001: Source for the low word of output connector K9498
i002: Source for the high word of output connector K9498
i003: Source for the low word of output connector K9499
i004: Source for the high word of output connector K9499
Settings:
\(0=\) connector K0000
1= connector K0001
etc. & All connector numbers 1 & \begin{tabular}{l}
Ind: 4
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.54 Settable fixed values}

Only active with optional technology software S00
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U099 } \\
& (2099)
\end{aligned}
\] & \begin{tabular}{l}
Fixed value \\
[SW 1.8 and later] \\
The values set in Index .001 to .100 are connected to connectors K9501 to
\end{tabular} & \[
\begin{aligned}
& -199.99 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 100 \\
& \text { FS }=0.00
\end{aligned}
\]
Type: I2 & \begin{tabular}{l}
\[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40
\end{aligned}
\] \\
on-line
\end{tabular} \\
\hline \begin{tabular}{l}
SOO \\
(B110)
\end{tabular} & K9600 & & & \\
\hline
\end{tabular}

\subsection*{11.55 Activation of fault messages and alarm messages}

Only active with optional technology software S00

\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U101 } \\
& (2101) \\
& * \\
& \text { S00 } \\
& \\
& \text { (B115) }
\end{aligned}
\] & \begin{tabular}{l}
Source for the activation of F024 and F020 \\
Selection of the binectors that activate fault messages F024 or F020 on log. "1" \\
0 = Binector B0000 \\
1 = Binector B0001 \\
etc. \\
Up to SW 1.7: F024 (without fault value) if binector = 1 (FB 3) \\
SW 1.8 and later: \\
i001: F024 with fault value 1 (FB 3) \\
i002: F024 with fault value 2 \\
i003: F024 with fault value 3 \\
i004: F024 with fault value 4 \\
i005: F020 with fault value 1 (FB 287) \\
i006: F020 with fault value 2 \\
i007: F020 with fault value 3 \\
i008: F020 with fault value 4
\end{tabular} & All binector numbers 1 & Ind: 8 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U102 } \\
& (2102) \\
& { }_{*} \\
& \text { S00 } \\
& \\
& \text { (B115) }
\end{aligned}
\] & \begin{tabular}{l}
Source for the activation of F033 and F053 \\
Selection of the binectors that activate fault messages F033 or F053 on log. "1" \\
\(0=\) Binector B0000 \\
1 = Binector B0001 \\
etc. \\
Up to SW 1.7: F033 (without fault value) if binector = 1 (FB 4) \\
SW 1.8 and later: \\
i001: F033 with fault value 1 (FB 4) \\
i002: F033 with fault value 2 \\
i003: F033 with fault value 3 \\
i004: F033 with fault value 4 \\
i005: F053 with fault value 1 (FB 288) \\
i006: F053 with fault value 2 \\
i007: F053 with fault value 3 \\
i008: F053 with fault value 4
\end{tabular} & All binector numbers 1 & Ind: 8 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U103 } \\
& (2103) \\
& * \\
& \text { S00 } \\
& \\
& \text { (B115) }
\end{aligned}
\] & \begin{tabular}{l}
Source for the activation of F034 and F054 \\
Selection of the binectors that activate fault messages F034 or F054 on log. "1" \\
0 = Binector B0000 \\
1 = Binector B0001 \\
etc. \\
Up to SW 1.7: F034 (without Fault value) if binector = 1 (FB 5) \\
SW 1.8 and later: \\
i001: F034 with fault value 1 (FB 5) \\
i002: F034 with fault value 2 \\
i003: F034 with fault value 3 \\
i004: F034 with fault value 4 \\
i005: F054 with fault value 1 (FB 289) \\
i006: F054 with fault value 2 \\
i007: F054 with fault value 3 \\
i008: F054 with fault value 4
\end{tabular} & All binector numbers 1 & Ind: 8 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U104 } \\
& (2104) \\
& * \\
& \text { S00 } \\
& \\
& \text { (B115) }
\end{aligned}
\] & \begin{tabular}{l}
Source for the activation of A023 and A019 \\
Selection of the binectors that activate alarm A023 or A019 on log. "1" \\
0 = Binector B0000 \\
1 = Binector B0001 \\
etc. \\
Up to SW 1.7: A023 (FB 6) \\
SW 1.8 and later:
\end{tabular} & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U105 } \\
& (2105) \\
& * \\
& \text { S00 } \\
& \\
& \text { (B115) }
\end{aligned}
\] & \begin{tabular}{l}
Source for the activation of A024 and A020 \\
Selection of the binectors that activate alarm A024 or A020 on log. "1" \\
0 = Binector B0000 \\
1 = Binector B0001 \\
etc. \\
Up to SW 1.7: A024 (FB 7) \\
SW 1.8 and later:
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U106 } \\
& (2106) \\
& * \\
& \text { S00 } \\
& \\
& \text { (B115) }
\end{aligned}
\] & & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U107 } \\
& (2107) \\
& { }_{*} \\
& \text { S00 } \\
& \\
& \text { (B115) }
\end{aligned}
\] & \begin{tabular}{l}
Source for the activation of A034 and A054 \\
Selection of the binectors that activate alarm A034 or A054 on log. "1" \\
0 = Binector B0000 \\
1 = Binector B0001 \\
etc. \\
Up to SW 1.7: A034 (FB 9) \\
SW 1.8 and later:
\end{tabular} & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.56 Connector/binector converters, binector/connector converters}

Only active with optional technology software S00
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \text { U110 } \\
(2110) \\
* \\
\text { S00 } \\
(\mathrm{B} 120)
\end{array}
\] & & All connector numbers 1 & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U111 } \\
& \text { (2111) } \\
& * \\
& \text { S00 } \\
& \text { (B120) }
\end{aligned}
\] & \begin{tabular}{l}
Source for connector/binector converter 2 \\
Connector which must be converted to binectors B9068 (bit 0) to B9083 (bit 15)
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \[
\begin{aligned}
& \text { Ind: None } \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{array}{|l}
\hline \mathrm{P} 052=3 \\
\text { P051 }=40 \\
\text { Offline }
\end{array}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U112 } \\
(2112) \\
{ }_{*} \\
\text { S00 } \\
\\
\text { (B120) }
\end{array}
\] & & All connector numbers 1 & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{array}{|l|}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Offline }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U113 } \\
& (2113) \\
& * \\
& \text { S00 } \\
& \text { (B121) }
\end{aligned}
\] & \begin{tabular}{l}
Source for binector/connector converter 1 \\
Binectors which must be converted to connector K9113 \\
i001: \(1^{\text {st }}\) binector (bit 0) \\
i002: \(\quad 2^{\text {nd }}\) binector (bit 1) \\
i016: \(16^{\text {th }}\) binector (bit 15) \\
Settings: \\
\(0=\) binector B 0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 16 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline SIEMEN & AG 6RX1700-0AD76 & & & 11-101 \\
\hline \multicolumn{5}{|l|}{SIMOREG DC Master Operating Instructions} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U114 } \\
& (2114) \\
& { }_{*} \\
& \text { S00 } \\
& \\
& \text { (B121) }
\end{aligned}
\] & \begin{tabular}{l}
Source for binector/connector converter 2 \\
Binectors which must be converted to connector K9114
\[
\begin{array}{ll}
\text { i001: } & 1^{\text {st }} \text { binector (bit } 0 \text {) } \\
\text { i002: } & 2^{\text {nd }} \text { binector (bit } 1 \text {) } \\
\ldots & \\
\text { i016: } & 16^{\text {th }} \text { binector (bit } 15 \text {) }
\end{array}
\] \\
Settings:
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & FB 14 & All binector numbers 1 & \[
\begin{aligned}
& \hline \hline \text { Ind: } 16 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = 3 } \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline U115
\({ }^{(2115)}\)
S00
(B121) & \begin{tabular}{l}
Source for binector/connector converter 3 \\
Binectors which must be converted to connector K9115 \\
Settings:
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & FB 15 & All binector numbers 1 & \[
\begin{array}{|l|}
\hline \text { Ind: } 16 \\
\text { FS=0 } \\
\text { Type: L2 }
\end{array}
\] & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.57 Binector/connector converter for serial interfaces}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U116 } \\
& (2116) \\
& * \\
& \text { (G170) }
\end{aligned}
\] & \begin{tabular}{l}
Source for binector/connector converter for GSST1 \\
[SW1.4 and later] \\
Binectors which must be converted to connector K2020 \\
i001: \(1^{\text {st }}\) binector (bit 0) \\
i002: \(\quad 2^{\text {nd }}\) binector (bit 1) \\
io16: \(\quad 16^{\text {th }}\) binector (bit 15) \\
Settings: \\
\(0=\) binector B0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & All binector numbers 1 & Ind: 16 FS=0 Type: L2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U117 } \\
& (2117) \\
& * \\
& \text { (G171) } \\
& \text { (G173) }
\end{aligned}
\] & \begin{tabular}{l}
Source for binector/connector converter for GSST2 [SW1.4 and later] \\
Binectors which must be converted to connector K6020
\[
\begin{array}{ll}
\text { i001: } & 1^{\text {st }} \text { binector (bit } 0 \text {) } \\
\text { i002: } & 2^{\text {nd }} \text { binector (bit } 1 \text {) } \\
\ldots & \\
\text { i016: } & 16^{\text {th }} \text { binector (bit } 15 \text {) }
\end{array}
\] \\
Settings:
\[
0=\text { binector } \mathrm{B} 0000
\]
\[
1 \text { = binector B0001 }
\] \\
etc.
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 16 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U118 } \\
& (2118) \\
& * \\
& (\text { G172) } \\
& \text { (G174) }
\end{aligned}
\] & \begin{tabular}{l}
Source for binector/connector converter for GSST3 [SW1.4 and later] \\
Binectors which must be converted to connector K9020 \\
i001: \(1^{\text {st }}\) binector (bit 0) \\
i002: \(\quad 2^{\text {nd }}\) binector (bit 1) \\
i016: \(16^{\text {th }}\) binector (bit 15) \\
Settings:
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 16 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l}
U119 \\
\((2119)\) \\
\(*\)
\end{tabular} & \begin{tabular}{l}
Parameters for the Trace function of DriveMonitor [SW1.4 and later] \\
This parameter is a setting for the exchange of process data between \\
DriveMonitor and the SIMOREG converter. It must not be changed!
\end{tabular} & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.58 Mathematical functions}

Only active with optional technology software S00

\section*{Adder / subtractor}

The 3 operands of a function block are selected by 3 indices each of a parameter.
U120 to U131
The connectors selected via indices i001 and i002 are added, the connector selected via index i003 is subtracted.
U120 to U122 [SW 1.8 and later]:
The connectors selected via indices i004 and i005 are added, the connector selected via index i006 is subtracted.
The result is limited to -200.00 to \(+199.99 \%\) and applied to the connector stated.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \text { U120 } \\
(2120) \\
{ }^{*} \\
\text { S00 } \\
\\
(B 125)
\end{array}
\] & \begin{tabular}{l}
Operands for 1st adder / subtractor (result = K9120) \\
Operands for 13th adder / subtractor (result = K9132) \\
(SW 1.8 and later) \\
\(0=\) Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & \[
\begin{aligned}
& \text { FB } 20 \\
& \text { FB } 32
\end{aligned}
\] & All connector numbers 1 & Ind: 6 FS=0 Type: L2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U121 } \\
(2121) \\
* \\
\text { S00 } \\
\\
(B 125)
\end{array}
\] & \begin{tabular}{l}
Operands for 2nd adder / subtractor (result = K9121) \\
Operands for 14th adder / subtractor \((\) result \(=\) K9133) \\
[SW 1.8 and later] \\
\(0=\) Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & \[
\begin{aligned}
& \hline \text { FB } 21 \\
& \text { FB } 33
\end{aligned}
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: 6
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U122 } \\
(2122) \\
{ }^{*} \\
\text { S00 } \\
\\
\text { (B125) }
\end{array}
\] & \begin{tabular}{l}
Operands for 3rd adder / subtractor (result = K9122) \\
Operands for 14th adder / subtractor (result = K9134) \\
[SW 1.8 and later] \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & \[
\begin{aligned}
& \text { FB } 22 \\
& \text { FB } 34
\end{aligned}
\] & All connector numbers 1 & Ind: 6 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U123 } \\
(2123) \\
* \\
\text { S00 } \\
\text { (B125) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Operands for \(4^{\text {th }}\) adder / subtracter (result \(=\) K9123) \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 23 & All connector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U124 } \\
(2124) \\
* \\
\text { S00 } \\
(B 125) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Operands for \(5^{\text {th }}\) adder / subtracter (result \(=\) K9124) \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 24 & All connector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U125 } \\
(2125) \\
* \\
\text { S00 } \\
\text { (B125) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Operands for \(6^{\text {th }}\) adder / subtracter (result \(=\) K9125) \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 25 & All connector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U126 } \\
(2126) \\
* \\
\text { S00 } \\
\text { (B125) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Operands for \(7^{\text {th }}\) adder \(/\) subtracter (result \(=\) K9126) \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 26 & All connector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U127 } \\
(2127) \\
* \\
\text { S00 } \\
\text { (B125) } \\
\hline
\end{array}
\] & ```
Operands for 8'th adder / subtracter (result = K9127)
0 = connector K0000
1 = connector K0001
etc.
``` & FB 27 & All connector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U128 } \\
(2128) \\
{ }^{2} \\
\text { S00 } \\
\text { (B125) } \\
\hline
\end{array}
\] & ```
Operands for 9'th adder / subtracter (result = K9128)
0 = connector K0000
1 = connector K0001
etc.
``` & FB 28 & All connector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U129 } \\
(2129) \\
* \\
\text { S00 } \\
\text { (B125) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Operands for \(\mathbf{1 0}^{\text {th }}\) adder / subtracter (result \(=\) K9129) \\
0 = connector \(K 0000\) \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 29 & All connector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{array}{|l}
\hline \hline \text { U130 } \\
(2130) \\
* \\
\text { S00 } \\
\text { (B125) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Operands for \(11^{\text {th }}\) adder / subtracter (result \(=\) K9130) \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 30 & All connector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U131 } \\
(2131) \\
* \\
\text { S00 } \\
(B 125) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Operands for \(12^{\text {th }}\) adder / subtracter (result \(=\) K9131) \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 31 & All connector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Adders / subtracters for double word connectors}

The 3 operands of a function block are selected in each case via the three indices of a parameter.
The result is limited to -200.00 to \(+199.99 \%\) and switched through to the specified connector.

\section*{Sign inverters}

The contents of the connector selected in the parameter are negated (two's complement). The result is applied to the specified connector.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{|l|}
\hline \text { U135 } \\
(2135) \\
* \\
\text { S00 } \\
\text { (B125) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for \(1^{\text {st }}\) sign inverter (result \(=\) K9135) \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 35 & All connector numbers 1 & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U136 } \\
(2136) \\
* \\
\text { S00 } \\
\text { (B125) }
\end{array}
\] & \begin{tabular}{l}
Source for \(\mathbf{2}^{\text {nd }}\) sign inverter (result \(=\) K9136) \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 36 & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U137 } \\
(2137) \\
* \\
\text { S00 } \\
\text { (B125) }
\end{array}
\] & \begin{tabular}{l}
Source for \(3^{\text {rd }}\) sign inverter (result \(=\) K9137) \\
\(0=\) connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 37 & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U138 } \\
(2138) \\
* \\
\text { S00 } \\
\text { (B125) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for \(4^{\text {th }}\) sign inverter (result \(=\) K9138) \\
\(0=\) connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 38 & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Switchable sign inverters}

The contents of the connector entered in the parameter for selection of a source is switched through, depending on the state of the binector entered in the parameter for control bit selection, as an unchanged value (when control bit \(=0\)) or as a negated value (two's complement, when control bit =1). The result is applied to the specified connector.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{|l|}
\hline \text { U140 } \\
(2140) \\
* \\
\text { S00 } \\
\text { (B125) }
\end{array}
\] & \begin{tabular}{l}
Source for \(1^{\text {st }}\) switchable sign inverter
Result = K9140 \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 40 & All connector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U141 } \\
(2141) \\
* \\
\text { S00 } \\
\text { (B125) } \\
\hline
\end{array}
\] & Control bit for \(1^{\text {st }}\) switchable sign inverter
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\] & FB 40 & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U142 } \\
& (2142) \\
& * \\
& \text { S00 } \\
& \text { (B125) }
\end{aligned}
\] & Source for \(\mathbf{2}^{\text {nd }}\) switchable sign inverter
\[
\begin{aligned}
& \text { Result }=\text { K9141 } \\
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 41 & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U143 } \\
(2143) \\
* \\
\text { S00 } \\
\text { (B125) }
\end{array}
\] & Control bit for \(2^{\text {nd }}\) switchable sign inverter
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 41 & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Divider}

The two operands (\(\mathrm{x} 1, \mathrm{x} 2\)) for each divider are selected via 2 indices each of the parameter:
Index i001 = x1, index \(0002=x 2\)
Index i003 = x1, index i004 = x2 [SW 1.8 and later]
\[
\text { Formula: } y=\frac{x 1 * 100 \%}{x 2}
\]

For division by \(0(x 2=0)\) the following applies:
for \(\mathrm{x} 1>0\) : \(\mathrm{y}=+199.99 \%\)
for \(x 1=0: y=0.00 \%\)
for \(x 1<0: y=-200.00 \%\)
y is limited to -200.00 to \(+199.99 \%\) and applied to the connector stated.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U145 } \\
& (2145) \\
& * \\
& \text { S00 } \\
& \text { (B131) }
\end{aligned}
\] & \begin{tabular}{l}
Operands for 1st divider (result = K9145) \\
Operands for 4th divider (result \(=\) K9142) \\
0 = Connector K0000 \\
1 = Connector K0001 etc.
\end{tabular} & \[
\begin{aligned}
& \text { FB } 45 \\
& \text { FB } 42
\end{aligned}
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: 4
\[
\mathrm{FS}=1
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U146 } \\
& (2146) \\
& * \\
& \text { S00 } \\
& \text { (B131) }
\end{aligned}
\] & \begin{tabular}{l}
Operands for 2nd divider (result = K9146) \\
Operands for 5th divider (result \(=\) K9143) \\
\(0=\) Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & \[
\begin{aligned}
& \hline \text { FB } 46 \\
& \text { FB } 43
\end{aligned}
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U147 } \\
& (2147) \\
& * \\
& \text { S00 } \\
& \text { (B131) }
\end{aligned}
\] & \begin{tabular}{l}
Operands for 3rd divider (result = K9147) \\
Operands for 6th divider (result \(=\) K9144) \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & \[
\begin{aligned}
& \text { FB } 47 \\
& \text { FB } 44
\end{aligned}
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Multiplier}

The two operands \((x 1, x 2)\) for each multiplier are selected via 2 indices of the parameter each:
Index \(0001=x 1\), Index i002 = x2
Index \(1003=x 1\), Index \(0004=\) x2 [SW 1.8 and later]
Index i005 = x1, Index \(0006=x 2\) [SW 1.8 and later]
Formula: \(y=\frac{x 1 * x 2}{100 \%}\)
y is limited to -200.00 to \(+199.99 \%\) and applied to the connector stated.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U150 } \\
& (2150) \\
& { }_{*} \\
& \text { S00 } \\
& \text { (B130) }
\end{aligned}
\] & \begin{tabular}{l}
Operands for 1st multiplier (result \(=\) K9150) \\
Operands for 5th multiplier \((\) result \(=\) K9430 \()\) \\
Operands for 9th multiplier (result \(=\) K9431) \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & & All connector numbers 1 & \begin{tabular}{l}
Ind: 6
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U151 } \\
& (2151) \\
& { }_{*} \\
& \text { S00 } \\
& \text { (B130) }
\end{aligned}
\] & \begin{tabular}{l}
Operands for 2nd multiplier (result = K9151) \\
Operands for 6th multiplier (result = K9432) \\
Operands for 10th multiplier (result \(=\) K9433) \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & FB 51 FB 292 FB 293 & All connector numbers 1 & Ind: 6 FS=0 Type: L2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U152 } \\
& (2152) \\
& { }^{*} \\
& \text { S00 } \\
& \\
& \text { (B130) }
\end{aligned}
\] & \begin{tabular}{l}
Operands for 3rd multiplier (result = K9152) \\
Operands for 7thmultiplier (result \(=\) K9434) \\
Operands for 11th multiplier \((\) result \(=\) K9435) \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & FB 52 FB 294 FB 295 & All connector numbers 1 & \begin{tabular}{l}
Ind: 6
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \text { U153 } \\
& (2153) \\
& * \\
& \text { S00 } \\
& \\
& \text { (B130) }
\end{aligned}
\] & \begin{tabular}{l}
Operands for 4th multiplier (result = K9153) \\
Operands for 8the multiplier (result \(=\) K9436) \\
Operands for 12th multiplier (result \(=\) K9437) \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & \begin{tabular}{l}
FB 53 \\
FB 296 \\
FB 297
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 6
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{High-resolution multipliers/dividers}

The three operands are selected via the three indices of the parameter, i.e. index i001 \(=x 1\), index i002 \(=x 2\), index i003 \(=x 3\)
Equations: \(x 4(32 b i t)=x 1 * x 2, \quad y=\frac{x 4}{x 3}=\frac{x 1 * x 2}{x 3} \quad\) Applicable for division by \(0(x 2=0)\) :
When \(x 1\) > 0: \(y=+199.99 \%\)
When \(x 1=0: y=0.00 \%\)
When \(x 1<0: y=-200.00 \%\)
y is limited to -200.00 to \(+199.99 \%\) and applied to the specified connector.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
U 155 \\
\((2155)\) \\
\(*\) \\
S00 \\
(B131) \\
\hline U
\end{tabular} & \begin{tabular}{l}
Operands for \(1^{\text {st }}\) multiplier/divider (result \(=\) K9155) \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 55 & All connector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U156 } \\
& (2156) \\
& * \\
& \text { S00 } \\
& \text { (B131) } \\
& \hline
\end{aligned}
\] & Operands for \(\mathbf{2}^{\text {nd }}\) multiplier/divider (result = K9156)
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 56 & All connector numbers 1 & \begin{tabular}{l}
Ind: 3 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U157 } \\
& (2157) \\
& * \\
& \text { S00 } \\
& \text { (B131) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Operands for \(3^{\text {rd }}\) multiplier/divider (result \(=\) K9157) \\
\(0=\) connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 57 & All connector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Absolute-value generators with filtering} \\
\hline \[
\begin{aligned}
& \hline \text { U160 } \\
& (2160) \\
& * \\
& \text { S00 } \\
& \text { (B135) }
\end{aligned}
\] & Source for input quantity for \(1^{\text {st }}\) abs.-value generator with filter
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & \[
\text { FB } 60
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U161 } \\
& (2161) \\
& * \\
& \text { S00 } \\
& \text { (B135) }
\end{aligned}
\] & Signal injection mode for \(1^{\text {st }}\) abs.-value generator with filter & FB 60 & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U162 } \\
& (2162) \\
& \text { S00 } \\
& \text { (B135) } \\
& \hline
\end{aligned}
\] & Filter time for \(1^{\text {st }}\) abs.-value generator with filter & FB 60 & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& \text { [ms] } \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U163 } \\
& (2163) \\
& * \\
& \text { S00 } \\
& \text { (B135) } \\
& \hline
\end{aligned}
\] & Source for input quantity for \(2^{\text {nd }}\) abs.-value generator with filter FB 61
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U164 } \\
& (2164) \\
& * \\
& \text { S00 } \\
& \text { (B135) }
\end{aligned}
\] & \begin{tabular}{cll}
Signal injection mode for \(\mathbf{2}^{\text {nd }}\) abs.-value generator with filter & FB 61 \\
0 & Injection of signal with correct sign & \\
1 & Injection of absolute value of signal & \\
2 & Injection of signal with sign, inverted & \\
3 & Injection of absolute value of signal, inverted & \\
\end{tabular} & \[
\begin{array}{|l|}
\hline 0 \text { to } 3 \\
1
\end{array}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U165 } \\
& (2165) \\
& \text { S00 } \\
& \text { (B135) }
\end{aligned}
\] & Filter time for \(2^{\text {nd }}\) abs.-value generator with filter \(\quad\) FB 61 & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& {\left[\begin{array}{l}
\text { [ms] } \\
1
\end{array}\right.} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U166 } \\
& (2166) \\
& * \\
& \text { S00 } \\
& \text { (B135) }
\end{aligned}
\] & Source for input quantity for \(3^{\text {rd }}\) abs.-value generator with filter FB 62
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & All connector numbers 1 & \[
\begin{array}{|l|}
\hline \text { Ind: None } \\
\text { FS=0 } \\
\text { Type: L2 }
\end{array}
\] & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & \multicolumn{2}{|l|}{Description} & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U167 } \\
& (2167) \\
& * \\
& \text { S00 } \\
& \text { (B135) }
\end{aligned}
\] & Signal injection mode for \(3^{\text {rd }}\) abs.-value generator with filter & FB 62 & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U168 } \\
& (2168) \\
& \text { S00 } \\
& \text { (B135) } \\
& \hline
\end{aligned}
\] & Filter time for \(3^{\text {rd }}\) abs.-value generator with filter & FB 62 & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& {\left[\begin{array}{l}
\text { [ms] } \\
\hline
\end{array}\right.} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U169 } \\
& (2169) \\
& * \\
& \text { S00 } \\
& \text { (B135) }
\end{aligned}
\] & Source for input quantity for \(4^{\text {th }}\) abs.-value generator with filter
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & \[
\text { FB } 63
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U170 } \\
& (2170) \\
& { }^{2} \\
& \text { S00 } \\
& \text { (B135) }
\end{aligned}
\] & Signal injection mode for \(4^{\text {th }}\) abs.-value generator with filter & FB 63 & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U171 } \\
& (2171) \\
& \text { S00 } \\
& \text { (B135) } \\
& \hline
\end{aligned}
\] & Filter time for \(4^{\text {th }}\) abs.-value generator with filter & FB 63 & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& \text { [ms] } \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: None } \\
& \text { FS=0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.59 Processing of connectors}

Only active with optional technology software S00
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Averager [SW 1.8 and later]} & \multicolumn{4}{|r|}{FB 16, FB 17, FB 18, FB 19} \\
\hline \[
\begin{aligned}
& \hline \text { U172 } \\
& (2172) \\
& { }_{*} \\
& \text { S00 } \\
& \text { (B139) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signal \\
i001: 1st averager (FB 16) \\
i002: 2nd averager (FB 17) \\
i003: 3rd averager (FB 18) \\
i004: 4. averager (FB 19) \\
Settings: \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & [SW 1.8 and later] & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U173 } \\
& (2173) \\
& \\
& \text { S00 } \\
& \text { (B139) }
\end{aligned}
\] & \begin{tabular}{l}
Number of sampling cycles \\
i001: 1st averager (FB 16) \\
i002: 2nd averager (FB 17) \\
i003: 3rd averager (FB 18) \\
i004: 4. averager (FB 19)
\end{tabular} & [SW 1.8 and later] & \[
\begin{aligned}
& 1 \text { to } 100 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit \(]\) \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.60 Limiters, limit-value monitors}

Only active with optional technology software S00
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Limiters} \\
\hline \multicolumn{6}{|l|}{The input variable selected with index i001 or i004 of the \(1^{\text {st }}\) parameter is limited to the limit values selected with indices i002 and i003 or i005 and i006 and applied to the specified connector. Violation of the limit values is signaled by means of two binectors.} \\
\hline \[
\begin{aligned}
& \hline \text { U175 } \\
& (2175) \\
& * \\
& \text { S00 } \\
& \text { (B134) } \\
& \text { (B135) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signal and limits for limiter 1 \\
Output = connector K9167 \\
i001: Input signal \\
i002: Upper limiting value (L+) \\
i003: Lower limiting value (L-) \\
Source for input signal and limits for limiter 4 \\
Output = connector K9176 \\
i004: Input signal \\
i005: Upper limiting value (L+) \\
i006: Lower limiting value (L-) \\
Settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & \begin{tabular}{l}
\[
\text { FB } 65
\] \\
FB 212 \\
[SW2.0 and later]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 6 FS= \\
i001: 0 \\
i002: 9165 \\
i003: 9166 \\
i004: 0 \\
i005: 9174 \\
i006: 9175 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U176 \\
(2176) \\
S00 \\
(B134) \\
(B135) \\
\hline
\end{tabular} & \begin{tabular}{l}
Limit value for limiter \\
i001: Applied to connector K9165 (FB 65) \\
i002: Applied to connector K9174 (FB 212)
\end{tabular} & \begin{tabular}{l}
FB 65, FB212 \\
[SW2.0 and later]
\end{tabular} & \[
\begin{aligned}
& \hline-199.99 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 2 \\
\text { FS=100.00 } \\
\text { Type: } 12
\end{array}
\] & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U177 } \\
& (2177) \\
& * \\
& \text { S00 } \\
& \text { (B134) } \\
& \text { (B135) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signal and limits for limiter 2 \\
Output = connector K9170 \\
i001: Input signal \\
i002: Upper limiting value (L+) \\
i003: Lower limiting value (L-) \\
Source for input signal and limits for limiter 5 \\
Output = connector K9179 \\
i004: Input signal \\
i005: Upper limiting value (L+) \\
i006: Lower limiting value (L-) \\
Settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & \begin{tabular}{l}
\[
\text { FB } 66
\] \\
FB 213 \\
[SW2.0 and later]
\end{tabular} & All connector numbers 1 & Ind: 6
FS=
i001: 0
i002: 9168
i003: 9169
i004: 0
i005: 9177
i006: 9178
Type: \(L 2\) & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U178 } \\
& (2178) \\
& \text { S00 } \\
& \text { (B134) } \\
& \text { (B135) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Limit value for limiter \\
i001: Applied to connector K9168 (FB 66) \\
i002: Applied to connector K9177 (FB 213)
\end{tabular} & \begin{tabular}{l}
FB 66, FB213 \\
[SW2.0 and later]
\end{tabular} & \[
\begin{aligned}
& -199.99 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 FS=100.00 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U179 } \\
& (2179) \\
& * \\
& \text { S00 } \\
& \text { (B134) } \\
& \text { (B135) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signal and limits for limiter 3 \\
Output = connector K9173 \\
i001: Input signal \\
i002: Upper limiting value (\(L+\)) \\
i003: Lower limiting value (L-) \\
Source for input signal and limits for limiter 6 \\
Output = connector K9262 \\
i004: Input signal \\
i005: Upper limiting value (\(L+\)) \\
i006: Lower limiting value (L-) \\
Settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & \begin{tabular}{l}
\[
\text { FB } 67
\] \\
FB 214 \\
[SW2.0 and later]
\end{tabular} & All connector numbers 1 & Ind: 6 FS= i001: 0 i002: 9171 i003: 9172 i004: 0 i005: 9260 i006: 9261 Type: L2 & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U180 } \\
& (2180) \\
& \text { S00 } \\
& \text { (B134) } \\
& \text { (B135) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Limit value for limiter \\
i001: Applied to connector K9171 (FB 67) \\
i002: Applied to connector K9260 (FB 214)
\end{tabular} & \begin{tabular}{l}
FB 67, FB214 \\
[SW2.0 and later]
\end{tabular} & \[
\begin{aligned}
& -199.99 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 2 \\
\text { FS=100.00 } \\
\text { Type: I2 }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Limit-value monitors for double word connectors} \\
\hline \begin{tabular}{l}
U181 \\
(2181) \\
S00 \\
(B151)
\end{tabular} & \begin{tabular}{l}
Source for input signal (A) and operating threshold (B) for \(1^{\text {st }}\) limit-value monitor for double word connectors for \(2^{\text {nd }}\) limit-value monitor for double word connectors \\
i001: Input signal for \(1^{\text {st }}\) limit-value monitor \\
i002: Operating threshold for \(1^{\text {st }}\) limit-value monitor \\
i003: Input signal for \(2^{\text {nd }}\) limit-value monitor \\
i004: Operating threshold for \(2^{\text {nd }}\) limit-value monitor \\
Settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4
\[
\mathrm{FS}=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathbf{U 1 8 2} \\
& (2182) \\
& \text { S00 } \\
& \text { (B151) }
\end{aligned}
\] & \begin{tabular}{l}
Hysteresis for \(1^{\text {st }}\) limit-value monitor for double word connectorsFB 68 Hysteresis for \(2^{\text {nd }}\) limit-value monitor for double word connectorsFB69 \\
[SW 1.9 and later] \\
i001: Hysteresis for \(1^{\text {st }}\) limit-value monitor \\
i002: Hysteresis for \(2^{\text {nd }}\) limit-value monitor
\end{tabular} & \[
\begin{aligned}
& 0.00 \text { to } 100.00 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Limit-value monitors with filtering} \\
\hline \[
\begin{array}{|l|}
\hline \text { U185 } \\
(2185) \\
* \\
\text { S00 } \\
\text { (B136) }
\end{array}
\] & \begin{tabular}{l}
Source for input signal (A) and operating point (B) for \(1^{\text {st }}\) limit-value monitor with filtering \\
i001: Input signal \\
i002: Operating point \\
Settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 70 & All connector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS= \\
i001: 0 \\
i002: 9181 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U186 } \\
(2186) \\
\text { S00 } \\
(B 136) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Settable operating point for limit-value monitor \\
Applied to connector K9181
\end{tabular} & FB 70 & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.00 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \text { P052=3} \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U187 } \\
(2187) \\
\text { S00 } \\
\text { (B136) } \\
\hline
\end{array}
\] & Filter time for \(1^{\text {st }}\) limit-value monitor with filtering & FB 70 & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U188 } \\
(2188) \\
\text { S00 } \\
\text { (B136) } \\
\hline
\end{array}
\] & Hysteresis for \(1^{\text {st }}\) limit-value monitor with filtering & FB 70 & \[
\begin{aligned}
& \hline 0.00 \text { to } 100.00 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\(\left.\left.\begin{array}{|l|l|l|l|l|}\hline \text { PNU } & \text { Description } & \begin{array}{l}\text { Value range } \\ \text { [Unit }] \\ \text { Steps }\end{array} & \begin{array}{l}\text { No. indices } \\ \text { Factory } \\ \text { setting }\end{array} \\ \text { Type }\end{array}\right] \begin{array}{l}\text { See } \\ \text { Change } \\ \text { (Access } / \\ \text { Status) }\end{array}\right]\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U193 } \\
& (2193) \\
& { }^{*} \\
& \text { S00 } \\
& \text { (B136) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signal (A) and operating point (B) for \(3^{\text {rd }}\) limit-value monitor with filtering \\
i001: Input signal \\
i002: Operating point \\
Settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & \[
\text { FB } 72
\] & All connector numbers 1 & Ind: 2 FS= i001: 0 i002: 9185 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U194 } \\
& (2194) \\
& \text { S00 } \\
& \text { (B136) } \\
& \hline
\end{aligned}
\] & Settable operating point for limit-value monitor Applied to connector K9185 & FB 72 & \[
\begin{aligned}
& \hline-200.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: None FS=0.00 Type: I2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U195 } \\
& (2195) \\
& \text { S00 } \\
& \text { (B136) } \\
& \hline
\end{aligned}
\] & Filter time for \(3^{\text {rd }}\) limit-value monitor with filtering & FB 72 & \[
\begin{aligned}
& \hline 0 \text { to } 10000 \\
& \text { [ms] } \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U196 } \\
& (2196) \\
& \text { S00 } \\
& \text { (B136) } \\
& \hline
\end{aligned}
\] & Hysteresis for \({ }^{\text {rd }}\) limit-value monitor with filtering & FB 72 & \[
\begin{aligned}
& 0.00 \text { to } 100.00 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: None FS=0.00 Type: O2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Limit-value monitors without filtering} \\
\hline \[
\begin{array}{|l|}
\hline \text { U197 } \\
(2197) \\
* \\
\text { S00 } \\
\text { (B137) }
\end{array}
\] & \begin{tabular}{l}
Source for input signal (A) and operating point (B) for \(1^{\text {st }}\) limit-value monitor without filtering \\
i001: Input signal \\
i002: Operating point \\
Settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 73 & All connector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS= \\
i001: 0 \\
i002: 9186 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U198 } \\
(2198) \\
\text { S00 } \\
\text { (B137) } \\
\hline
\end{array}
\] & Settable operating point for limit-value monitor Applied to connector K9186 & FB 73 & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: None FS=0.00 Type: I2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U199 } \\
(2199) \\
\text { S00 } \\
\text { (B137) } \\
\hline
\end{array}
\] & Hysteresis for \(1^{\text {st }}\) limit-value monitor without filtering & FB 73 & \[
\begin{aligned}
& \hline 0.00 \text { to } 100.00 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U200 } \\
& (2200) \\
& * \\
& \text { S00 } \\
& \text { (B137) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signal (A) and operating point (B) for \(2^{\text {nd }}\) limit-value monitor without filtering \\
i001: Input signal \\
i002: Operating point \\
Settings: \\
\(0=\) connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 74 & All connector numbers 1 & Ind: 2 FS= i001: 0 i002: 9187 Type: L2 & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U201 } \\
& (2201) \\
& \text { S00 } \\
& \text { (B137) } \\
& \hline
\end{aligned}
\] & Settable operating point for limit-value monitor Applied to connector K9187 & FB 74 & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.00 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U202 } \\
& (2202) \\
& \text { S00 } \\
& \text { (B137) } \\
& \hline
\end{aligned}
\] & Hysteresis for \(\mathbf{2}^{\text {nd }}\) limit-value monitor without filtering & FB 74 & \[
\begin{aligned}
& 0.00 \text { to } 100.00 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: None FS=0.00 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \text { U203 } \\
(2203) \\
* \\
\text { S00 } \\
\text { (B137) }
\end{array}
\] & \begin{tabular}{l}
Source for input signal (A) and operating point (B) for \(3^{\text {rd }}\) limit-value monitor without filtering \\
i001: Input signal \\
i002: Operating point \\
Settings: \\
\(0=\) connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & \[
\text { FB } 75
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS= \\
i001: 0 \\
i002: 9188 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U204 } \\
(2204) \\
\text { S00 } \\
\text { (B137) }
\end{array}
\] & \begin{tabular}{l}
Settable operating point for limit-value monitor \\
Applied to connector K9188
\end{tabular} & FB 75 & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & Ind: None FS=0.00 Type: I2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U205 } \\
(2205) \\
\text { S00 } \\
\text { (B137) } \\
\hline
\end{array}
\] & Hysteresis for \(3^{\text {rd }}\) limit-value monitor without filtering & FB 75 & \[
\begin{aligned}
& 0.00 \text { to } 100.00 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U206 } \\
& (2206) \\
& * \\
& \text { S00 } \\
& \text { (B137) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signal (A) and operating point (B) for \(4^{\text {th }}\) limit-value monitor without filtering \\
i001: Input signal \\
i002: Operating point \\
Settings: \\
\(0=\) connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & \[
\text { FB } 76
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: 2 FS= i001: 0 i002: 9189 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U207 } \\
& (2207) \\
& \text { S00 } \\
& \text { (B137) }
\end{aligned}
\] & Settable operating point for limit-value monitor Applied to connector K9189 & FB 76 & \[
\begin{aligned}
& \hline-200.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: None FS=0.00 Type: I2 & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U208 } \\
& (2208) \\
& \text { S00 } \\
& \text { (B137) } \\
& \hline
\end{aligned}
\] & Hysteresis for \(4^{\text {th }}\) limit-value monitor without filtering & FB 76 & \[
\begin{aligned}
& 0.00 \text { to } 100.00 \\
& {[\%] \text { [}} \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U210 } \\
& (2210) \\
& { }_{*} \\
& \text { S00 } \\
& \text { (B138) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signal (A) and operating point (B) for \(5^{\text {th }}\) limit-value monitor without filtering \\
i001: Input signal \\
i002: Operating point \\
Settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 77 & All connector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS= \\
i001: 0 \\
i002: 9190 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U211 } \\
& (2211) \\
& \text { S00 } \\
& \text { (B138) } \\
& \hline
\end{aligned}
\] & Settable operating point for limit-value monitor Applied to connector K9190 & FB 77 & \[
\begin{aligned}
& \hline-200.00 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.00 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} \\
\hline \hline U212 & Hysteresis for \(5^{\text {th }}\) limit-value monitor without filtering & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\((2212)\) & & FB 77 & 0.00 to 100.00 & Ind: None \\
S00 & & \begin{tabular}{l}
P052 = \\
(B138)
\end{tabular} & & \(0.01 \%\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U213 } \\
& (2213) \\
& * \\
& \text { S00 } \\
& \text { (B138) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signal (A) and operating point (B) for \(6{ }^{\text {th }}\) limit-value monitor without filtering \\
i001: Input signal \\
i002: Operating point \\
Settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 78 & All connector numbers 1 & Ind: 2 FS= i001: 0 i002: 9191 Type: L2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U214 } \\
& (2214) \\
& \text { S00 } \\
& \text { (B138) } \\
& \hline
\end{aligned}
\] & Settable operating point for limit-value monitor Applied to connector K9191 & FB 78 & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & Ind: None FS=0.00 Type: I2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U215 } \\
& (2215) \\
& \text { S00 } \\
& \text { (B138) } \\
& \hline
\end{aligned}
\] & Hysteresis for \(6^{\text {th }}\) limit-value monitor without filtering & FB 78 & \[
\begin{aligned}
& 0.00 \text { to } 100.00 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \text { U216 } \\
(2216) \\
* \\
\text { S00 } \\
\text { (B138) }
\end{array}
\] & \begin{tabular}{l}
Source for input signal (A) and operating point (B) for \(7^{\text {th }}\) limit-value monitor without filtering \\
i001: Input signal \\
i002: Operating point \\
Settings: \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 79 & All connector numbers 1 & ```
Ind: 2
FS=
i001: 0
i002: }919
Type: L2
``` & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U217 } \\
& (2217) \\
& \text { S00 } \\
& \text { (B138) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Settable operating point for limit-value monitor \\
Applied to connector K9192
\end{tabular} & FB 79 & \[
\begin{aligned}
& \hline-200.00 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & Ind: None FS=0.00 Type: I2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U218 } \\
& (2218) \\
& \text { S00 } \\
& \text { (B138) } \\
& \hline
\end{aligned}
\] & Hysteresis for \(7^{\text {th }}\) limit-value monitor without filtering & FB 79 & \[
\begin{aligned}
& \hline 0.00 \text { to } 100.00 \\
& {[\%] \text { }} \\
& 0.01 \%
\end{aligned}
\] & Ind: None FS=0.00 Type: O2 & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.61 Processing of connectors}

Only active with optional technology software S00

\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Minimum selection \\
FB 81, FB 177, FB 178, FB 179 \\
The smallest of the input values selected by 3 indices each of the parameter ( \(x 1, x 2, x 3\) ) is applied to the output.
\end{tabular}} \\
\hline \[
\begin{aligned}
& \hline \text { U221 } \\
& (2221) \\
& { }_{*} \\
& \text { S00 } \\
& \text { (B140) }
\end{aligned}
\] & \begin{tabular}{l}
Source for minimum selection \\
\(0=\) Connector K0000 \\
1 = Connector K0001 \\
etc. \\
i001: x1 Minimum selection \(1 \quad(\) FB 81, Output \(=\) K9194 \()\) \\
i002: x2 Minimum selection 1 \\
i003: x3 Minimum selection 1 \\
SW 1.8 and later: \\
i004: x1 Minimum selection 2 \\
\((\) FB 177, Output \(=\) K9463 \()\) \\
i005: x2 Minimum selection 2 \\
i006: x3 Minimum selection 2 \\
i007: x1 Minimum selection 3 \\
\((\) FB 178, Output \(=\) K9464 \()\) \\
i008: x2 Minimum selection 3 \\
i009: x3 Minimum selection 3 \\
i010: x1 Minimum selection 4 \\
\((\) FB 179, Output \(=\) K9465 \()\) \\
i011: x2 Minimum selection 4 \\
i012: x3 Minimum selection 4
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
\[
\text { Ind: } 12
\]
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Tracking/storage elements}

The tracking/storage elements are storage elements for the parameterized input quantity. The outputs are linked to connectors.
Transfer of the input quantity is controlled via the RESET, TRACK and STORE functions:
RESET: When the controlling binector reaches log. " 1 ", the output is set to \(0.00 \%(y=0)\)
TRACK: When the controlling binector reaches log. "1", the output is set to the input value and then tracks it continuously ( \(y=x\) ). If the TRACK signal switches from "1" to " 0 ", the last value applied to the y output is "frozen"
STORE: With a "0" to "1" transition of the controlling binector signal, the output is permanently set to the current input value ( \(\mathrm{y}=\mathrm{x}\) ). This value then remains stored
Priority 1. RESET, 2. TRACK, 3. STORE
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Tracking/storage element 1} \\
\hline \[
\begin{array}{|l}
\hline \text { U222 } \\
(2222) \\
{ }^{*} \\
\text { S00 } \\
\text { (B145) } \\
\hline
\end{array}
\] & Source for input quantity (x)
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U223 } \\
(2223) \\
* \\
\text { S00 } \\
\\
\text { (B145) }
\end{array}
\] & \begin{tabular}{l}
Source for control signals RESET, TRACK and STORE \\
i001: TRACK \\
i002: STORE \\
i003: RESET \\
Settings:
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 3
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U224 } \\
(2224) \\
* \\
\text { S00 } \\
\\
\text { (B145) }
\end{array}
\] & \begin{tabular}{cl} 
Control word for Power On Mode \\
0 & Volatile storage: \\
Zero appears at output when voltage recovers \\
1 & \begin{tabular}{l} 
Non-volatile storage: \\
When the voltage is disconnected or fails, the current output \\
value is stored and then output when the voltage recovers/is \\
reconnected
\end{tabular}
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
\mathrm{FS}=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Trackin & storage element 2 & & & & \\
\hline \begin{tabular}{|l|}
\hline U225 \\
\((2225)\) \\
\(*\) \\
S00 \\
(B145) \\
\hline
\end{tabular} & \begin{tabular}{l}
Source for input quantity ( \(\mathbf{x}\) ) \\
\(0=\) connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 83 & All connector numbers 1 & \[
\begin{aligned}
& \hline \text { Ind: None } \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{P} 052=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U226 } \\
& (2226) \\
& { }_{*} \\
& \text { S00 } \\
& \\
& \text { (B145) }
\end{aligned}
\] & \begin{tabular}{l}
Source for control signals RESET, TRACK and STORE \\
i001: TRACK \\
i002: STORE \\
i003: RESET \\
Settings:
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U227 } \\
& (2227) \\
& \text { * } \\
& \text { S00 } \\
& \\
& \text { (B145) }
\end{aligned}
\] & \begin{tabular}{l}
Control word for Power On Mode \\
\(0 \quad\) Volatile storage: \\
Zero appears at output when voltage recovers \\
1 Non-volatile storage: \\
When the voltage is disconnected or fails, the current output value is stored and then output when the voltage recovers/is reconnected
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Connector memories}

The connector memories are memory elements for the input quantities selected via the parameters. The outputs are linked to connectors.
While the SET input is in the log. "1" state, output quantity \(y\) tracks input quantity \(x\) continuously. If the SET input changes state from log.
" 1 " to log. " 0 ", the current value of \(x\) is stored and output continuously at \(y\).
Output \((\mathrm{y})=0\) is set on POWER ON.

\section*{Connector memory 1}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U228 } \\
& (2228) \\
& * \\
& \text { S00 } \\
& \text { (B145) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input quantity (x) \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 84 & All connector numbers 1 & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U229 } \\
& (2229) \\
& * \\
& \text { S00 } \\
& \text { (B145) } \\
& \hline
\end{aligned}
\] & Source for control signal SET
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 84 & All binector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Connector memory 2} \\
\hline \[
\begin{array}{|l|}
\hline \text { U230 } \\
(2230) \\
* \\
\text { S00 } \\
\text { (B145) }
\end{array}
\] & \begin{tabular}{l}
Source for input quantity (x)
\[
0=\text { connector K0000 }
\]
\[
1 \text { = connector K0001 }
\] \\
etc.
\end{tabular} & FB 85 & All connector numbers 1 & \[
\begin{array}{|l|}
\hline \text { Ind: None } \\
\text { FS=0 } \\
\text { Type: L2 }
\end{array}
\] & \[
\begin{array}{|l}
\hline \mathrm{P} 052=3 \\
\text { P051 }=40 \\
\text { Offline }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U231 } \\
& (2231) \\
& * \\
& \text { S00 } \\
& \text { (B145) } \\
& \hline
\end{aligned}
\] & Source for control signal SET
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 85 & All binector numbers 1 & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Connector changeover switches}

Depending on the state of the control signal, one of the two input quantities is applied to the output (connector):
\[
\text { Control signal }=0: \text { The input quantity selected in index i001 is applied to the output }
\]
\[
\text { Control signal }=1: \text { The input quantity selected in index i002 is applied to the output }
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Connector changeover switch 1 (output = K9210)} \\
\hline \[
\begin{aligned}
& \hline \text { U240 } \\
& (2240) \\
& * \\
& \text { S00 } \\
& \text { (B150) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input quantities \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 90 & All connector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U241 } \\
& (2241) \\
& * \\
& \text { S00 } \\
& \text { (B150) } \\
& \hline
\end{aligned}
\] & Source for control signal
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 90 & All binector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \multicolumn{6}{|l|}{Connector changeover switch 2 (output = K9211)} \\
\hline \[
\begin{aligned}
& \hline \text { U242 } \\
& (2242) \\
& * \\
& \text { S00 } \\
& \text { (B150) }
\end{aligned}
\] & Source for input quantities
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 91 & All connector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U243 } \\
& (2243) \\
& * \\
& \text { S00 } \\
& \text { (B150) }
\end{aligned}
\] & \begin{tabular}{l}
Source for control signal \\
0 = binector B 0000 \\
1 = binector B0001 etc.
\end{tabular} & FB 91 & All binector numbers 1 & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Connector changeover switch 3 (output = K9212)} \\
\hline \[
\begin{aligned}
& \hline \text { U244 } \\
& (2244) \\
& * \\
& \text { S00 } \\
& \text { (B150) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input quantities \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 92 & All connector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U245 } \\
& (2245) \\
& * \\
& \text { S00 } \\
& \text { (B150) } \\
& \hline
\end{aligned}
\] & Source for control signal
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 92 & All binector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Connector changeover switch 4 (output = K9213)} \\
\hline \[
\begin{array}{|l|}
\hline \mathbf{U} 246 \\
(2246) \\
* \\
\text { S00 } \\
\text { (B150) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for input quantities \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 93 & All connector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U247 } \\
& (2247) \\
& * \\
& \text { S00 } \\
& \text { (B150) } \\
& \hline
\end{aligned}
\] & Source for control signal
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 93 & All binector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Connector changeover switch 5 (output = K9214)} \\
\hline \[
\begin{aligned}
& \hline \text { U248 } \\
& (2248) \\
& * \\
& \text { S00 } \\
& \text { (B150) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input quantities \\
\(0=\) connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 94 & All connector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U249 } \\
& (2249) \\
& * \\
& \text { S00 } \\
& \text { (B150) } \\
& \hline
\end{aligned}
\] & Source for control signal
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 94 & All binector numbers 1 & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Connector changeover switches 6 and 11} \\
\hline \[
\begin{aligned}
& \hline \text { U250 } \\
& (2250) \\
& { }^{*} \\
& \text { S00 } \\
& \text { (B150) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input quantities \\
Output 6 = Connector K9215 \\
i001: 1st input signal \\
i002: 2nd input signal \\
Output 11 = Connector K9265 \\
i003: 1st input signal \\
i004: 2nd input signal \\
Settings: \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & \begin{tabular}{l}
FB 95 and FB 196 \\
[SW2.0 and later]
\end{tabular} & All connector numbers 1 & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 = 3 } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{array}{|l}
\hline \text { U251 } \\
(2251) \\
* \\
\text { S00 } \\
\text { (B150) }
\end{array}
\] & \begin{tabular}{l}
Source for control signal \\
i001: Switchover for output 6 \\
i002: Switchover for output 11 \\
Settings: \\
0 = Binector B0000 \\
1 = Binector B0001 \\
etc.
\end{tabular} & FB 95 and FB 196 [SW2.0 and later] & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Connector changeover switches 7 and 12} \\
\hline \[
\begin{aligned}
& \hline \text { U252 } \\
& (2252) \\
& { }^{2} \\
& \text { S00 } \\
& \text { (B150) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input quantities \\
Output 7 = Connector K9216 \\
i001: 1st input signal \\
i002: 2nd input signal \\
Output 12 = Connector K9266 \\
i003: 1st input signal \\
i004: 2nd input signal \\
Settings: \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & \begin{tabular}{l}
FB 96 and FB 197 \\
[SW2.0 and later]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U253 } \\
& (2253) \\
& * \\
& \text { S00 } \\
& \text { (B150) }
\end{aligned}
\] & \begin{tabular}{l}
Source for control signal \\
i001: Switchover for output 7 \\
i002: Switchover for output 12 \\
Settings:
\[
\begin{aligned}
& 0=\text { Binector B0000 } \\
& 1=\text { Binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
FB 96 and FB 197 \\
[SW2.0 and later]
\end{tabular} & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Connector changeover switches 8 and 13} \\
\hline \[
\begin{array}{|l|}
\hline \text { U254 } \\
(2254) \\
* \\
\text { S00 } \\
\text { (B150) }
\end{array}
\] & \begin{tabular}{l}
Source for input quantities \\
Output 8 = Connector K9217 \\
i001: 1st input signal \\
i002: 2nd input signal \\
Output 13 = Connector K9267 \\
i003: 1st input signal \\
i004: 2nd input signal \\
Settings: \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & \begin{tabular}{l}
FB 97 and FB 198 \\
[SW2.0 and later]
\end{tabular} & All connector numbers 1 & Ind: 4 FS=0 Type: L2 & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U255 } \\
(2255) \\
{ }^{*} \\
\text { S00 } \\
\text { (B150) }
\end{array}
\] & \begin{tabular}{l}
Source for control signal \\
i001: Switchover for output 8 \\
i002: Switchover for output 13 \\
Settings:
\[
\begin{aligned}
& 0=\text { Binector B0000 } \\
& 1=\text { Binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & FB 97 and FB 198 [SW2.0 and later] & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \multicolumn{6}{|l|}{Connector changeover switches 9 and 14} \\
\hline \[
\begin{array}{|l|}
\hline \text { U256 } \\
(2256) \\
* \\
\text { S00 } \\
\text { (B150) }
\end{array}
\] & \begin{tabular}{l}
Source for input quantities \\
Output 9 = Connector K9218 \\
i001: 1st input signal \\
i002: 2nd input signal \\
Output 14 = Connector K9268 \\
i003: 1st input signal \\
i004: 2nd input signal \\
Settings: \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & \begin{tabular}{l}
FB 98 and FB 199 \\
[SW2.0 and later]
\end{tabular} & All connector numbers 1 & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=0 } \\
\text { Type: L2 }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U257 } \\
(2257) \\
* \\
\text { S00 } \\
\text { (B150) }
\end{array}
\] & \begin{tabular}{l}
Source for control signal \\
i001: Switchover for output 9 \\
i002: Switchover for output 14 \\
Settings: \\
0 = Binector B0000 \\
1 = Binector B0001 \\
etc.
\end{tabular} & \begin{tabular}{l}
FB 98 and FB 199 \\
[SW2.0 and later]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Connector changeover switches 10 and 15} \\
\hline \[
\begin{aligned}
& \hline \text { U258 } \\
& (2258) \\
& { }^{*} \\
& \text { S00 } \\
& \text { (B150) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input quantities \\
Output 10 = Connector K9219 \\
i001: 1st input signal \\
i002: 2nd input signal \\
Output 15 = Connector K9269 \\
i003: 1st input signal \\
i004: 2nd input signal \\
Settings: \\
\(0=\) Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & \begin{tabular}{l}
FB 99 and FB 229 \\
[SW2.0 and later]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U259 } \\
& (2259) \\
& * \\
& \text { S00 } \\
& \text { (B150) }
\end{aligned}
\] & \begin{tabular}{l}
Source for control signal \\
i001: Switchover for output 10 \\
i002: Switchover for output 15 \\
Settings: \\
\(0=\) Binector B0000 \\
1 = Binector B0001 \\
etc.
\end{tabular} & \begin{tabular}{l}
FB 99 and FB 229 \\
[SW2.0 and later]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Offline }
\end{array}
\] \\
\hline
\end{tabular}

\subsection*{11.62 Integrators, DT1 elements, characteristics, dead zones, setpoint branching}

Only active with optional technology software SOO
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Integrator 1 (output = K9220)} \\
\hline \[
\begin{aligned}
& \hline \text { U260 } \\
& (2260) \\
& * \\
& \text { S00 } \\
& \text { (B155) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input quantity \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 100 & All connector numbers 1 & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U261 \\
(2261) \\
S00 \\
(B155)
\end{tabular} & Integral-action time & FB 100 & \(\qquad\) & \begin{tabular}{l}
Ind: None FS=10 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U262 } \\
& (2262) \\
& * \\
& \text { S00 } \\
& \\
& \text { (B155) }
\end{aligned}
\] & \begin{tabular}{l}
Source for control signals \\
i001 Source for "Stop integrator" signal (integrator is stopped when binector reaches log. "1" state) \\
i002 Source for "Set integrator" signal (when binector reaches log. "1" state, the integrator is set to the value entered in parameter U263) \\
Settings:
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U263 } \\
(2263) \\
* \\
\text { S00 } \\
\text { (B155) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for setting value \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Integrator 2 (output = K9221)} \\
\hline \[
\begin{array}{|l}
\hline \text { U264 } \\
(2264) \\
* \\
\text { S00 } \\
\text { (B155) }
\end{array}
\] & \begin{tabular}{l}
Source for input quantity \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U265 } \\
(2265) \\
\text { S00 } \\
\text { (B155) } \\
\hline
\end{array}
\] & Integral-action time FB 101 & \[
\begin{aligned}
& 10 \text { to } 65000 \\
& \text { [ms] } \\
& 1
\end{aligned}
\] & Ind: None FS=10 Type: O2 & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U266 } \\
(2266) \\
* \\
\text { S00 } \\
\\
\text { (B155) }
\end{array}
\] & \begin{tabular}{l}
Source for control signals \\
i001 Source for "Stop integrator" signal (integrator is stopped when binector reaches log. "1" state) \\
i002 Source for "Set integrator" signal (when binector reaches log. "1" state, the integrator is set to the value entered in parameter U267) \\
Settings: \\
\(0=\) binector B0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U267 } \\
(2267) \\
* \\
\text { S00 } \\
\text { (B155) }
\end{array}
\] & \begin{tabular}{l}
Source for setting value \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Integrator 3 (output = K9222)} \\
\hline \[
\begin{array}{|l|}
\hline \text { U268 } \\
(2268) \\
* \\
\text { S00 } \\
\text { (B155) } \\
\hline
\end{array}
\] & Source for input quantity
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U269 } \\
(2269) \\
\text { S00 } \\
\text { (B155) } \\
\hline
\end{array}
\] & Integral-action time FB 102 & \[
\begin{aligned}
& 10 \text { to } 65000 \\
& {[\mathrm{~ms}]} \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=10 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U270 } \\
(2270) \\
* \\
\text { S00 } \\
\\
\text { (B155) }
\end{array}
\] & \begin{tabular}{l}
Source for control signals \\
i001 Source for "Stop integrator" signal (integrator is stopped when binector reaches log. "1" state) \\
i002 Source for "Set integrator" signal (when binector reaches log. "1" state, the integrator is set to the value entered in parameter U271) \\
Settings:
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U271 } \\
& (2271) \\
& * \\
& \text { S00 } \\
& \text { (B155) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for setting value \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 102 & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{DT1 element 1 (output = K9223, inverted: K9224)} \\
\hline \[
\begin{aligned}
& \hline \text { U272 } \\
& (2272) \\
& { }_{*} \\
& \text { S00 } \\
& \text { (B155) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input quantity \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 103 & All connector numbers 1 & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Offline }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U273 } \\
& (2273) \\
& \text { S00 } \\
& \text { (B155) } \\
& \hline
\end{aligned}
\] & Derivative-action time & FB 103 & \[
\begin{array}{|l}
\hline 0 \text { to } 1000 \\
\text { [ms] } \\
1
\end{array}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Online }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U274 } \\
& (2274) \\
& \text { S00 } \\
& \text { (B155) } \\
& \hline
\end{aligned}
\] & Filter time & FB 103 & \[
\begin{array}{|l}
\hline 0 \text { to } 1000 \\
{[\mathrm{~ms}]} \\
1
\end{array}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Online }
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{DT1 element 2 (output = K9225, inverted: K 9226 )} \\
\hline \[
\begin{array}{|l}
\hline \text { U275 } \\
(2275) \\
* \\
\text { S00 } \\
\text { (B155) }
\end{array}
\] & \begin{tabular}{l}
Source for input quantity \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 104 & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U276 } \\
(2276) \\
\text { S00 } \\
\text { (B155) } \\
\hline
\end{array}
\] & Derivative-action time & FB 104 & 0 to 1000
\([\mathrm{~ms}]\)
1 & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U277 } \\
(2277) \\
\text { S00 } \\
\text { (B155) } \\
\hline
\end{array}
\] & Filter time & FB 104 & \[
\begin{aligned}
& \hline 0 \text { to } 1000 \\
& {[\mathrm{~ms}]} \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& P 052=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{DT1 element 3 (output = K9227, inverted: K9228)} \\
\hline \[
\begin{aligned}
& \hline \text { U278 } \\
& (2278) \\
& * \\
& \text { S00 } \\
& \text { (B155) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input quantity \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & FB 105 & All connector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U279 } \\
& (2279) \\
& \text { S00 } \\
& \text { (B155) } \\
& \hline
\end{aligned}
\] & Derivative-action time & FB 105 & \[
\begin{aligned}
& \hline 0 \text { to } 1000 \\
& {[\mathrm{~ms}]} \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
\mathrm{FS}=0
\] \\
Type: O2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 = } 3 \\
\text { P051 }=40 \\
\text { Online }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U280 } \\
& (2280) \\
& \text { S00 } \\
& \text { (B155) } \\
& \hline
\end{aligned}
\] & Filter time & FB 105 & \[
\begin{aligned}
& 0 \text { to } 1000 \\
& {[\mathrm{~ms}]} \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Online }
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\section*{Characteristic blocks}

The curve of the characteristics can be defined by 10 points each:
Index i001 to i010 of the parameters for the x values (U282, U285, U288): x values for FB 106, FB 107, FB 108
Index i001 to i010 of the parameters for the \(y\) values (U283, U286, U289): associated \(y\) values
SW1.8 and later:
Index i011 to i020 of the parameters for the \(x\) values (U282, U285, U288): x values for FB 280, FB 282, FB 284
Index i011 to i020 of the parameters for the \(y\) values (U283, U286, U289): associated y values
Index i021 to i030 of the parameters for the x values (U282, U285, U288): x values for FB 281, FB 283, FB 285
Index i021 to 030 of the parameters for the \(y\) values (U283, U286, U289): associated y values
for \(x=-200.00 \%\) up to \(x\) value acc. to index 001 (or i011 or i021) of the parameter for the \(x\) values gilt:
\(y=\) value acc. to index i001 (or i011 or i021) of the parameter for the \(y\) values
for \(x=x\) value acc. to index i010 (or i020 or i030) of the parameter for the \(x\) values to \(x=200.00 \%\) gilt:
\(y=\) value acc. to index i010 (or i020 or i030) of the parameter for the \(y\) values
The distance between two adjacent \(x\) or \(y\) values must not be more than \(199.99 \%\) otherwise deviations from the required shape of the characteristic can arise.
\begin{tabular}{|c|c|c|c|c|}
\hline  & \begin{tabular}{l}
stic block 1 (output = K9229) \\
stic block 4 (output = K9410) [SW1.8 and later] \\
stic block 5 (output = K9411) [SW1.8 and later]
\end{tabular} & & & \begin{tabular}{l}
FB 106 \\
FB 280 \\
FB 281
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline \text { U281 } \\
& (2281) \\
& * \\
& \text { S00 } \\
& \text { (B160) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input quantity \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc. \\
Up to SW 1.7: \\
Selected connector \(=\) input quantity for FB106 \\
SW 1.8 and later: \\
i001 Input quantity \\
for FB106 \\
i002 Input quantity for FB280 \\
i003 Input quantity for FB281
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 3
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 = } 3 \\
\text { P051 }=40 \\
\text { off-line }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U282 } \\
& (2282) \\
& \text { S00 } \\
& \text { (B160) }
\end{aligned}
\] & \begin{tabular}{ccc} 
x values & & \\
i001 & 1st characteristic point & for FB106 \\
i002 & 2nd characteristic point & for FB106 \\
\(\ldots\) & & \\
i010 & 10th characteristic point & for FB106 \\
SW 1.8 and later: & \\
i011 & 1st characteristic point & for FB280 \\
i012 & 2nd characteristic point & for FB280 \\
\(\ldots\) & & \\
i020 & 10th characteristic point & for FB280 \\
i021 & 1st characteristic point & for FB281 \\
i022 & 2nd characteristic point & for FB281 \\
\(\ldots\) & & \\
i030 & 10th characteristic point & for FB281
\end{tabular} & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind:30 } \\
& \text { FS=0.00 } \\
& \text { Type: } 12
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U283 } \\
& (2283) \\
& \text { S00 } \\
& \text { (B160) }
\end{aligned}
\] & \begin{tabular}{ccc} 
y values & & \\
i001 & 1st characteristic point & for FB106 \\
i002 & 2nd characteristic point & for FB106 \\
\(\ldots\) & & \\
i010 & 10th characteristic point & for FB106 \\
SW 1.8 and later: & \\
\begin{tabular}{lll} 
i011 & 1st characteristic point & for FB280 \\
i012 & 2nd characteristic point & for FB280 \\
\(\ldots\) & & \\
i020 & 10th characteristic point & for FB280 \\
i021 & 1st characteristic point & for FB281 \\
i022 & 2nd characteristic point & for FB281 \\
\(\ldots\) & & \\
i030 & 10th characteristic point & for FB281
\end{tabular}\(..\)\begin{tabular}{ll}
\end{tabular}.
\end{tabular} & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 30 \\
& \text { FS=0.00 } \\
& \text { Type: } 12
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & \multicolumn{2}{|l|}{Description} & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Characteristic block 2 (output \(=\) K9230) \\
Characteristic block 6 (output \(=\) K9412) [SW1.8 and later] \\
Characteristic block 7 (output \(=\) K9413) [SW1.8 and later]
\end{tabular}} & & & FB 107 FB 282 FB 283 \\
\hline \[
\begin{aligned}
& \hline \text { U284 } \\
& (2284) \\
& { }_{*} \\
& \text { S00 } \\
& \text { (B160) }
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
Source for input quantity \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc. \\
up to SW 1.7: \\
Selected connector = input quantity for FB107 \\
SW 1.8 and later: \\
i001 input quantity \\
for FB107 \\
i002 input quantity for FB282 \\
i003 input quantity for FB283
\end{tabular}} & All connector numbers 1 & Ind: 3 FS=0 Type: L2 & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U285 } \\
& (2285) \\
& \text { S00 } \\
& \text { (B160) }
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{ccc} 
x values & & \\
i001 & 1st characteristic point & for FB107 \\
i002 & 2nd characteristic point & for FB107 \\
\(\ldots\) & & \\
i010 & 10th characteristic point & for FB107 \\
SW 1.8 and later: & \\
i011 & 1st characteristic point & for FB282 \\
i012 & 2nd characteristic point & for FB282 \\
\(\ldots\) & & \\
i020 & 10th characteristic point & for FB282 \\
i021 & 1st characteristic point & for FB283 \\
i022 & 2nd characteristic point & for FB283 \\
\(\ldots\) & & \\
i030 & 10th characteristic point & for FB283
\end{tabular}} & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& \text { [\%] } \\
& 0.01
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 30 \\
& \text { FS=0.00 } \\
& \text { Type: } 12
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U286 } \\
& (2286) \\
& \text { S00 } \\
& \text { (B160) }
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{ccc} 
y values & & \\
i001 & 1st characteristic point & for FB107 \\
i002 & 2nd characteristic point & for FB107 \\
\(\ldots\) & & \\
i010 & 10th characteristic point & for FB107 \\
SW 1.8 and later: & \\
i011 & 1st characteristic point & for FB282 \\
i012 & 2nd characteristic point & for FB282 \\
\(\ldots\) & & \\
i020 & 10th characteristic point & for FB282 \\
i021 & 1st characteristic point & for FB283 \\
i022 & 2nd characteristic point & for FB283 \\
\(\ldots\) & & \\
i030 & 10th characteristic point & for FB283
\end{tabular}} & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 30 \\
& \text { FS=0.00 } \\
& \text { Type: } 12
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\(\left.\left.\begin{array}{|l|cl|l|l|l|}\hline \text { PNU } & \text { Description } & \begin{array}{l}\text { Value range } \\ \text { [Unit] } \\ \text { Steps }\end{array} & \begin{array}{l}\text { No. indices } \\ \text { Factory } \\ \text { setting }\end{array} \\ \text { Type }\end{array}\right] \begin{array}{l}\text { See } \\ \text { Change } \\ \text { (Access } / \\ \text { Status) }\end{array}\right]\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Dead zones} \\
\hline \multicolumn{6}{|l|}{The component of the input quantity ( x ) whose absolute value exceeds the threshold for the dead zone is applied to the output (y).} \\
\hline \multicolumn{6}{|l|}{Dead zone 1 (output = K9232)} \\
\hline \[
\begin{aligned}
& \hline \text { U290 } \\
& (2290) \\
& * \\
& \text { S00 } \\
& \text { S01 } \\
& \hline \text { (B161) }
\end{aligned}
\] & Source for input quantity
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 109 & All connector numbers 1 & \[
\begin{array}{|l|}
\hline \text { Ind: None } \\
\text { FS=0 } \\
\text { Type: L2 }
\end{array}
\] & \[
\begin{array}{|l}
\hline \mathrm{P} 052=3 \\
\text { P051 }=40 \\
\text { Offline }
\end{array}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U291 } \\
(2291) \\
\text { S00 } \\
\text { (B161) } \\
\hline
\end{array}
\] & Dead zone & FB 109 & \[
\begin{aligned}
& \hline 0.00 \text { to } 100.00 \\
& {[\%]} \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Dead zone 2 (output = K9233)} \\
\hline \[
\begin{array}{|l}
\hline \text { U292 } \\
(2292) \\
* \\
\text { S00 } \\
\text { (B161) }
\end{array}
\] & Source for input quantity
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 110 & \begin{tabular}{l}
All connector numbers \\
1
\end{tabular} & \[
\begin{aligned}
& \hline \text { Ind: None } \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{array}{|l}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { Offline }
\end{array}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U293 } \\
(2293) \\
\text { S00 } \\
\text { (B161) } \\
\hline
\end{array}
\] & Dead zone & FB 110 & \[
\begin{aligned}
& 0.00 \text { to } 100.00 \\
& {[\%]} \\
& 0.01
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: None } \\
& \text { FS=0.00 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{array}{|l}
\hline \mathrm{P} 052=3 \\
\text { P051 }=40 \\
\text { Online }
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Dead zone 3 (output = K9234)} \\
\hline \[
\begin{aligned}
& \hline \text { U294 } \\
& (2294) \\
& \text { * } \\
& \text { S00 } \\
& \text { (B161) }
\end{aligned}
\] & Source for input quantity
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 111 & \begin{tabular}{l}
All connector numbers \\
1
\end{tabular} & Ind: None FS=0 Type: L2 & \[
\begin{aligned}
& P 052=3 \\
& \text { P051 }=40
\end{aligned}
\]
Offline \\
\hline \begin{tabular}{l}
U295 \\
(2295) \\
S00 \\
(B161)
\end{tabular} & Dead zone & FB 111 & \[
\begin{aligned}
& 0.00 \text { to } 100.00 \\
& {[\%]} \\
& 0.01
\end{aligned}
\] & Ind: None FS=0.00 Type: O2 & \begin{tabular}{l}
P052 \(=3\) \\
P051 \(=40\) \\
Online
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Setpoint branching (output \(=\) K9234) \\
The input quantity is weighted with 2 parameters: \\
Parameter U297 determines the output value with an input \(=0 \%\) \\
Parameter U298 determines the output value with an input \(=+100 \%\)
\end{tabular}} \\
\hline \[
\begin{array}{|l}
\hline \text { U296 } \\
(2296) \\
* \\
\text { S00 } \\
\text { (B161) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for input quantity \\
0 = connector K0000 \\
1 = connector K0001 etc.
\end{tabular} & \[
\text { FB } 112
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: None
\[
\mathrm{FS}=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U297 } \\
(2297) \\
\text { S00 } \\
\text { (B161) } \\
\hline
\end{array}
\] & Minimum speed & FB 112 & \[
\begin{aligned}
& 0.00 \text { to } 200.00 \\
& {[\%]} \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U298 } \\
(2298) \\
\text { S00 } \\
\text { (B161) } \\
\hline
\end{array}
\] & Maximum speed & FB 112 & \[
\begin{aligned}
& 0.00 \text { to } 200.00 \\
& {[\%]} \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=100.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U299 } \\
(2299) \\
\text { S00 } \\
\text { (B161) } \\
\hline
\end{array}
\] & Hysteresis & FB 112 & \[
\begin{aligned}
& 0.00 \text { to } 100.00 \\
& {[\%]} \\
& 0.01
\end{aligned}
\] & Ind: None FS=0.00 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.63 Simple ramp-function generator}

Only active with optional technology software S00
Please note: The output \((y)=0\) is set in response to "Set simple ramp-function generator to zero" and POWER ON
The output (y) is frozen at the current value in response to "Stop simple ramp-function generator"
The ramp-up and ramp-down times are set to zero in response to "Bypass simple ramp-function generator"

\section*{Ramp-up integrator}

The simple ramp-function generator contains a flip-flop whose output is set to log. "0" (ramp generator initial run) after POWER ON or when the ramp-function generator has been enabled. When the ramp-function generator output reaches a value corresponding to the input quantity \((y=x)\) for the first time, the flip-flop output switches to log. "1" and remains in this state until the next enabling command. This output is linked to binector B9191. By parameterizing U301, index i001=919, it is possible to apply this binector to the "Bypass simple ramp-function generator" function and thus to implement a ramp-up integrator function.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \text { U300 } \\
(2300) \\
* \\
\text { S00 } \\
\text { (B165) } \\
\hline
\end{array}
\] & \begin{tabular}{cc} 
Source for input quantity & FB 113 \\
\(0=\) connector K0000 & \\
\(1=\) connector K0001 & \\
etc. &
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U301 } \\
(2301) \\
* \\
\text { S00 } \\
\\
\text { (B165) }
\end{array}
\] & \begin{tabular}{l}
Source for control signals \\
i001 Source for "Bypass simple ramp-function generator" signal \\
i002 Source for "Stop simple ramp-function generator" signal \\
i003 Source for "Reset / enable simple ramp-function generator" signal ( \(0=\) reset to zero, 1 = enable) \\
Settings:
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 \\
FS= \\
i001: 0 \\
i002: 0 \\
i003: 1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U302 } \\
(2302) \\
\text { S00 } \\
\text { (B165) }
\end{array}
\] & Ramp-up time FB 113 & \[
\begin{aligned}
& \hline 0.00 \text { to } 300.00 \\
& {[\mathrm{~s}]} \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U303 } \\
(2303) \\
\text { S00 } \\
\text { (B165) } \\
\hline
\end{array}
\] & Ramp-down time FB 113 & \[
\begin{aligned}
& 0.00 \text { to } 300.00 \\
& {[\mathrm{~s}]} \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.00 \\
Type: O 2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.64 Multiplexer}

Only active with optional technology software S00
FB86 \(=\) 1st multiplexer (output \(=\) K9450)
FB87 \(=\) 2nd multiplexer (output \(=\) K9451)
FB88 \(=\) 3rd multiplexer (output \(=\) K9452)
Function:
An input quantity is connected through to the output depending on the control bits:
\begin{tabular}{cccc} 
B3 & B2 & B1 & Output y \\
\hline 0 & 0 & 0 & X0 \\
0 & 0 & 1 & X1 \\
0 & 1 & 0 & X2 \\
0 & 1 & 1 & X3 \\
1 & 0 & 0 & X4 \\
1 & 0 & 1 & X5 \\
1 & 1 & 0 & X6 \\
1 & 1 & 1 & X7
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \text { U310 } \\
(2310) \\
* \\
\text { S00 } \\
\\
\text { (B195) }
\end{array}
\] & Source for control bits for the multiplexer & [SW 1.8 and later] & All binector numbers 1 & \[
\begin{aligned}
& \text { Ind: } 9 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline U311
\((2311)\)
\(\star\)
S00
\((B 195)\) & \begin{tabular}{l}
Source for input quantities for 1st multiplexer \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc. \\
i001 Input quantity X0 \\
i002 Input quantity X1 \\
i003 Input quantity X2 \\
i004 Input quantity X3 \\
i005 Input quantity X4 \\
i006 Input quantity X5 \\
i007 Input quantity X6 \\
i008 Input quantity X7
\end{tabular} & [SW 1.8 and later] & All connector numbers 1 & Ind: 8 FS=0 Type: L2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U312 } \\
(2312) \\
{ }_{*} \\
\text { S00 } \\
\\
\text { (B195) }
\end{array}
\] & \begin{tabular}{l}
Source for input quantities for 2nd multiplexer \\
\(0=\) Connector K0000 \\
1 = Connector K0001 \\
etc. \\
i001 Input quantity X0 \\
i002 Input quantity X1 \\
i003 Input quantity X2 \\
i004 Input quantity X3 \\
i005 Input quantity X4 \\
i006 Input quantity X5 \\
i007 Input quantity X6 \\
i008 Input quantity X7
\end{tabular} & [SW 1.8 and later] & All connector numbers 1 & \begin{tabular}{l}
Ind: 8
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U313 } \\
& (2313) \\
& { }_{*} \\
& \text { S00 } \\
& \\
& \text { (B195) }
\end{aligned}
\] & ```
Source for input quantities for 3rd multiplexer [SW 1.8 and later]
    0 = Connector K0000
    1 = Connector K0001
    etc.
    i001 Input quantity X0
    i002 Input quantity X1
    i003 Input quantity X2
    i004 Input quantity X3
    i005 Input quantity X4
    i006 Input quantity X5
    i007 Input quantity X6
    i008 Input quantity X7
``` & All connector numbers 1 & \begin{tabular}{l}
Ind: 8 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.65 Counters}

Only active with optional technology software S00
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Software counter} & \multicolumn{3}{|r|}{FB 89} \\
\hline \[
\begin{aligned}
& \hline \text { n314 } \\
& (2314) \\
& \text { S00 } \\
& \text { (B196) } \\
& \hline
\end{aligned}
\] & Display of output of software counter \(\begin{array}{rr}\text { FB } 89 \\ \text { [SW } 1.9 \text { and later] }\end{array}\) & 0 to 65535 & Ind: None Type: O2 & P052 = 3 \\
\hline U315 (2315) S00 (B196) & & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \\
FS= \\
i001: 0 \\
i002: 65535 \\
i003: 0 \\
i004: 0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U316 } \\
& (2316) \\
& \text { S } \\
& \text { S00 } \\
& \text { (B196) }
\end{aligned}
\] & & All connector numbers 1 & \begin{tabular}{l}
Ind: 4 \\
FS= \\
i001: 9441 \\
i002: 9442 \\
i003: 9443 \\
i004: 9444 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U317 } \\
& (2317) \\
& { }_{*} \\
& \text { S00 } \\
& \\
& \text { (B196) }
\end{aligned}
\] & & All binector numbers 1 & \begin{tabular}{l}
Ind: 5 FS= i001: 0 \\
i002: 0 \\
i003: 0 \\
i004: 0 \\
i005: 1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.66 Logic functions}

Only active with optional technology software S00
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Decoders/demultiplexers, binary to 1 of 8} \\
\hline \[
\begin{array}{|l|}
\hline \text { U318 } \\
(2318) \\
{ }_{*}^{*} \\
\text { S00 } \\
\text { (B200) }
\end{array}
\] & \begin{tabular}{l}
Source for input signals for decoder/demultiplexer 1 \\
i001 Source for input signal, bit 0 \\
i002 Source for input signal, bit 1 \\
i003 Source for input signal, bit 2 \\
Settings: \\
\(0=\) binector B0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & FB 118 & All binector numbers 1 & \[
\begin{array}{|l|}
\hline \text { Ind: } 3 \\
\text { FS=0 } \\
\text { Type: L2 }
\end{array}
\] & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U319 } \\
& (2319) \\
& * \\
& \text { S00 } \\
& \\
& (B 200)
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals for decoder/demultiplexer 2 \\
i001 Source for input signal, bit 0 \\
i002 Source for input signal, bit 1 \\
i003 Source for input signal, bit 2 \\
Settings:
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & FB 119 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{AND elements with 3 inputs each}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U320 } \\
& (2320) \\
& * \\
& \text { S00 } \\
& \text { (B205) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, AND element 1 (output = B9350) \\
i001 Source for input 1 \\
i002 Source for input 2 \\
i003 Source for input 3 \\
Settings:
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & \[
\text { FB } 120
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U321 \\
(2321) \\
\(*\) \\
S00 \\
(B205) \\
\hline
\end{tabular} & \begin{tabular}{l}
Source for input signals, AND element 2 (output = B9351) \\
As for U320
\end{tabular} & FB 121 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{|l|}
\hline U322 \\
\((2322)\) \\
\({ }^{*}\) \\
S00 \\
(B205) \\
\hline U323
\end{tabular} & \begin{tabular}{l}
Source for input signals, AND element 3 (output = B9352) \\
As for U320
\end{tabular} & FB 122 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{|l|}
\hline U323 \\
\((2323)\) \\
\({ }^{*}\) \\
S00 \\
(B205) \\
\hline
\end{tabular} & \begin{tabular}{l}
Source for input signals, AND element 4 (output = B9353) \\
As for U320
\end{tabular} & FB 123 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{|l|}
\hline U324 \\
\((2324)\) \\
\({ }^{*}\) \\
S00 \\
(B205) \\
\hline
\end{tabular} & \begin{tabular}{l}
Source for input signals, AND element 5 (output = B9354) \\
As for U320
\end{tabular} & FB 124 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{|l|}
\hline U325 \\
\((2325)\) \\
\({ }^{*}\) \\
S00 \\
(B205) \\
\hline
\end{tabular} & \begin{tabular}{l}
Source for input signals, AND element 6 (output = B9355) \\
As for U320
\end{tabular} & FB 125 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{|l|}
\hline U326 \\
\((2326)\) \\
\(*\) \\
S00 \\
(B205) \\
\hline U322
\end{tabular} & Source for input signals, AND element 7 (output = B9356) As for U320 & FB 126 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3
\[
\mathrm{FS}=1
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{|l|}
\hline U327 \\
\((2327)\) \\
\(*\) \\
S00 \\
(B205) \\
\hline U328 \\
\hline
\end{tabular} & Source for input signals, AND element 8 (output = B9357) As for U320 & FB 127 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3
\[
F S=1
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{|l|}
\hline U328 \\
\((2328)\) \\
\(*\) \\
S00 \\
(B205) \\
\hline U329
\end{tabular} & \begin{tabular}{l}
Source for input signals, AND element 9 (output = B9358) \\
As for U320
\end{tabular} & \[
\text { FB } 128
\] & All binector numbers 1 & Ind: 3 FS=1 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{|l|}
\hline U329 \\
\((2329)\) \\
\({ }^{*}\) \\
S00 \\
(B205) \\
\hline
\end{tabular} & \begin{tabular}{l}
Source for input signals, AND element 10 (output = B9359) \\
As for U320
\end{tabular} & FB 129 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \begin{tabular}{l}
U330 \\
(2330) \\
\(*\) \\
S00 \\
(B205) \\
\\
\hline
\end{tabular} & \begin{tabular}{l}
Source for input signals, AND element 11 (output = B9360) \\
As for U320
\end{tabular} & FB 130 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = 3 } \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U331 } \\
& (2331) \\
& * \\
& \text { S00 } \\
& \text { (B205) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, AND element 12 (output = B9361) \\
As for U320
\end{tabular} & FB 131 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U332 } \\
& (2332) \\
& * \\
& \text { S00 } \\
& \text { (B205) } \\
& \hline
\end{aligned}
\] & Source for input signals, AND element 13 (output = B9362) As for U320 & FB 132 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U333 } \\
& (2333) \\
& * \\
& \text { S00 } \\
& \text { (B205) } \\
& \hline
\end{aligned}
\] & Source for input signals, AND element 14 (output = B9363) As for U320 & FB 133 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U334 } \\
& (2334) \\
& * \\
& \text { S00 } \\
& \text { (B205) } \\
& \hline
\end{aligned}
\] & Source for input signals, AND element 15 (output = B9364) As for U320 & FB 134 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U335 } \\
& (2335) \\
& * \\
& \text { S00 } \\
& \text { (B205) }
\end{aligned}
\] & Source for input signals, AND element 16 (output = B9365) As for U320 & FB 135 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U336 } \\
& (2336) \\
& * \\
& \text { S00 } \\
& \text { (B205) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, AND element 17 (output = B9366) \\
As for U320
\end{tabular} & FB 136 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U337 } \\
& (2337) \\
& { }^{*} \\
& \text { S00 } \\
& \text { (B205) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, AND element 18 (output = B9367) \\
As for U320
\end{tabular} & FB 137 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U338 \\
\((2338)\) \\
\(*\) \\
S00 \\
(B205) \\
\hline U339
\end{tabular} & \begin{tabular}{l}
Source for input signals, AND element 19 (output = B9368) \\
As for U320
\end{tabular} & FB 138 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U339 } \\
& (2339) \\
& * \\
& \text { S00 } \\
& \text { (B205) } \\
& \hline
\end{aligned}
\] & Source for input signals, AND element 20 (output = B9369) As for U320 & FB 139 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 = } 3 \\
\text { P051 }=40 \\
\text { Offline }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U340 } \\
& (2340) \\
& * \\
& \text { S00 } \\
& \text { (B205) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, AND element 21 (output = B9370) \\
As for U320
\end{tabular} & FB 140 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U341 } \\
& (2341) \\
& * \\
& \text { S00 } \\
& \text { (B205) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, AND element 22 (output = B9371) \\
As for U320
\end{tabular} & FB 141 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 = } 3 \\
\text { P051 }=40 \\
\text { Offline }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U342 } \\
& (2342) \\
& * \\
& \text { S00 } \\
& \text { (B205) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, AND element 23 (output = B9372) \\
As for U320
\end{tabular} & FB 142 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U343 } \\
(2343) \\
* \\
\text { S00 } \\
\text { (B205) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for input signals, AND element 24 (output = B9373) \\
As for U320
\end{tabular} & FB 143 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 = } 3 \\
\text { P051 = 40 } \\
\text { Offline }
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U344 } \\
& (2344) \\
& * \\
& \text { S00 } \\
& \text { (B205) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, AND element 25 (output = B9374) \\
As for U320
\end{tabular} & \[
\text { FB } 144
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U345 \\
(2345) \\
\(*\) \\
S00 \\
(B205) \\
\hline U346
\end{tabular} & \begin{tabular}{l}
Source for input signals, AND element 26 (output = B9375) \\
As for U320
\end{tabular} & \[
\text { FB } 145
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U346 \\
(2346) \\
\(*\) \\
S00 \\
(B205) \\
\hline U347
\end{tabular} & \begin{tabular}{l}
Source for input signals, AND element 27 (output = B9376) \\
As for U320
\end{tabular} & \[
\text { FB } 146
\] & All binector numbers 1 & Ind: 3 FS=1 Type: L2 & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U347 } \\
& (2347) \\
& * \\
& \text { S00 } \\
& \text { (B205) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, AND element 28 (output = B9377) \\
As for U320
\end{tabular} & FB 147 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

OR elements with 3 inputs each
The input signals selected via the 3 indices of the parameter are ORed and the result of the logic operation applied to the specified
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{|l|}
\hline U350 \\
(2350) \\
\multirow{2}{*}{} \\
S00 \\
(B206)
\end{tabular} & ```
Source for input signals, OR element 1 (output = B9380)
 i001 Source for input 1
 i002 Source for input 2
 i003 Source for input 3
Settings:
 0 = binector B0000
 1= binector B0001
 etc.
``` & FB 150 & All binector numbers & \[
\begin{aligned}
& \text { Ind: } 3 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U351 } \\
(2351) \\
\star \\
\text { S00 } \\
\text { (B206) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for input signals, OR element 2 (output = B9381) \\
As for U350
\end{tabular} & FB 151 & All binector numbers 1 & \[
\begin{aligned}
& \hline \text { Ind: } 3 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U352 } \\
& (2352) \\
& * \\
& \text { S00 } \\
& \text { (B206) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, OR element 3 (output = B9382) \\
As for U350
\end{tabular} & FB 152 & All binector numbers 1 & \[
\begin{aligned}
& \hline \text { Ind: } 3 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U353 } \\
(2353) \\
* \\
\text { S00 } \\
\text { (B206) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for input signals, OR element 4 (output = B9383) \\
As for U350
\end{tabular} & FB 153 & All binector numbers 1 & \[
\begin{aligned}
& \hline \text { Ind: } 3 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40
\end{aligned}
\]
Offline \\
\hline \[
\begin{aligned}
& \hline \text { U354 } \\
& (2354) \\
& \star \\
& \text { S00 } \\
& \text { (B206) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, OR element 5 (output = B9384) \\
As for U350
\end{tabular} & FB 154 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{|l|}
\hline U355 \\
(2355) \\
\multirow{2}{*}{} \\
S00 \\
(B206) \\
\hline
\end{tabular} & \begin{tabular}{l}
Source for input signals, OR element 6 (output = B9385) \\
As for U350
\end{tabular} & FB 155 & All binector numbers 1 & \[
\begin{aligned}
& \text { Ind: } 3 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U556 } \\
& (2356) \\
& * \\
& \text { So0 } \\
& \text { (B206) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, OR element 7 (output \(=\) B9386) \\
As for U350
\end{tabular} & FB 156 & ```
All binector numbers
1
``` & \[
\begin{aligned}
& \text { Ind: } 3 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \begin{array}{l}
\text { U357 } \\
(2357) \\
* \\
\text { S00 } \\
\text { (B206) }
\end{array}
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, OR element 8 (output \(=\) B9387) \\
As for U350
\end{tabular} & FB 157 & All binector numbers 1 & \[
\begin{aligned}
& \text { Ind: } 3 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 = }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & & \begin{tabular}{l}
Value range \\
[Unit
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Steps
\end{tabular} \\
\hline
\end{tabular}

\section*{EXCLUSIVE OR elements with 2 inputs each}

The input signals selected via the 2 indices of the parameter are combined in an EXCLUSIVE OR (XOR) operation and the result applied to the specified binector.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \hline \text { U370 } \\
& (2370) \\
& { }_{*}=300 \\
& \text { S00 } \\
& \text { (B206) }
\end{aligned}
\]} & Source for input signals, XOR element 1 (output = B9195) & \multirow[t]{4}{*}{FB 170} & \multirow[t]{4}{*}{All binector numbers 1} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \hline \text { Ind: } 2 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \mathrm{P} 051=40 \\
& \text { Offline }
\end{aligned}
\]} \\
\hline & i001 Source for input 1 & & & & \\
\hline & Settings: & & & & \\
\hline & 0 = binector B0000 1 = binector B0001 etc. & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U371 } \\
& (2371) \\
& * \\
& \text { S00 } \\
& \text { (B206) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, XOR element 2 (output = B9196) \\
As for U370
\end{tabular} & FB 171 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U372 } \\
& (2372) \\
& * \\
& \text { S00 } \\
& \text { (B206) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, XOR element 3 (output = B9197) \\
As for U370
\end{tabular} & \[
\text { FB } 172
\] & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U373 } \\
& (2373) \\
& * \\
& \text { S00 } \\
& \text { (B206) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, XOR element 4 (output = B9198) \\
As for U370
\end{tabular} & FB 173 & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Inverters} \\
\hline \multicolumn{6}{|l|}{The input signal is inverted and the result applied to the specified binector.} \\
\hline \begin{tabular}{l}
U380 \\
(2380) \\
\({ }^{*}\) \\
S00 \\
(B207) \\
\hline (381
\end{tabular} & Source for input signal, inverter 1 (output = B9450)
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\] & \[
\text { FB } 180
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U381 \\
\hline (2381) \\
\({ }^{*}\) \\
S00 \\
(B207) \\
\hline U382
\end{tabular} & \begin{tabular}{l}
Source for input signal, inverter 2 (output = B9451) \\
As for U380
\end{tabular} & FB 181 & All binector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
Source for input signal, inverter 3 (output = B9452) \\
As for U380
\end{tabular} & FB 182 & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U383 \\
\hline (2383) \\
\({ }^{*}\) \\
S00 \\
(B207) \\
\hline U384
\end{tabular} & \begin{tabular}{l}
Source for input signal, inverter 4 (output = B9453) \\
As for U380
\end{tabular} & FB 183 & All binector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U384 \\
\hline (2384) \\
\({ }^{*}\) \\
S00 \\
(B207) \\
\hline U385
\end{tabular} & \begin{tabular}{l}
Source for input signal, inverter 5 (output = B9454) \\
As for U380
\end{tabular} & FB 184 & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U385 \\
\hline (2385) \\
\({ }^{*}\) \\
S00 \\
(B207) \\
\hline U386
\end{tabular} & \begin{tabular}{l}
Source for input signal, inverter 6 (output = B9455) \\
As for U380
\end{tabular} & FB 185 & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U386 \\
\hline (2386) \\
\({ }^{*}\) \\
S00 \\
(B207) \\
\hline U387
\end{tabular} & \begin{tabular}{l}
Source for input signal, inverter 7 (output = B9456) \\
As for U380
\end{tabular} & FB 186 & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U387 } \\
(2387) \\
{ }^{2} \\
\text { S00 } \\
\text { (B207) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for input signal, inverter 8 (output = B9457) \\
As for U380
\end{tabular} & FB 187 & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U388 \\
(2388) \\
\(*\) \\
S00 \\
(B207) \\
\hline
\end{tabular} & \begin{tabular}{l}
Source for input signal, inverter 9 (output = B9458) \\
As for U380
\end{tabular} & FB 188 & All binector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U389 \\
\hline (2389) \\
* \\
S00 \\
(B207) \\
\hline
\end{tabular} & Source for input signal, inverter 10 (output = B9459) As for U380 & FB 189 & All binector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\(\left.\left.\begin{array}{|l|l|l|l|l|}\hline \text { PNU } & \text { Description } & & \begin{array}{l}\text { Value range } \\ \text { [Unit] } \\ \text { Steps }\end{array} & \begin{array}{l}\text { No. indices } \\ \text { Factory } \\ \text { setting }\end{array} \\ \text { Type }\end{array}\right] \begin{array}{l}\text { See } \\ \text { Change } \\ \text { (Access } / \\ \text { Status) }\end{array}\right]\)

\section*{NAND elements with 3 inputs each}

The input signals selected via the 3 indices of the parameter are combined in an NAND operation and the result applied to the specified binector.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U400 } \\
& (2400) \\
& { }^{*} \\
& \text { S00 } \\
& \text { (B207) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, NAND element 1 (output = B9470) \\
i001 Source for input 1 \\
i002 Source for input 2 \\
i003 Source for input 3 \\
Settings:
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & \[
\text { FB } 200
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 = } 3 \\
\text { P051 }=40 \\
\text { Offline }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U401 } \\
& (2401) \\
& * \\
& \text { S00 } \\
& \text { (B207) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, NAND element 2 (output = B9471) \\
As for U400
\end{tabular} & FB 201 & All binector numbers 1 & Ind: 3 FS=1 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U402 } \\
& (2402) \\
& * \\
& \text { S00 } \\
& \text { (B207) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, NAND element 3 (output = B9472) \\
As for U400
\end{tabular} & FB 202 & All binector numbers 1 & Ind: 3 FS=1 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U403 } \\
& (2403) \\
& * \\
& \text { S00 } \\
& \text { (B207) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, NAND element 4 (output = B9473) \\
As for U400
\end{tabular} & FB 203 & All binector numbers 1 & Ind: 3 FS=1 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U404 } \\
& (2404) \\
& * \\
& \text { S00 } \\
& \text { (B207) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, NAND element 5 (output = B9474) \\
As for U400
\end{tabular} & FB 204 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U405 } \\
& (2405) \\
& * \\
& \text { S00 } \\
& \text { (B207) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals, NAND element 6 (output = B9475) \\
As for U400
\end{tabular} & FB 205 & All binector numbers 1 & Ind: 3 FS=1 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{array}{|l}
\hline \hline \text { U406 } \\
(2406) \\
* \\
\text { S00 } \\
(B 207)
\end{array}
\] & \begin{tabular}{l}
Source for input signals, NAND element 7 (output = B9476) \\
As for U400
\end{tabular} & FB 206 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U407 } \\
(2407) \\
* \\
\text { S00 } \\
(B 207) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for input signals, NAND element 8 (output = B9477) \\
As for U400
\end{tabular} & FB 207 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U408 } \\
(2408) \\
* \\
\text { S00 } \\
\text { (B207) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for input signals, NAND element 9 (output = B9478) \\
As for U400
\end{tabular} & \[
\text { FB } 208
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U409 } \\
(2409) \\
* \\
\text { S00 } \\
\text { (B207) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for input signals, NAND element 10 (output = B9479) \\
As for U400
\end{tabular} & \[
\text { FB } 209
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U410 } \\
(2410) \\
* \\
\text { S00 } \\
\text { (B207) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for input signals, NAND element 11 (output = B9480) \\
As for U400
\end{tabular} & \[
\text { FB } 210
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U411 } \\
(2411) \\
* \\
\text { S00 } \\
(B 207) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for input signals, NAND element 12 (output = B9481) \\
As for U400
\end{tabular} & \[
\text { FB } 211
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.67 Storage elements, timers and binary signal selector switches}

Only active with optional technology software S00
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{RS flipflops} \\
\hline \[
\begin{array}{|l}
\hline \text { U415 } \\
(2415) \\
* \\
\text { S00 } \\
(B 210)
\end{array}
\] & \begin{tabular}{l}
Source for SET and RESET for RS flipflop 1 \\
(Outputs: Q = B9550, /Q = B9551) \\
i001 Source for SET \\
i002 Source for RESET \\
Settings:
\[
\begin{aligned}
& 0=\text { binector } \mathrm{B} 0000 \\
& 1=\text { binector } \mathrm{B} 0001 \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & FB 215 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = 3 } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U416 } \\
(2416) \\
* \\
\text { S00 } \\
(B 210) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for SET and RESET for RS flipflop 2 (outputs: Q = B9552, /Q = B9553) \\
As for U415
\end{tabular} & FB 216 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U417 } \\
(2417) \\
* \\
\text { S00 } \\
(B 210) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for SET and RESET for RS flipflop 3 (outputs: Q = B9554, /Q = B9555) \\
As for U415
\end{tabular} & FB 217 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U418 } \\
(2418) \\
* \\
\text { S00 } \\
\text { (B210) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for SET and RESET for RS flipflop 4 (outputs: Q = B9556, /Q = B9557) \\
As for U415
\end{tabular} & FB 218 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2
\[
\mathrm{FS}=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U419 } \\
(2419) \\
* \\
\text { S00 } \\
(B 210) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for SET and RESET for RS flipflop 5 (outputs: Q = B9558, /Q = B9559) \\
As for U415
\end{tabular} & FB 219 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2
\[
\mathrm{FS}=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U420 } \\
(2420) \\
* \\
\text { S00 } \\
\text { (B210) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for SET and RESET for RS flipflop 6 (outputs: Q = B9560, /Q = B9561) \\
As for U415
\end{tabular} & FB 220 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2
\[
\mathrm{FS}=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U421 } \\
& (2421) \\
& * \\
& \text { S00 } \\
& \text { (B210) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for SET and RESET for RS flipflop 7 (outputs: Q = B9562, /Q = B9563) \\
As for U415
\end{tabular} & FB 221 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U422 } \\
& (2422) \\
& * \\
& \text { S00 } \\
& \text { (B210) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for SET and RESET for RS flipflop 8 (outputs: Q = B9564, /Q = B9565) \\
As for U415
\end{tabular} & FB 222 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U423 } \\
& (2423) \\
& * \\
& \text { S00 } \\
& \text { (B210) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for SET and RESET for RS flipflop 9 (outputs: Q = B9566, \(/ \mathrm{Q}=\mathrm{B} 9567\)) \\
As for U415
\end{tabular} & FB 223 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U424 } \\
& (2424) \\
& * \\
& \text { S00 } \\
& \text { (B210) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for SET and RESET for RS flipflop 10 (outputs: Q = B9568, /Q = B9569) \\
As for U415
\end{tabular} & FB 224 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U425 } \\
& (2425) \\
& * \\
& \text { S00 } \\
& (B 210) \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for SET and RESET for RS flipflop 11 (outputs: \(\mathrm{Q}=\mathrm{B} 9570, / \mathrm{Q}=\mathrm{B} 9571\)) \\
As for U415
\end{tabular} & FB 225 & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U426 } \\
& (2426) \\
& * \\
& \text { S00 } \\
& (B 210)
\end{aligned}
\] & \begin{tabular}{l}
Source for SET and RESET for RS flipflop 12 (outputs: Q = B9572, /Q = B9573) \\
As for U415
\end{tabular} & FB 226 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U427 } \\
& (2427) \\
& * \\
& \text { S00 } \\
& (B 210)
\end{aligned}
\] & \begin{tabular}{l}
Source for SET and RESET for RS flipflop 13 (outputs: Q = B9574, /Q = B9575) \\
As for U415
\end{tabular} & FB 227 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U428 } \\
& (2428) \\
& * \\
& \text { S00 } \\
& (B 210)
\end{aligned}
\] & \begin{tabular}{l}
Source for SET and RESET for RS flipflop 14 (outputs: Q = B9576, /Q = B9577) \\
As for U415
\end{tabular} & FB 228 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \multicolumn{5}{|l|}{Timer 1 (0.000 to 60.000s) (output = B9580, inverted: B9581)} \\
\hline \[
\begin{array}{|l|}
\hline \text { U440 } \\
(2440) \\
* \\
\text { S00 } \\
(B 215)
\end{array}
\] & \begin{tabular}{l}
Source for input signal and reset signal for timer element \(1 \quad\) FB 240 \\
i001 Source for input signal \\
i002 Source for reset signal for the pulse generator (if U442=3) (in state " 1 ", the pulse generator is set to " 0 ") \\
Settings: \\
\(0=\) Binector B0000 \\
1 = Binector B0001 etc.
\end{tabular} & All binector numbers 1 & \[
\begin{aligned}
& \text { Ind: } 2 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U441 } \\
& (2441) \\
& \text { S00 } \\
& (B 215) \\
& \hline
\end{aligned}
\] & Time for timer \(1 \times\) & \[
\begin{array}{|l|}
\hline 0.000 \text { to } 60.000 \\
{[s]} \\
0.001
\end{array}
\] & Ind: None FS=0.000 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U442 } \\
(2442) \\
* \\
\text { S00 } \\
\text { (B215) }
\end{array}
\] & \begin{tabular}{cll}
Mode for timer 1 & FB 240 \\
0 & ON delay & \\
1 & OFF delay & \\
2 & ON / OFF delay & \\
3 & Pulse generator with positive edge triggering & \\
\hline
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Timer 2 (0.000 to 60.000s) (output = B9582, inverted: B9583)} \\
\hline \[
\begin{array}{|l}
\hline \text { U443 } \\
(2443) \\
* \\
\text { S00 } \\
(B 215) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for input signal and reset signal for timer element 2 \\
As for U440
\end{tabular} & FB 241 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U444 } \\
(2444) \\
\text { S00 } \\
\text { (B215) } \\
\hline
\end{array}
\] & Time for timer 2 & FB 241 & 0.000 to 60.000 [s] 0.001 & Ind: None FS=0.000 Type: O 2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U445 } \\
(2445) \\
* \\
\text { S00 } \\
(B 215) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Mode for timer 2 \\
As for U442
\end{tabular} & FB 241 & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Timer 3 (0.000 to 60.000s) (output = B9584, inverted: B9585)} \\
\hline \[
\begin{aligned}
& \hline \text { U443 } \\
& (2443) \\
& * \\
& \text { S00 } \\
& \text { (B215) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signal and reset signal for timer element 3 \\
As for U440
\end{tabular} & FB 242 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U444 } \\
& (2444) \\
& \text { S00 } \\
& \text { (B215) } \\
& \hline
\end{aligned}
\] & Time for timer 3 & FB 242 & \[
\begin{aligned}
& 0.000 \text { to } 60.000 \\
& \text { [s] } \\
& 0.001
\end{aligned}
\] & Ind: None \(\mathrm{FS}=0.000\) Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U445 } \\
& (2445) \\
& * \\
& \text { S00 } \\
& \text { (B215) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Mode for timer 3 \\
As for U442
\end{tabular} & FB 242 & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Timer 4 (0.000 to 60.000s) (output = B9586, inverted: B9587)} \\
\hline \[
\begin{aligned}
& \hline \text { U449 } \\
& (2449) \\
& * \\
& \text { S00 } \\
& \text { (B215) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signal and reset signal for timer element 4 \\
As for U440
\end{tabular} & \[
\text { FB } 243
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U450 } \\
& (2450) \\
& \text { S00 } \\
& \text { (B215) } \\
& \hline
\end{aligned}
\] & Time for timer 4 & FB 243 & \[
\begin{aligned}
& \hline 0.000 \text { to } 60.000 \\
& {[\mathrm{~s}]} \\
& 0.001
\end{aligned}
\] & Ind: None FS=0.000 Type: O2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U451 } \\
& (2451) \\
& * \\
& \text { S00 } \\
& \text { (B215) }
\end{aligned}
\] & \begin{tabular}{l}
Mode for timer 4 \\
As for U442
\end{tabular} & FB 243 & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \hline \text { Ind: None } \\
& \text { FS=0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Timer 5 (0.000 to 60.000s) (output = B9588, inverted: B9589)} \\
\hline \[
\begin{aligned}
& \hline \text { U452 } \\
& (2452) \\
& * \\
& \text { S00 } \\
& (B 215)
\end{aligned}
\] & \begin{tabular}{l}
Source for input signal and reset signal for timer element 5 \\
As for U440
\end{tabular} & FB 244 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U453 } \\
& (2453) \\
& \text { S00 } \\
& \text { (B215) } \\
& \hline
\end{aligned}
\] & Time for timer 5 & FB 244 & \[
\begin{array}{|l}
\hline 0.000 \text { to } 60.000 \\
{[\mathrm{~s}]} \\
0.001
\end{array}
\] & Ind: None FS=0.000 Type: O2 & \[
\begin{array}{|l}
\hline \text { P052 = } 3 \\
\text { P051 = 40 } \\
\text { Offline }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U454 } \\
& (2454) \\
& * \\
& \text { S00 } \\
& \text { (B215) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Mode for timer 5 \\
As for U442
\end{tabular} & FB 244 & \[
\begin{array}{|l}
\hline 0 \text { to } 3 \\
1
\end{array}
\] & \begin{tabular}{l}
Ind: None
\[
\mathrm{FS}=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Timer 6 (0.000 to 60.000s) (output = B9590, inverted: B9591)} \\
\hline \begin{tabular}{l}
U455 \\
\((2455)\) \\
\(*\) \\
S00 \\
(B215) \\
\hline
\end{tabular} & \begin{tabular}{l}
Source for input signal and reset signal for timer element 6 \\
As for U440
\end{tabular} & FB 245 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline U456
\((2456)\)
S00
(B215) & Time for timer 6 & FB 245 & \[
\begin{aligned}
& \hline 0.000 \text { to } 60.000 \\
& {[\mathrm{~s}]} \\
& 0.001
\end{aligned}
\] & Ind: None FS=0.000 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U457 } \\
(2457) \\
{ }_{*} \\
\text { S00 } \\
(B 215) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Mode for timer 6 \\
As for U442
\end{tabular} & FB 245 & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Timer 7 (0.00 to 600.00s) (output = B9592, inverted: B9593)} \\
\hline \[
\begin{aligned}
& \hline \text { U458 } \\
& (2458) \\
& * \\
& \text { S00 } \\
& \text { (B216) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signal and reset signal for timer element 7 \\
As for U440
\end{tabular} & FB 246 & All binector numbers 1 & Ind: 2 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U459 } \\
& (2459) \\
& \text { S00 } \\
& \text { (B216) } \\
& \hline
\end{aligned}
\] & Time for timer 7 & FB 246 & \[
\begin{aligned}
& 0.00 \text { to } 600.00 \\
& {[\mathrm{~s}]} \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U460 } \\
& (2460) \\
& * \\
& \text { S00 } \\
& \text { (B216) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Mode for timer 7 \\
As for U442
\end{tabular} & FB 246 & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Timer 8 (0.00 to 600.00s) (output = B9594, inverted: B9595)} \\
\hline \begin{tabular}{l}
U461 \\
\hline\((2461)\) \\
\({ }^{*}\) \\
S00 \\
(B216) \\
\hline (
\end{tabular} & \begin{tabular}{l}
Source for input signal and reset signal for timer element 8 \\
As for U440
\end{tabular} & FB 247 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U462 } \\
(2462) \\
\text { S00 } \\
\text { (B216) } \\
\hline
\end{array}
\] & Time for timer 8 & FB 247 & \[
\begin{aligned}
& 0.00 \text { to } 600.00 \\
& {[\mathrm{~s}]} \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U463 } \\
& (2463) \\
& * \\
& \text { S00 } \\
& \text { (B216) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Mode for timer 8 \\
As for U442
\end{tabular} & FB 247 & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Timer 9 (0.00 to 600.00s) (output = B9596, inverted: B9597)} \\
\hline \begin{tabular}{l}
U464 \\
\hline\((2464)\) \\
\(*\) \\
S00 \\
(B216) \\
\hline (465
\end{tabular} & \begin{tabular}{l}
Source for input signal and reset signal for timer element 9 \\
As for U440
\end{tabular} & FB 248 & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U465 } \\
(2465) \\
\text { S00 } \\
(B 216) \\
\hline
\end{array}
\] & Time for timer 9 & FB 248 & \[
\begin{aligned}
& 0.00 \text { to } 600.00 \\
& {[\mathrm{~s}]} \\
& 0.01
\end{aligned}
\] & Ind: None FS=0.00 Type: O2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U466 \\
\((2466)\) \\
\(*\) \\
S00 \\
\((B 216)\) \\
\hline
\end{tabular} & \begin{tabular}{l}
Mode for timer 9 \\
As for U442
\end{tabular} & FB 248 & \[
\begin{array}{|l}
\hline 0 \text { to } 3 \\
1
\end{array}
\] & \begin{tabular}{l}
Ind: None
\[
\mathrm{FS}=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Timer 10 (0.00 to 600.00s) (output = B9598, inverted: B9599)} \\
\hline \[
\begin{array}{|l}
\hline \text { U467 } \\
(2467) \\
* \\
\text { S00 } \\
(B 216) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for input signal and reset signal for timer element 10 \\
As for U440
\end{tabular} & \[
\text { FB } 249
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U468 } \\
(2468) \\
\text { S00 } \\
(B 216) \\
\hline
\end{array}
\] & Time for timer 10 & FB 249 & \[
\begin{aligned}
& 0.00 \text { to } 600.00 \\
& {[s]} \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U469 } \\
(2469) \\
* \\
\text { S00 } \\
(B 216) \\
\hline
\end{array}
\] & Mode for timer 10 As for U442 & FB 249 & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O 2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Binary signal selector switches}

The control signal (binector) is selected via index i001 of the parameter.
Control signal \(=0\) : Binector as set in index i002 is applied to the output
Control signal =1: Binector as set in index i003 is applied to the output
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U470 } \\
& (2470) \\
& \star \\
& \text { S00 } \\
& \text { (B216) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals for binary signal selector switch 1 (output = B9482) \\
i001 Source for control signal \\
i002 Source for output signal when control signal \(=0\) \\
i003 Source for output signal when control signal \(=1\) \\
Settings: \\
\(0=\) binector B0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & FB 250 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3
\[
\mathrm{FS}=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U471 } \\
& (2471) \\
& \star \\
& \text { S00 } \\
& \text { (B216) }
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals for binary signal selector switch 2 (output = B9483) \\
As for U470
\end{tabular} & FB 251 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U472 } \\
& (2472) \\
& { }^{*} \\
& \text { S00 } \\
& \text { (B216) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals for binary signal selector switch 3 (output = B9484) \\
As for U470
\end{tabular} & FB 252 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U473 } \\
& (2473) \\
& * \\
& \text { S00 } \\
& \text { (B216) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Source for input signals for binary signal selector switch 4 (output = B9485) \\
As for U470
\end{tabular} & FB 253 & All binector numbers 1 & \begin{tabular}{l}
Ind: 3
\[
\mathrm{FS}=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U474 } \\
& (2474) \\
& * \\
& \text { S00 } \\
& \text { (B216) }
\end{aligned}
\] & ```
Source for input signals for binary signal selector switch 5 FB 254
(output = B9486)
 As for U470
``` & All binector numbers 1 & Ind: 3 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.68 Technology controller}

Only active with optional technology software S00
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Technology controller: Actual value} \\
\hline \[
\begin{aligned}
& \hline \text { U480 } \\
& (2480) \\
& { }_{*} \\
& \text { S00 } \\
& \\
& \text { (B170) }
\end{aligned}
\] & \begin{tabular}{l}
Source for actual value \\
Selection of connectors to be added as the actual value \\
\(0=\) connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & \[
\text { FB } 114
\] & All connector numbers 1 & \begin{tabular}{l}
Ind: 4
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U481 } \\
& (2481) \\
& \text { S00 } \\
& \text { FDS } \\
& \text { (B170) } \\
& \hline
\end{aligned}
\] & Filter time for actual value & FB 114 & \[
\begin{aligned}
& 0.00 \text { to } 600.00 \\
& {[\mathrm{~s}]} \\
& 0.01
\end{aligned}
\] & Ind: 4 FS=0.00 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U482 } \\
& (2482) \\
& \text { S00 } \\
& \text { FDS } \\
& \text { (B170) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Derivative-action time for actual value (D component)
\[
0.000=\mathrm{D} \text { component deactivated }
\] \\
See also U483
\end{tabular} & \[
\text { FB } 114
\] & \[
\begin{array}{|l}
\hline 0.000 \text { to } 30.000 \\
{[\mathrm{~s}]} \\
0.001
\end{array}
\] & Ind: 4 FS=0.000 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U483 } \\
(2483) \\
* \\
\text { S00 } \\
\text { FDS } \\
\text { (B170) } \\
\hline
\end{array}
\] & Factor for derivative-action time & FB 114 & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Technology controller: Setpoint} \\
\hline \[
\begin{array}{|l|}
\hline \text { U484 } \\
(2484) \\
{ }^{2} \\
\text { S00 } \\
\text { (B170) }
\end{array}
\] & \begin{tabular}{l}
Source for setpoint \\
Selection of connectors to be added as the setpoint
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & Ind: 4 FS=0 Type: L2 & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U485 } \\
(2485) \\
\text { S00 } \\
\text { FDS } \\
\text { (B170) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Injectable additional setpoint \\
This parameter setting is added to the setpoint when the binector selected in U486 changes to the log. "1" state
\end{tabular} & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=0.00 } \\
& \text { Type: } 12
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U486 } \\
(2486) \\
* \\
\text { S00 } \\
\text { (B170) } \\
\hline
\end{array}
\] & Source for control bit for injection of additional setpoint
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U487 } \\
(2487) \\
\text { S00 } \\
\text { FDS } \\
\text { (B170) } \\
\hline
\end{array}
\] & Filter time for setpoint FB 114 & \[
\begin{aligned}
& 0.00 \text { to } 600.00 \\
& {[\mathrm{~s}]} \\
& 0.01
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=0.00 } \\
& \text { Type: } 02
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Technology controller: Controller parameters} \\
\hline \[
\begin{array}{|l|}
\hline \text { U488 } \\
(2488) \\
\text { S00 } \\
\text { FDS } \\
\text { (B170) } \\
\hline
\end{array}
\] & P gain & FB 114 & \[
\begin{aligned}
& 0.10 \text { to } 200.00 \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=3.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U489 } \\
(2489) \\
* \\
\text { S00 } \\
\text { (B170) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Source for input quantity (x) for Kp adaptation \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & FB 114 & All connector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{array}{|l}
\hline \hline \text { U490 } \\
(2490) \\
\text { S00 } \\
\text { FDS } \\
\text { (B170) } \\
\hline
\end{array}
\] & Characteristic for Kp adaptation: Threshold 1 (x1) & FB 114 & \[
\begin{aligned}
& \hline 0.00 \text { to } 200.00 \\
& {[\%]} \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U491 } \\
(2491) \\
\text { S00 } \\
\text { FDS } \\
\text { (B170) } \\
\hline
\end{array}
\] & Characteristic for Kp adaptation: Threshold 2 (x2) & FB 114 & \[
\begin{aligned}
& \hline 0.00 \text { to } 200.00 \\
& {[\%]} \\
& 0.01
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 4 \\
& \text { FS=100.00 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U492 } \\
(2492) \\
\text { S00 } \\
\text { FDS } \\
\text { (B170) } \\
\hline
\end{array}
\] & Characteristic for Kp adaptation: Minimum value ( \(\mathbf{y} 1\) ) Minimum value of Kp factor ( y ) when \(\mathrm{x} \leq \mathrm{x} 1\) & FB 114 & \[
\begin{array}{|l}
\hline 0.10 \text { to } 30.00 \\
0.01
\end{array}
\] & Ind: 4 FS=1.00 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U493 } \\
(2493) \\
\text { S00 } \\
\text { FDS } \\
\text { (B170) } \\
\hline
\end{array}
\] & Characteristic for Kp adaptation: Maximum value (y2) Maximum value of \(K p\) factor ( \(y\) ) when \(x \geq x 2\) & \[
\text { FB } 114
\] & \[
\begin{array}{|l}
\hline 0.10 \text { to } 30.00 \\
0.01
\end{array}
\] & \begin{tabular}{l}
Ind: 4 FS=1.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U494 \\
(2494) \\
S00 \\
FDS \\
(B170)
\end{tabular} & \begin{tabular}{l}
Reset time \\
See also U495
\end{tabular} & FB 114 & \[
\begin{array}{|l|}
\hline 0.000 \text { to } 60.000 \\
{[s]} \\
0.001
\end{array}
\] & \begin{tabular}{l}
Ind: 4 FS=3.000 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U495 } \\
(2495) \\
* \\
\text { S00 } \\
\text { FDS } \\
(B 170) \\
\hline
\end{array}
\] & Factor for reset time
\[
\begin{array}{ll}
0 & \text { Reset time }=\text { U494 * } 1 \\
1 & \text { Reset time }=\text { U494 * } 1000
\end{array}
\] & FB 114 & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=0 } \\
\text { Type: O2 }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Technology controller: Speed droop}

A parameterizable feedback loop can be connected in parallel to the I and \(P\) components of the technology controller (acts on summation point of setpoint and actual value). This loop can be activated and deactivated by settings in parameter U496 (loop can also be deactivated by setting U497 = 0).
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l|}
\hline \text { U496 } \\
(2496) \\
* \\
\text { S00 } \\
\text { (B170) } \\
\hline
\end{array}
\] & Source for control bit for speed droop injection
```

0 = binector B0000
1 = binector B0001
etc.

``` & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U497 } \\
(2497) \\
\text { S00 } \\
\text { FDS } \\
\text { (B170) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Speed droop \\
Example: \\
A 10\% speed droop setting causes a \(10 \%\) reduction in the setpoint at a 100\% controller output ("softening" of closed-loop control).
\end{tabular} & \[
\begin{aligned}
& 0.0 \text { to } 60.0 \\
& {[\%]} \\
& 0.1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U498 } \\
(2498) \\
\text { S00 } \\
\text { FDS } \\
\text { (B170) } \\
\hline
\end{array}
\] & Positive limit for speed droop FB 114 & \[
\begin{aligned}
& \hline 0.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=100.00 } \\
\text { Type: O2 }
\end{array}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U499 } \\
(2499) \\
\text { S00 } \\
\text { FDS } \\
\text { (B170) } \\
\hline
\end{array}
\] & Negative limit for speed droop FB 114 & \[
\begin{array}{|l}
\hline-200.00 \text { to } 0.00 \\
{[\%]} \\
0.01
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 4 \\
\text { FS=-100.00 } \\
\text { Type: } 12
\end{array}
\] & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \text { U500 } \\
(2500) \\
* \\
\text { S00 } \\
\text { (B170) } \\
\hline
\end{array}
\] & Source for technology controller enabling command
```

0 = binector B0000
1 = binector B0001
etc.

``` & All binector numbers 1 & \begin{tabular}{l}
Ind: None
\[
\mathrm{FS}=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U502 } \\
& (2502) \\
& * \\
& \text { S00 } \\
& \text { FDS } \\
& \text { (B170) }
\end{aligned}
\] & \begin{tabular}{cl} 
PI/PID controller switchover \\
0 & \begin{tabular}{l} 
PI controller (D component is applied only in actual-value \\
channel)
\end{tabular} \\
1 & PID controller (D component is applied for control deviation)
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U503 } \\
& (2503) \\
& { }^{*} \\
& \text { S00 } \\
& \text { FDS } \\
& \text { (B170) }
\end{aligned}
\] & \begin{tabular}{cl} 
Set P component to zero \\
0 & \begin{tabular}{l} 
Set controller P component to zero (i.e. to obtain pure I \\
controller)
\end{tabular} \\
1 & Controller P component is active
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U504 } \\
& (2504) \\
& * \\
& \text { S00 } \\
& \text { FDS } \\
& \text { (B170) }
\end{aligned}
\] & \begin{tabular}{cll} 
Set I component to zero & FB 114 \\
0 & \begin{tabular}{l} 
Set controller I component to zero (i.e. to obtain pure P \\
1
\end{tabular} & \begin{tabular}{l} 
controller)
\end{tabular} \\
Controller I component is active &
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \\
FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Technology controller: Set I component}

When the state of the binector selected in U506 switches from log. " 0 " to " 1 ", the I component of the technology controller is set to the value parameterized in U505.
With this function it is possible, for example, to use the same signal (binector) to control controller enabling commands and setting of the I component.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U505 } \\
& (2505) \\
& * \\
& \text { S00 } \\
& \text { (B170) } \\
& \hline
\end{aligned}
\] & Source for setting value for I component
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 114 & All connector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U506 } \\
& (2506) \\
& * \\
& \text { S00 } \\
& \text { (B170) } \\
& \hline
\end{aligned}
\] & Source for control bit "Set I component"
\[
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & FB 114 & All binector numbers 1 & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Technology controller: Output, limitation} \\
\hline \[
\begin{aligned}
& \hline \text { U507 } \\
& (2507) \\
& { }^{*} \\
& \text { S00 } \\
& \\
& \text { (B170) }
\end{aligned}
\] & \begin{tabular}{l}
Source for variable positive limit \\
After multiplication with U508, the contents of the selected connector act as a positive limit for the technology controller output.
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] \\
Note: \\
If the selected connector contains a negative value, a negative maximum value is applied to the output of this limiter stage.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U508 } \\
& \text { (2508) } \\
& \text { S00 } \\
& \text { FDS } \\
& \text { (B170) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Positive limit for output of technology controller \\
See also U507
\end{tabular} & \[
\begin{aligned}
& 0.0 \text { to } 199.9 \\
& {[\%]} \\
& 0.1
\end{aligned}
\] & Ind: 4 FS=100.0 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline U509 (2509) S00 (B170) & \begin{tabular}{l}
Source for variable negative limit \\
After multiplication with U510, the contents of the selected connector act as a negative limit for the technology controller output. \\
0 = connector K0000 \\
1 = connector K0001 \\
etc. \\
Note: \\
If the selected connector contains a positive value, a positive minimum value is applied to the output of this limiter stage. \\
Note: \\
Connector K9252 contains the positive limiting value with inverted sign generated by U507 and U508. By setting U509=9252 and U510=100.00, therefore, it is possible to set the negative and positive limits symmetrically.
\end{tabular} & All connector numbers 1 & Ind: None FS=9252 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U510 } \\
& (2510) \\
& \text { S00 } \\
& \text { FDS } \\
& \text { (B170) }
\end{aligned}
\] & \begin{tabular}{l}
Negative limit for output of technology controller \\
See also U509
\end{tabular} & \[
\begin{aligned}
& 0.0 \text { to } 199.9 \\
& {[\%]} \\
& 0.1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=100.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U5111 } \\
& (2511) \\
& { }^{*} \\
& \text { S00 } \\
& \text { (B170) }
\end{aligned}
\] & \begin{tabular}{l}
Source for variable weighting factor for output \\
After multiplication with U512, the contents of the selected connector act as a weighting factor for the technology controller output. \\
0 = connector K0000 \\
1 = connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U512 } \\
& (2512) \\
& \text { S00 } \\
& \text { FDS } \\
& \text { (B170) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Weighting factor for output FB 114 \\
See also U511
\end{tabular} & \[
\begin{array}{|l}
\hline-100.0 \text { to } 100.0 \\
{[\%]} \\
0.1
\end{array}
\] & \begin{tabular}{l}
Ind: 4 FS=100.0 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.69 Velocity/speed calculators}

Only active with optional technology software S00


\section*{Velocity/speed calculator}

Function: \(\quad n_{-}\)set \(=\frac{v_{\_} \text {set } * i}{D * \pi * n_{-} \text {rated }} * 100 \%\)
\begin{tabular}{lll} 
n_set & Setpoint speed & (n023, K9257) \\
D & Diameter & (U517, U518, U523) \\
n_rated & Rated speed & (U520) \\
i & Gear ratio & (U519) \\
v_set & Setpoint velocity & (U516)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \text { U516 } \\
(2516) \\
{ }^{2} \\
\text { S00 } \\
\\
\text { (B190) }
\end{array}
\] & \begin{tabular}{l}
Source for set velocity \\
A value of 16384 in the selected connector is equivalent to the set velocity set in U522 \\
\(0=\) Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U517 } \\
(2517) \\
{ }^{*} \\
\text { S00 } \\
\\
\text { (B190) }
\end{array}
\] & \begin{tabular}{l}
Source for diameter \\
A value of 16384 in the selected connector is equivalent to the diameter set in U523 \\
\(0=\) Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U518 } \\
(2518) \\
\text { S00 } \\
\text { FDS } \\
\text { (B190) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
Minimum diameter \\
Lower limit for diameter set in U517
\end{tabular} & \[
\begin{aligned}
& 10.0 \text { to } 6553,5 \\
& {[\mathrm{~mm}]} \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=6500.0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U519 } \\
(2519) \\
\text { S00 } \\
\text { FDS } \\
\text { (B190) }
\end{array}
\] & Gear ratio (i) FB 115 & \[
\begin{aligned}
& 1.00 \text { to } 300.00 \\
& 0.01
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=1.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\(\left.\left.\begin{array}{|l|l|l|l|l|}\hline \text { PNU } & \text { Description } & \begin{array}{l}\text { Value range } \\ \text { [Unit] } \\ \text { Steps }\end{array} & \begin{array}{l}\text { No. indices } \\ \text { Factory } \\ \text { setting }\end{array} \\ \text { Type }\end{array}\right] \begin{array}{l}\text { See } \\ \text { Change } \\ \text { (Access } / \\ \text { Status) }\end{array}\right]\)

\subsection*{11.70 Variable moment of inertia}

Only active with optional technology software S00

\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.71 PI controller}

Only active with optional technology software S00
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
PI contro \\
PI contr
\end{tabular} & \[
\begin{aligned}
& \hline \text { er } 1=\text { FB260 } \\
& \text { er } 2=\text { FB261 } \\
& \text { er } 3=\text { FB262 } \\
& \text { er } 4=\text { FB263 } \\
& \text { er } 5=\text { FB264 } \\
& \text { er } 6=\text { FB265 } \\
& \text { er } 7=\text { FB266 } \\
& \text { er } 8=\text { FB267 } \\
& \text { er } 9=\text { FB268 } \\
& \text { er } 10=\text { FB269 } \\
& \hline
\end{aligned}
\] & & & & \\
\hline U530
(2530)
\(*\)
S00
(B180...
B189) & \begin{tabular}{l}
Source for input quantity \\
0 = Connector K0000 \\
1 = Connector K0001 etc. \\
i001: input quantity \\
i002: input quantity \\
i010: input quantity
\end{tabular} & \begin{tabular}{l}
[SW 1.8 and later] \\
PI controller 1 \\
PI controller 2 \\
PI controller 10
\end{tabular} & All connector numbers 1 & \[
\begin{aligned}
& \text { Ind: } 10 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Enable and setting of the PI controllers}

\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U533 } \\
& (2533) \\
& { }_{*} \\
& \text { S00 } \\
& \\
& \text { (B180... } \\
& \text { B189) }
\end{aligned}
\] & \begin{tabular}{l}
Source for Setting values \\
[SW 1.8 and later] \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc. \\
i001: Setting value for I component PI controller 1 \\
i002: Setting value for I component PI controller 2 \\
i010: Setting value for I component PI controller 10 \\
i011: Setting value for Output PI controller 1 \\
i012: Setting value for Output PI controller 2 \\
iO20: Setting value for Output PI controller 10
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 20 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Filtering of the input signals} \\
\hline U534
\((2534)\)
\(*\)
S00
(B180...
B189) & \multicolumn{2}{|l|}{\begin{tabular}{l}
Source for variable filtering time for the input signal [SW 1.8 and later] \\
The content of the selected connector acts as filtering time for the PI controller after multiplication with U535.
\end{tabular}} & All connector numbers 1 & Ind: 10 FS=1 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \begin{array}{l}
\text { U535 } \\
(2535)
\end{array} \\
& \text { S00 } \\
& \text { (B180... } \\
& \text { B189) }
\end{aligned}
\] & \begin{tabular}{l}
Filtering time for the input signal \\
i001: filtering time \\
i002: filtering time \\
i010: filtering time
\end{tabular} & \begin{tabular}{l}
[SW 1.8 and later] \\
PI controller 1 \\
PI controller 2 \\
PI controller 10
\end{tabular} & ```
0 to 10000
[ms]
1
``` & \[
\begin{aligned}
& \hline \text { Ind: } 10 \\
& \text { FS=0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Controller parameters} \\
\hline \[
\begin{array}{|l}
\hline \text { U536 } \\
(2536) \\
* \\
\text { S00 } \\
\\
\text { (B180... } \\
\text { B189) }
\end{array}
\] & \begin{tabular}{l}
Source for variable \(P\) gain \\
The content of the selected connector acts as the P gain for the PI controller after multiplication with U537. \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \[
\begin{aligned}
& \text { Ind: } 10 \\
& \text { FS=1 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { U537 } \\
(2537) \\
\text { S00 } \\
\text { (B180... } \\
\text { B189) }
\end{array}
\] & \begin{tabular}{cccc}
PI controller P gain & & [SW 1.8 and later] \\
i001: & P gain & PI controller 1 & \\
i002: & P gain & Pl controller 2 & \\
\(\ldots\) & & PI controller 10 & \\
i010: & P gain &
\end{tabular} & \[
\begin{aligned}
& 0.10 \text { to } 200.00 \\
& 0.01
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 10 \\
& \text { FS=3.00 } \\
& \text { Type: } 02
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U538 } \\
(2538) \\
* \\
\text { S00 } \\
\\
\text { (B180... } \\
\text { B189) }
\end{array}
\] & \begin{tabular}{l}
Source for variable Integration time \\
The content of the selected connector acts as the integration time for the PI controller after multiplication with U539. \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc. \\
i001: variable Integration time PI controller 1 \\
i002: variable Integration time PI controller 2 \\
... \\
i010: variable Integration time PI controller 10
\end{tabular} & All connector numbers 1 & \[
\begin{aligned}
& \text { Ind: } 10 \\
& \text { FS=1 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PNU & Description & & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \begin{tabular}{l}
\\
\hline U539 \\
(2539) \\
S00 \\
(B180... \\
B189)
\end{tabular} & \begin{tabular}{l}
PI controller integration time \\
i001: Integration time \\
i002: Integration time \\
i010: Integration time
\end{tabular} & \begin{tabular}{l}
[SW 1.8 and later] \\
PI controller 1 \\
PI controller 2 \\
PI controller 10
\end{tabular} & \[
\begin{aligned}
& 0.010 \text { to } 10.000 \\
& \text { [s] } \\
& 0.001
\end{aligned}
\] & \[
\begin{aligned}
& \hline \hline \text { Ind: } 10 \\
& \text { FS=3.000 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Control bits} \\
\hline U540
(2540)
\(*\)
S00
(B180...
B189) & \begin{tabular}{l}
Freeze P component \\
[SW 1.8 and later] \\
\(0 \quad\) Controller P component frozen (i.e. pure I controller) \\
1 Controller P component active \\
i001: PI controller 1 \\
i002: PI controller 2 \\
i010: PI controller 10
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 10 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
\\
\hline U541 \\
(2541) \\
\(\star\) \\
S00 \\
\\
(B180... \\
B189)
\end{tabular} & \begin{tabular}{cl}
Freeze I component & [SW 1.8 and later] \\
0 & Controller I component frozen (i.e. pure P controller) \\
1 & Controller I component active \\
& \\
i001: & PI controller 1 \\
i002: & PI controller 2 \\
\(\ldots\) & \\
i010: & PI controller 10
\end{tabular} & \[
0 \text { to } 1
\] & \begin{tabular}{l}
Ind: 10 FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Output, Limitation} \\
\hline \[
\begin{array}{|l|}
\hline \text { U542 } \\
(2542) \\
* \\
\text { S00 } \\
\\
\text { (B180... } \\
\text { B189) }
\end{array}
\] & \begin{tabular}{l}
Source for variable positive limit \\
The content of the selected connector acts as the positive limit for the output of the PI controller after multiplication with U543. \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc. \\
i001: PI controller 1 \\
i002: PI controller 2 \\
... \\
i010: PI controller 10 \\
Note: \\
If the content of the selected connector has a negative value, this causes a negative maximum value at the output of this limiter stage.
\end{tabular} & All connector numbers 1 & \[
\begin{aligned}
& \text { Ind: } 10 \\
& \text { FS=1 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U543 } \\
(2543) \\
\text { S00 } \\
\text { (B180... } \\
\text { B189) } \\
\hline
\end{array}
\] & Positive limit for the output of the PI controller [SW 1.8 and later] See also U542 & \[
\begin{aligned}
& \hline 0.0 \text { to } 199.9 \\
& {[\%]} \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 10 \\
& \text { FS=100.0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { on-line }
\end{aligned}
\] \\
\hline U544
(2544)
\(*\)
S00
(B180...
B189) & \begin{tabular}{l}
Source for variable negative Limit \\
The content of the selected connector acts as the negative limit for the output of the technology controller after multiplication with U510. \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc. \\
i001: PI controller 1 \\
i002: PI controller 2 \\
i010: PI controller 10 \\
Note: \\
If the content of the selected connector has a positive value, this causes a positive minimum value at the output of this limiter stage. \\
Note: \\
Connectors K9306 to K9396 contain for PI controllers 1 to 10 the positive limitation values formed by U542 and U543 with an inverted sign. In this way it is possible to set the negative limitation symmetrically to the positive limitation by setting U544=9306 to 9396 and U545=100.0.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 10 \\
FS= \\
i001: 9306 \\
i002: 9316 \\
i003: 9326 \\
i004: 9336 \\
i005: 9346 \\
i006: 9356 \\
i007: 9366 \\
i008: 9376 \\
i009: 9386 \\
i010: 9396 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & See Change (Access / Status) \\
\hline \begin{tabular}{l}
\\
\hline U545 \\
(2545) \\
S00 \\
(B180... \\
B189)
\end{tabular} & \begin{tabular}{l}
Negative limit for the output of the PI controller \\
[SW 1.8 and later] See also U544
\end{tabular} & \[
\begin{aligned}
& \hline 0.0 \text { to } 199.9 \\
& {[\%]} \\
& 0.1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \hline \text { Ind: } 10 \\
& \text { FS=100.0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.72 Closed-loop control elements}

Only active with optional technology software S00
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Derivative / delay elements SW 1.8 and later} & \multicolumn{2}{|r|}{FB 270 to FB 279} \\
\hline U550
(2550)
\(*\)
S00
(B156)
(B157)
(B158) & \multicolumn{3}{|l|}{\begin{tabular}{l}
Source for input quantity \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc. \\
i001: Input quantity derivative/delay element 1 \\
i002: Input quantity derivative/delay element 2 \\
i003: Input quantity derivative/delay element 3 \\
i004: Input quantity derivative/delay element 4 \\
i005: Input quantity derivative/delay element 5 \\
i006: Input quantity derivative/delay element 6 \\
i007: Input quantity derivative/delay element 7 \\
i008: Input quantity derivative/delay element 8 \\
i009: Input quantity derivative/delay element 9 \\
i010: Input quantity derivative/delay element 10
\end{tabular}} & \begin{tabular}{l}
[SW 1.8 and later] \\
(FB 270) \\
(FB 271) \\
(FB 272) \\
(FB 273) \\
(FB 274) \\
(FB 275) \\
(FB 276) \\
(FB 277) \\
(FB 278) \\
(FB 279)
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 10 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U551 } \\
& (2551) \\
& * \\
& \text { S00 } \\
& \\
& \text { (B156) } \\
& \text { (B157) } \\
& \text { (B158) }
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Source for multiplier for derivative-action time \\
\(0=\) Connector K0000 \\
1 = Connector K0001 \\
etc. \\
\(\begin{array}{lll}\text { i001: } & \text { Multiplier } & \text { derivative/delay element } 1 \\ \text { i002: } & \text { Multiplier } & \text { derivative/delay element 2 } \\ \text { 1003: } & \text { Multiplier } & \text { derivative/delay element 3 } \\ \text { i004: } & \text { Multiplier } & \text { derivative/delay element 4 } \\ \text { i005: } & \text { Multiplier } & \text { derivative/delay element 5 } \\ \text { i006: } & \text { Multiplier } & \text { derivative/delay element } 6 \\ \text { i007: } & \text { Multiplier } & \text { derivative/delay element } 7 \\ \text { i008: } & \text { Multiplier } & \text { derivative/delay element } 8 \\ \text { i00:: } & \text { Multiplier } & \text { derivative/delay element } 9 \\ \text { i010: } & \text { Multiplier } & \text { derivative/delay element } 10\end{array}\)
\end{tabular}} & \begin{tabular}{l}
SW 1.8 and later] \\
(FB 270) \\
(FB 271) \\
(FB 272) \\
(FB 273) \\
(FB 274) \\
(FB 275) \\
(FB 276) \\
(FB 277) \\
(FB 278) \\
(FB 279)
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 10 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U552 } \\
& (2552) \\
& \text { S00 } \\
& \\
& \text { (B156) } \\
& \text { (B157) } \\
& \text { (B158) }
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Derivative-action time \\
i001: Der.-act.time deriv./delay element 1 \\
i002: Der.-act.time deriv./delay element 2 \\
i003: Der.-act.time deriv./delay element 3 \\
i004: Der.-act.time deriv./delay element 4 \\
i005: Der.-act.time deriv./delay element 5 \\
i006: Der.-act.time deriv./delay element 7 \\
i008: Der.-act.time deriv./delay element 8 \\
i009: Der.-act.time deriv./delay element 9 \\
i010: Der.-act.time deriv./delay element 10
\end{tabular}} & \begin{tabular}{l}
[SW 1.8 and later] \\
(FB 270) \\
(FB 271) \\
(FB 272) \\
(FB 273) \\
(FB 274) \\
(FB 276) \\
(FB 277) \\
(FB 278) \\
(FB 279)
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& {\left[\begin{array}{l}
\text { [ms] } \\
1
\end{array}\right.}
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 10 \\
& \text { FS=100 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U553 } \\
& (2553) \\
& * \\
& \text { S00 } \\
& \\
& \text { (B156) } \\
& \text { (B157) } \\
& \text { (B158) }
\end{aligned}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Source for multiplier for filtering time \\
\(0=\) Connector K0000 \\
1 = Connector K0001 \\
etc. \\
\(\begin{array}{lll}\text { i001: } & \text { Multiplier } & \text { derivative/delay element 1 } \\ \text { i002: } & \text { Multiplier } & \text { derivative/delay element 2 } \\ \text { i003: } & \text { Multiplier } & \text { derivative/delay element 3 } \\ \text { i004: } & \text { Multiplier } & \text { derivative/delay element 4 } \\ \text { i005: } & \text { Multiplier } & \text { derivative/delay element 5 } \\ \text { i006: } & \text { Multiplier } & \text { derivative/delay element 6 } \\ \text { i007: } & \text { Multiplier } & \text { derivative/delay element 7 } \\ \text { i008: } & \text { Multiplier } & \text { derivative/delay element 8 } \\ \text { i009: } & \text { Multiplier } & \text { derivative/delay element 9 } \\ \text { i010: } & \text { Multiplier } & \text { derivative/delay element 10 }\end{array}\)
\end{tabular}} & \begin{tabular}{l}
[SW 1.8 and later] \\
(FB 270) \\
(FB 271) \\
(FB 272) \\
(FB 273) \\
(FB 274) \\
(FB 275) \\
(FB 276) \\
(FB 277) \\
(FB 278) \\
(FB 279)
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 10 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{array}{|l}
\hline \text { P052 }=3 \\
\text { P051 }=40 \\
\text { off-line }
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PNU & \multicolumn{3}{|l|}{Description} & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \hline \text { U554 } \\
& (2554)
\end{aligned}
\]} & \multicolumn{2}{|l|}{Filtering time} & \multirow[t]{11}{*}{[SW 1.8 and later]
(FB 270)
(FB 271)
(FB 272)
(FB 273)
(FB 274)
(FB 275)
(FB 276)
(FB 277)
(FB 278)
(FB 279)} & \multirow[t]{11}{*}{\[
\begin{aligned}
& \hline 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1
\end{aligned}
\]} & Ind: 10 & P052 = 3 \\
\hline & i001: & Filtering time derivative/delay element 1 & & & \begin{tabular}{l}
FS=100 \\
Type: O2
\end{tabular} & P051 = 40 on-line \\
\hline \multirow[t]{9}{*}{\[
\begin{aligned}
& \text { S00 } \\
& \text { (B156) } \\
& \text { (B157) } \\
& \text { (B158) }
\end{aligned}
\]} & i002: & Filtering time derivative/delay element 2 & & & & \\
\hline & i003: & Filtering time derivative/delay element 3 & & & & \\
\hline & i004: & Filtering time derivative/delay element 4 & & & & \\
\hline & i005: & Filtering time derivative/delay element 5 & & & & \\
\hline & i006: & Filtering time derivative/delay element 6 & & & & \\
\hline & i007: & Filtering time derivative/delay element 7 & & & & \\
\hline & i008: & Filtering time derivative/delay element 8 & & & & \\
\hline & i009: & Filtering time derivative/delay element 9 & & & & \\
\hline & i010: & Filtering time derivative/delay element 10 & & & & \\
\hline
\end{tabular}

\subsection*{11.73 Setpoint reduction}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U607 } \\
& (2607) \\
& * \\
& \text { BDS } \\
& \\
& \text { (G135) }
\end{aligned}
\] & ```
Source for activation of the setpoint reduction
[SW 1.6 and later]
 0 = Binector B0000
 1 = Binector B0001
 etc.
 0 Setpoint reduction active
 The Setpoint (before the ramp-function generator) is multiplied
 by the factor set in parameter U608
 1 No setpoint reduction
``` & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U608 } \\
& (2608) \\
& \text { FDS } \\
& (G 135) \\
& \hline
\end{aligned}
\] & Multiplier for speed setpoint on activation of the setpoint reduction [SW 1.6 and later] & \[
\begin{aligned}
& 0.00 \text { to } 100.00 \\
& {[\%] \quad} \\
& 0.01 \%
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 4 \\
& \text { FS=15.00 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.74 Definition of the function of inputs and outputs}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U616 } \\
& (2616) \\
& (G 117)
\end{aligned}
\] & \begin{tabular}{l}
Control word for input "E stop" (term. 105 to 108) [SW 2.0 and later] \\
\(0=E\) stop has same effect as OFF2 \\
\(1=\mathrm{E}\) stop immediately cancels the firing pulse chain (without waiting for I = 0 and without outputting \(\alpha_{w}\) )
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: none FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { online }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.75 Definition of the function of the relay output at terminals 109 / 110}
\begin{tabular}{|c|c|c|c|c|}
\hline U619 (2619) & \begin{tabular}{l}
Source for the relay output "line contactor ON" (terminals 109 / 110) \\
[SW 1.7 and later]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2
\[
\mathrm{FS}=124
\] \\
Type: L2
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40
\end{aligned}
\] \\
off-line
\end{tabular} \\
\hline BDS & \(0=\) Binector B0000 & & & \\
\hline & 1 = Binector B0001 & & & \\
\hline (G117) & etc. & & & \\
\hline & 124 = Main contactor ON & & & \\
\hline
\end{tabular}

\subsection*{11.76 Starting pulse - Speed controller}
(See also Chapter 8 Function Diagram Sheet G150)
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
U651 \\
(2651) \\
FDS \\
(G150)
\end{tabular} & Starting pulse (integrator setting value for the speed controller) [SW 1.7 and later] & \[
\begin{aligned}
& -100.00 \text { to } 100.00 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U652 } \\
(2652) \\
\text { FDS } \\
\text { (G150) } \\
\hline
\end{array}
\] & Multiplier for starting pulse with neg. setpoint [SW 1.7 and later] if the starting pulse acc. to U 651 is also used for pos. setpoint & \[
\begin{aligned}
& 0.00 \text { to } 200.00 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \(F S=50.00\) \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U653 } \\
(2653) \\
\text { FDS } \\
(G 150) \\
\hline
\end{array}
\] & Starting pulse with neg. setpoint [SW 1.7 and later] & \[
\begin{aligned}
& \hline-100.00 \text { to } 100.00 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0.00 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U655 } \\
& (2655) \\
& { }_{*} \\
& (\mathrm{G} 150)
\end{aligned}
\] & \begin{tabular}{l}
Source for Starting pulse \\
[SW 1.7 and later]
\[
\begin{aligned}
& 0=\text { Connector K0000 } \\
& 1=\text { Connector K0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=451 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U656 } \\
& (2656) \\
& { }_{*} \\
& (G 150)
\end{aligned}
\] & \begin{tabular}{l}
Source for starting pulse with neg. setpoint \\
[SW 1.7 and later] \\
\(0=\) Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: None FS=452 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U657 } \\
& (2657) \\
& * \\
& \text { BDS } \\
& \text { (G150) }
\end{aligned}
\] & \begin{tabular}{l}
Source for switchover starting pulse for pos./neg. setp. \\
[SW 1.7 and later]
\[
\begin{aligned}
& 0=\text { Binector B0000 } \\
& 1=\text { Binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.77 Evaluation of a 4-step master switch for cranes}
(See also Chapter 8 Function Diagram Sheet G125)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { U660 } \\
& (2660) \\
& { }_{*} \\
& (\mathrm{G} 125)
\end{aligned}
\] & \begin{tabular}{l}
Source for travel command 1 \\
\(0=\) Binector B0000 \\
1 = Binector B0001 etc.
\end{tabular} & [SW 1.7 and later] & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U661 } \\
& (2661) \\
& \star \\
& (\mathrm{G} 125)
\end{aligned}
\] & \begin{tabular}{l}
Source for travel command 2 \\
\(0=\) Binector B0000 \\
1 = Binector B0001 etc.
\end{tabular} & [SW 1.7 and later] & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U662 } \\
& (2662) \\
& \star \\
& (\mathrm{G} 125)
\end{aligned}
\] & Source for switchover to setpoint step S2
\[
\begin{aligned}
& 0=\text { Binector B0000 } \\
& 1=\text { Binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & [SW 1.7 and later] & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U663 } \\
& (2663) \\
& { }_{*} \\
& (\mathrm{G} 125)
\end{aligned}
\] & Source for switchover to setpoint step S3
\[
\begin{aligned}
& 0=\text { Binector B0000 } \\
& 1=\text { Binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & [SW 1.7 and later] & All binector numbers 1 & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U664 } \\
& (2664) \\
& * \\
& (\mathrm{G} 125)
\end{aligned}
\] & Source for switchover to setpoint step S4
\[
\begin{aligned}
& 0=\text { Binector B0000 } \\
& 1=\text { Binector B0001 } \\
& \text { etc. }
\end{aligned}
\] & [SW 1.7 and later] & All binector numbers 1 & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline U665 (2665) (G125) & Setpoint for setpoint step S1 & [SW 1.7 and later] & \[
\begin{aligned}
& \hline 0.00 \text { to } 110.00 \\
& \text { [\%] } \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & Ind: None \(\mathrm{FS}=10.00\) Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline U666 (2666) (G125) & Setpoint for setpoint step S2 & [SW 1.7 and later] & \[
\begin{aligned}
& 0.00 \text { to } 110.00 \\
& {[\%]} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & Ind: None \(\mathrm{FS}=25.00\) Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline U667 (2667) (G125) & Setpoint for setpoint step S3 & [SW 1.7 and later] & \[
\begin{aligned}
& \hline 0.00 \text { to } 110.00 \\
& {[\%]} \\
& 0.01 \% \\
& \hline
\end{aligned}
\] & Ind: None \(\mathrm{FS}=40.00\) Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U668 } \\
& (2668) \\
& (\mathrm{G} 125)
\end{aligned}
\] & Setpoint for setpoint step S4 & [SW 1.7 and later] & \[
\begin{aligned}
& 0.00 \text { to } 110.00 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: None } \\
& \text { FS=100.00 } \\
& \text { Type: O2 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.78 Position/positional deviation acquisition}

Only active with optional technology software S00
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U670 } \\
& (2670) \\
& * \\
& \text { S00 } \\
& \text { (B152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for actual position values \\
Selection of connector whose values are to be used as actual position values. \\
i001: Actual position value 1 \\
i002: Actual position value 2 \\
Settings: \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 2 FS= i001: 46 \\
i002: 0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=2 \\
& \text { P051 }=40 \\
& \text { offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U671 } \\
& (2671) \\
& * \\
& \text { S00 } \\
& \text { (B152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for setting/resetting signal for position acquisition \\
Selection of binector whose value is to be used as the setting or resetting signals. \\
i001: Reset actual position value 1 \\
i002: Set actual position value 1 \\
i003: Reset actual position value 2 \\
i004: Set actual position value 2 \\
i005: Reset positional deviation \\
i006: Set positional deviation \\
Settings: \\
0 = Binector B0000 \\
1 = Binector B0001 \\
etc.
\end{tabular} & All binector numbers 1 & Ind: 6 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 }=40 \\
& \text { offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U672 } \\
& (2672) \\
& * \\
& \text { S00 } \\
& \text { (B152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for setting values \\
Selection of connectors whose values are to be used as setting values \\
i001: Setting value for position 1 \\
i002: Setting value for position 2 \\
i003: Setting value for positional deviation \\
Settings: \\
\(0=\) Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & Ind: 3
FS=
i001: 9471
i002: 9472
i003: 9473
Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 }=40 \\
& \text { offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U673 } \\
& (2673) \\
& * \\
& \text { S00 } \\
& \text { (B152) }
\end{aligned}
\] & \begin{tabular}{l}
\begin{tabular}{lr} 
Numerator of transformation ratio & FB 54 \\
for actual position value 2 & [SW 2.0 and later]
\end{tabular} \\
U673 must be less than or equal to U674, otherwise F058 is output with fault value 14
\end{tabular} & \[
\begin{aligned}
& -32766 \text { to } 32766 \\
& 1
\end{aligned}
\] & Ind: none FS=10000 Type: I2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U674 } \\
& (2674) \\
& * \\
& \text { S00 } \\
& \text { (B152) }
\end{aligned}
\] & \begin{tabular}{lr} 
Denominator of transformation ratio & FB 54 \\
for actual position value 2 & [SW 2.0 and later]
\end{tabular} & \[
\begin{aligned}
& 1 \text { to } 32767 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: none FS=10000 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=2 \\
& \text { P051 }=40 \\
& \text { offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U675 } \\
& (2675) \\
& * \\
& \text { S00 } \\
& \text { (B152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for connecting the positional deviation offset \\
[SW 2.0 and later] \\
Selection of the binector whose value connects the offset of the positional deviation \\
Settings:
\[
\begin{aligned}
& 0=\text { Binector B0000 } \\
& 1=\text { Binector B0001 } \\
& \text { etc. }
\end{aligned}
\]
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: none \\
FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 }=40 \\
& \text { offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U676 } \\
& (2676) \\
& * \\
& \text { S00 } \\
& \text { (B152) }
\end{aligned}
\] & \begin{tabular}{l}
SB 54
[SW 2.0 and later] \\
Selection of the connector whose value is to be used as the offset of the positional deviation \\
Settings: \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & Ind: none FS=9474 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=2 \\
& \text { P051 }=40 \\
& \text { offline }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U677 } \\
& (2677) \\
& * \\
& \text { S00 } \\
& \text { (B152) }
\end{aligned}
\] & \begin{tabular}{l}
Source for the fixed values for position acquisition \\
[SW 2.0 and later] \\
Selection of connectors whose values are to be used as fixed values for position acquisition \\
i001: LOW word of double-word connector KK9471 \\
i002: HIGH word of double-word connector KK9471 \\
i003: LOW word of double-word connector KK9472 \\
i004: HIGH word of double-word connector KK9472 \\
i005: LOW word of double-word connector KK9473 \\
i006: HIGH word of double-word connector KK9473 \\
i007: LOW word of double-word connector KK9474 \\
i008: HIGH word of double-word connector KK9474 \\
Settings: \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 8 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 }=40 \\
& \text { offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.79 Root extractor}

Only active with optional technology software S00
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l|}
\hline \text { U680 } \\
(2680) \\
{ }^{2} \\
\text { S00 } \\
\text { (B153) }
\end{array}
\] & \begin{tabular}{l}
Source for the input of the root extractor \\
[SW 2.0 and later] \\
Selection of the connector whose value is to be used for the root extractor input. \\
Settings: \\
0 = Connector K0000 \\
1 = Connector K0001 \\
etc.
\end{tabular} & All connector numbers 1 & Ind: none FS=9483 Type: L2 & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U681 } \\
(2681) \\
\text { S00 } \\
\text { (B153) }
\end{array}
\] & Operating point for limit monitoring indicator of the root extractor & \[
\begin{aligned}
& 1 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: none FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=2 \\
& \text { P051 }=40 \\
& \text { online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U682 } \\
(2682) \\
\text { S00 } \\
\text { (B153) } \\
\hline
\end{array}
\] & Hysteresis for limit monitoring indicator of the root extractor FB 58 [SW 2.0 and later] & \[
\begin{aligned}
& 1 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: none FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 =2 } \\
& \text { P051 = } 40 \\
& \text { online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U683 } \\
(2683) \\
\text { S00 } \\
\text { (B153) }
\end{array}
\] & \begin{tabular}{ll}
\(x\) value for root function and gradient & FB 58 \\
Definition of input values & [SW 2.0 and later] \\
i001: & Distance between input value of root function and fictitious \\
i002: & passage through zero for y value U684.001 \\
x value of gradient for y value U684.002
\end{tabular} & \[
\begin{aligned}
& 1 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 \\
FS=1000 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 2 \\
& \text { P051 = } 40 \\
& \text { online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U684 } \\
(2684) \\
\text { S00 } \\
\text { (B153) }
\end{array}
\] & \begin{tabular}{ll}
\(y\) value for root function and gradient & FB 58 \\
Definition of output values & [SW 2.0 and later] \\
i001: \(y\) value of root function for distance U683.001 \\
i002: \(y\) value of gradient for \(x\) value U683.002
\end{tabular} & \[
\begin{aligned}
& 0.01 \text { to } 199.99 \\
& {[\%]} \\
& 0.01
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind: } 2 \\
& \text { FS=100.00 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 =2 } \\
& \text { P051 = } 40 \\
& \text { online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.80 Configuration of SCB1 with SCl}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U690 } \\
& (2690) \\
& \\
& (Z 150) \\
& (Z 151)
\end{aligned}
\] & \begin{tabular}{l}
Configuration of analog inputs of SCl1 \\
Definition of type of input signals \\
Notes: \\
- Only one signal can be processed per input. Voltage or current signals can be evaluated. \\
- Voltage and current signals must be connected to different terminals. \\
- Only unipolar signals are permitted with settings 1 and 2, i.e. the internal process quantities are also unipolar. \\
- When setting 2 is selected, an input current of \(<2 \mathrm{~mA}\) causes shutdown on faults (open-circuit monitoring) \\
- The offset compensation for the analog inputs is set in parameter U692. \\
i001: Slave 1, analog input 1 \\
i002: Slave 1, analog input 2 \\
i003: Slave 1, analog input 3 \\
i004: Slave 2, analog input 1 \\
i005: Slave 2, analog input 2 \\
i006: Slave 2, analog input 3
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 2 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind:6 FS= 0 \\
Type O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U691 } \\
& (2691) \\
& \\
& (\text { Z150 }) \\
& (\text { Z151 })
\end{aligned}
\] & \begin{tabular}{l}
Smoothing time constant for analog inputs of SCI1 [SW 1.9 and later] \\
Formula: \(\mathrm{T}=2 \mathrm{~ms}\) * 2 to the power of U691 \\
i001: Slave 1, analog input 1 \\
i002: Slave 1, analog input 2 \\
i003: Slave 1, analog input 3 \\
i004: Slave 2, analog input 1 \\
i005: Slave 2, analog input 2 \\
i006: Slave 2, analog input 3
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 15 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind:6 FS= 2 \\
Type O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 =40 } \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U692 } \\
& (2692) \\
& \\
& (Z 150) \\
& (Z 151)
\end{aligned}
\] & \begin{tabular}{l}
Offset compensation for analog inputs of SCI1 \\
[SW 1.9 and later] \\
Setting instructions, see Operating Instructions for SCl1 \\
i001: Slave 1, analog input 1 \\
i002: Slave 1, analog input 2 \\
i003: Slave 1, analog input 3 \\
i004: Slave 2, analog input 1 \\
i005: Slave 2, analog input 2 \\
i006: Slave 2, analog input 3
\end{tabular} & \[
\begin{aligned}
& -20.00 \text { to } 20.00 \\
& 0.01 \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
Ind:6 FS= 0 \\
Type I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = 3 } \\
& \text { P051 =40 } \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U693 } \\
& (2693) \\
& \\
& (\text { Z155 }) \\
& (Z 156)
\end{aligned}
\] & \begin{tabular}{l}
Actual value output via analog outputs of SCl1 \\
[SW 1.9 and later] \\
Selection of connectors whose values are to be output (for details, see Operating Instructions for SCI1) \\
i001: Slave 1, analog input 1 \\
i002: Slave 1, analog input 2 \\
i003: Slave 1, analog input 3 \\
i004: Slave 2, analog input 1 \\
i005: Slave 2, analog input 2 \\
i006: Slave 2, analog input 3
\end{tabular} & All connector numbers 1 & Ind:6 FS= 0 Type L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U694 } \\
& (2694) \\
& \\
& (\text { Z155 }) \\
& (Z 156)
\end{aligned}
\] & \begin{tabular}{l}
Gain for analog outputs of SCI1 \\
[SW 1.9 and later] \\
Setting instructions, see Operating Instructions for SCl1 \\
i001: Slave 1, analog output 1 \\
i002: Slave 1, analog output 2 \\
i003: Slave 1, analog output 3 \\
i004: Slave 2, analog output 1 \\
i005: Slave 2, analog output 2 \\
i006: Slave 2, analog output 3
\end{tabular} & \[
\begin{aligned}
& -320.00 \text { to } 320.00 \\
& 0.01 \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
Ind:6 FS= 10.00 \\
Type I2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U695 } \\
& (2695) \\
& \\
& (\text { Z155 }) \\
& (Z 156)
\end{aligned}
\] & \begin{tabular}{l}
Offset compensation for analog outputs of SCl1 \\
[SW 1.9 and later] \\
Setting instructions, see Operating Instructions for SCl1 \\
i001: Slave 1, analog output 1 \\
i002: Slave 1, analog output 2 \\
i003: Slave 1, analog output 3 \\
i004: Slave 2, analog output 1 \\
i005: Slave 2, analog output 2 \\
i006: Slave 2, analog output 3
\end{tabular} & \[
\begin{aligned}
& \hline \hline-100.00 \text { to } 100.00 \\
& 0.01 \mathrm{~V}
\end{aligned}
\] & \begin{tabular}{l}
Ind:6 \(\mathrm{FS}=0\) \\
Type I2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } 3 \\
& \text { P051 =40 } \\
& \text { on-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U696 } \\
& (2696)
\end{aligned}
\] & \begin{tabular}{l}
Telegram failure time for SCB1 \\
Fault message F079 is displayed if no process data are exchanged with the supplementary board within this delay period. The monitoring function is implemented within a 20 ms cycle. For this reason, only setting values which constitute a multiple of 20 ms are meaningful. \\
Settings: \\
\(0 \quad\) No time monitoring \\
1... 65000 Permissible time interval between two process data exchange operations before a fault message is output. \\
Note: \\
The telegram monitoring function is active \\
- from the receipt of the first error-free telegram after connection of the electronics power supply \\
- from the receipt of the first error-free telegram after the telegram monitor has responded (i.e. monitoring timeout).
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 65000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 =40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { n697 } \\
& (2697)
\end{aligned}
\] & \begin{tabular}{l}
Diagnostic information of SCB1 \\
Visualization parameter for displaying diagnostic info relating to SCB1. The displayed values overflow at " 255 " (e.g. the number of telegrams begins at "0" again after "255"). \\
i001: Number of error-free telegrams \\
i002: Number of error-free telegrams \\
i003: Number of voltage failures on slaves \\
i004: Number of interruptions in fiber-optic connection \\
i005: Number of missing response telegrams \\
i006: Number of search telegrams for slave location \\
i007: ETX error \\
i008: Number of configuration telegrams \\
i009: Highest terminal numbers needed according to PZD connection ( ) (parameterization of connectors or binectors) \\
i010: Analog inputs/outputs required according to PZD connection of setpoint channel and actual value output via SCI ( ) (parameterization of appropriate connectors) \\
i011: Reserved \\
i012: Reserved \\
i013: SCB1 alarm word \\
i014: Setting defining whether slave no. 1 is needed and type if applicable \\
0 : No slave required \\
1:SCI1 \\
2: SCl2 \\
i015: Setting defining whether slave no. 2 is needed and type if applicable \\
0 : No slave required \\
1: SCI1 \\
2: SCI2 \\
i016: SCI board: Initialization error \\
i017: SCB1 generation: Year \\
i018: SCB1 generation: Day and month \\
i019: SCI slave1: Software version \\
i020: SCI slave1: Year of generation \\
i021: SCI slave1: Day and month of generation \\
i022: SCI slave2: Software version \\
i023: SCI slave2: Year of generation \\
i024: SCI slave2: Day and month of generation
\end{tabular} & & \[
\begin{array}{|l|}
\hline \text { Ind:24 } \\
\text { Type O2 }
\end{array}
\] & \[
\begin{aligned}
& \hline \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U698 } \\
& (2698) \\
& \\
& (Z 135) \\
& (Z 136) \\
& (Z 145) \\
& (Z 146)
\end{aligned}
\] & \begin{tabular}{l}
Binector selection for binary outputs of SCI1 \\
[SW 1.9 and later] \\
Selection of binectors whose states are output via the binary outputs of the SCIs \\
i001: Binector selection for SCI slave1, binary output 1 \\
i002: Binector selection for SCI slave1, binary output 2 \\
i003: Binector selection for SCI slave1, binary output 3 \\
i004: Binector selection for SCI slave1, binary output 4 \\
i005: Binector selection for SCI slave1, binary output 5 \\
i006: Binector selection for SCI slave1, binary output 6 \\
i007: Binector selection for SCI slave1, binary output 7 \\
i008: Binector selection for SCI slave1, binary output 8 \\
i009: Binector selection for SCI slave1, binary output 9 \\
i010: Binector selection for SCI slave1, binary output 10 \\
i011: Binector selection for SCI slave1, binary output 11 \\
i012: Binector selection for SCI slave1, binary output12 \\
i013: Binector selection for SCI slave2, binary output 1 \\
i014: Binector selection for SCI slave2, binary output 2 \\
i015: Binector selection for SCI slave2, binary output 3 \\
i016: Binector selection for SCI slave2, binary output 4 \\
i017: Binector selection for SCI slave2, binary output 5 \\
i018: Binector selection for SCI slave2, binary output 6 \\
i019: Binector selection for SCI slave2, binary output 7 \\
i020: Binector selection for SCI slave2, binary output 8 \\
i021: Binector selection for SCI slave2, binary output 9 \\
i022: Binector selection for SCI slave2, binary output 10 \\
i023: Binector selection for SCI slave2, binary output 11 \\
i024: Binector selection for SCI slave2, binary output12
\end{tabular} & All binector numbers 1 & \[
\begin{array}{|l|}
\hline \hline \text { Ind:24 } \\
\text { FS= 0 } \\
\text { Type L2 }
\end{array}
\] & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 =40 } \\
& \text { on-line }
\end{aligned}
\] \\
\hline n699
(2699)
(Z130)
(Z131)
(Z135)
(Z136)
(Z140)
(Z141)
(Z145)
(Z146)
(Z150)
(Z151)
(Z155)
(Z156) & \begin{tabular}{l}
Display of SCB1/SCI process data \\
All values in hexadecimal representation \\
i001: SCI slave1, binary inputs \\
i002: SCI slave1, analog input1 \\
i003: SCI slave1, analog input2 \\
i004: SCI slave1, analog input3 \\
i005: SCI slave2, binary inputs \\
i006: SCI slave2, analog input1 \\
i007: SCI slave2, analog input2 \\
i008: SCI slave2, analog input3 \\
i009: SCI slave1, binary outputs \\
i010: SCI slave1, analog output1 \\
i011: SCI slave1, analog output2 \\
i012: SCI slave1, analog output3 \\
i013: SCI slave2, binary outputs \\
i014: SCI slave2, binary outputs \\
i015: SCI slave2, analog output2 \\
i016: SCI slave2, analog output3
\end{tabular} & & Ind:16 Type L2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 =40 } \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.81 Configuration of supplementary boards in board locations 2 and 3}
\begin{tabular}{|c|c|c|c|c|}
\hline U710 & Initialize link to supplementary boards & \multirow[t]{7}{*}{\[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\]} & Ind: 2 & P 052 = 3 \\
\hline \[
(2710)
\] & i001 Initialization of \(1^{\text {st }}\) communications board (in slot with lower ID letter) & & \begin{tabular}{l}
FS=1 \\
Type: O2
\end{tabular} & P051 = 40 Offline \\
\hline \[
\begin{aligned}
& (\text { Z110 }) \\
& (\text { Z111 })
\end{aligned}
\] & i002 Initialization of \(2^{\text {nd }}\) communications board (in slot with higher ID letter & & & \\
\hline & Settings: & & & \\
\hline & \begin{tabular}{l}
0 The link to supplementary boards is re-initialized. After the configuration parameters for supplementary boards have been changed, U710 must be set to 0 so that the new settings can take effect. \\
The parameter is then set automatically to 1.
\end{tabular} & & & \\
\hline & Note: Data transmission is interrupted while initialization is in progress. & & & \\
\hline & 1 Deactivated & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U7111 } \\
& (2711) \\
& * \\
& (\text { Z110 }) \\
& (Z 111)
\end{aligned}
\] & \begin{tabular}{l}
Communications board parameter 1 (CB parameter 1) \\
See documentation for installed COM BOARD. \\
This parameter is relevant only if a communications board is installed. The validity of the setting is monitored by the CB. If the CB rejects the setting, fault message F080 is displayed with fault value 5 \\
Index 1 is used to parameterize the \(1^{\text {st }} \mathrm{CB}\) (including CB behind TB) and index 2 to parameterize the \(2^{\text {nd }} C B\).
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: O2
\end{tabular} & \begin{tabular}{l}
\[
\text { P052 = } 3
\] \\
Online
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline \text { U712 } \\
& (2712) \\
& \star \\
& (\text { Z110 }) \\
& (Z 111) \\
& \hline
\end{aligned}
\] & Communications board parameter 2 (CB parameter 2) See U711 & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: O2
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{P} 052=3
\] \\
Online
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { U713 } \\
& (2713) \\
& * \\
& (Z 110) \\
& (Z 111)
\end{aligned}
\] & Communications board parameter 3 (CB parameter 3) See U711 & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: O2
\end{tabular} & \begin{tabular}{l}
\[
\text { P052 = } 3
\] \\
Online
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { U714 } \\
& (2714) \\
& * \\
& (\text { Z110 }) \\
& (\text { Z111 }) \\
& \hline
\end{aligned}
\] & Communications board parameter 4 (CB parameter 4) See U711 & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: O2
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{P} 052=3
\] \\
Online
\end{tabular} \\
\hline \[
\begin{array}{|l}
\hline \text { U715 } \\
(2715) \\
\star \\
(\text { Z110 }) \\
(\text { Z111 }) \\
\hline
\end{array}
\] & Communications board parameter 5 (CB parameter 5) See U711 & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: O2
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{P} 052=3
\] \\
Online
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { U716 } \\
& (2716) \\
& * \\
& (Z 110) \\
& (Z 111)
\end{aligned}
\] & Communications board parameter 6 (CB parameter 6) See U711 & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: O2
\end{tabular} & \begin{tabular}{l}
\[
\mathrm{P} 052=3
\] \\
Online
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline \text { U717 } \\
& (2717) \\
& * \\
& (\text { Z110 }) \\
& (\text { Z111 }) \\
& \hline
\end{aligned}
\] & Communications board parameter 7 (CB parameter 7) See U711 & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2
\[
F S=0
\] \\
Type: O2
\end{tabular} & \begin{tabular}{l}
\[
\text { P052 = } 3
\] \\
Online
\end{tabular} \\
\hline \[
\begin{array}{|l}
\hline \text { U718 } \\
(2718) \\
{ }^{*} \\
(\text { Z110 }) \\
(\text { Z111 }) \\
\hline
\end{array}
\] & Communication Board Parameter 8 (CB-Parameter 8) See U711 & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: O2
\end{tabular} & \begin{tabular}{l}
\[
P 052=3
\] \\
Online
\end{tabular} \\
\hline \[
\begin{array}{|l}
\hline \text { U719 } \\
(2719) \\
* \\
(\text { Z110 }) \\
(\text { Z111 })
\end{array}
\] & Communications board parameter 9 (CB parameter 9) See U711 & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: O2
\end{tabular} & \begin{tabular}{l}
\[
\text { P052 = } 3
\] \\
Online
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline \text { U720 } \\
& (2720) \\
& * \\
& (\text { Z110 }) \\
& (Z 111) \\
& \hline
\end{aligned}
\] & Communications board parameter 10 (CB parameter 10) See U711 & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2
\[
F S=0
\] \\
Type: O2
\end{tabular} & \begin{tabular}{l}
\[
\text { P052 = } 3
\] \\
Online
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline \text { U721 } \\
& (2721) \\
& \star \\
& (\text { Z110 }) \\
& (\text { Z111 })
\end{aligned}
\] & Communications board parameter 11 (CB parameter 11) See U711 & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 10 \\
& \text { FS=0 } \\
& \text { Type: O2 }
\end{aligned}
\] & \begin{tabular}{l}
\[
\text { P052 = } 3
\] \\
Online
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U722 } \\
& (2722) \\
& { }_{*} \\
& \\
& (\text { Z110 }) \\
& (\text { Z111 })
\end{aligned}
\] & \begin{tabular}{l}
Telegram failure time for CB and TB \\
i001: Telegram failure time for board location 2 \\
i002: Telegram failure time for board location 3 \\
i003: Fault delay time for \(1^{\text {st }}\) CB or TB \\
i004: Fault delay time for \(2^{\text {nd }} C B\) \\
Settings for telegram failure time: \\
\(0 \quad\) No time monitoring; must be parameterized for sporadic (acyclic) telegrams \\
1... 65500 Maximum permissible time interval between 2 data exchanges before fault message F082 can be output \\
Settings for fault delay time: \\
If no process data are exchanged with the supplementary board for a period in excess of the telegram failure time, fault message F082 is activated as a function of the fault delay time. \\
Monitoring takes place in a 20 ms cycle. For this reason, it is only meaningful to set values that are multiples of 20 ms . \\
Note: \\
The telegram monitoring function is active \\
- from the receipt of the first error-free telegram after connection of the electronics power supply \\
- from the receipt of the first error-free telegram after the telegram monitor has responded (i.e. monitoring timeout).
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 65000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 \\
FS=0 \\
Type: O2
\end{tabular} & \begin{tabular}{l}
\[
\text { P052 = } 3
\] \\
Online
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { U728 } \\
& \begin{array}{l}
\text { (2728) }
\end{array} \\
& (Z 110)
\end{aligned}
\] & \begin{tabular}{l}
Source for binector/connector converter for \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\) \\
[SW 1.9 and later] \\
Binectors to be converted to connector K3020
\[
\begin{array}{ll}
\text { i001: } & 1^{\text {st }} \text { binector (bit 0) } \\
\text { i002: } & 2^{\text {nd }} \text { binector (bit } 1 \text { ) } \\
\ldots & \\
\mathrm{i} 016: & 16^{\text {th }} \text { binector (bit } 15 \text { ) }
\end{array}
\] \\
Settings: \\
\(0=\) binector B0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & All binector numbers 1 & \[
\begin{aligned}
& \text { Ind: } 16 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U729 } \\
& (2729) \\
& * \\
& (\text { Z111) }
\end{aligned}
\] & \begin{tabular}{l}
Source for binector/connector converter for \(\mathbf{2}^{\text {nd }}\) CB [SW 1.9 and later] \\
Binectors to be converted to connector K8020 \\
i001: 1st binector (bit 0) \\
i002: \(2^{\text {nd }}\) binector (bit 1 ) \\
i016: \(16^{\text {th }}\) binector (bit 15 ) \\
Settings: \\
\(0=\) binector B0000 \\
1 = binector B0001 \\
etc.
\end{tabular} & All binector numbers 1 & \[
\begin{aligned}
& \text { Ind: } 16 \\
& \text { FS=0 } \\
& \text { Type: L2 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \mathbf{n 7 3 2} \\
& (2732) \\
& \\
& (\text { Z110 }) \\
& (\text { Z111 })
\end{aligned}
\] & \begin{tabular}{l}
CB/TB diagnostics \\
Diagnostic information about an installed communications board (CB) or technology board (TB). \\
i001-i032: 1. CB/TB (lower slot ID letter) \\
i033-i064: 2. CB (higher slot ID letter) \\
i065, i066: 1. CB/TB (internal diagnostic data) \\
i067, i068: 2. CB (internal diagnostic data) \\
For detailed information, please refer to operating instructions of relevant CB or TB .
\end{tabular} & & \begin{tabular}{l}
Ind: 68 \\
Type: O2
\end{tabular} & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { n733 } \\
& (2733) \\
& (\text { Z110 }) \\
& (\text { Z111 })
\end{aligned}
\] & \begin{tabular}{l}
CB/TB receive data \\
Display of control words and setpoints (process data) that are transferred to the basic converter from a communications board (CB) or technology board (TB). \\
i001: \(1^{\text {st }}\) process data word from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\) \\
…16 \(16^{\text {th }}\) process data word from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\) \\
i017: \(1^{\text {st }}\) process data word from \(2^{\text {nd }} C B\) \\
... \\
i032: \(16^{\text {th }}\) process data word from \(2^{\text {nd }} C B\)
\end{tabular} & & \begin{tabular}{l}
Ind: 32 \\
Type: L2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \hline \text { U734 } \\
& (2734) \\
& * \\
& (Z 110)
\end{aligned}
\] & \begin{tabular}{l}
Transmit data for first CB/TB (lower slot ID letter) \\
Selection of connectors whose contents must be injected as transmit data to the first communications board (CB) or technology board (TB). \\
0 = connector K0000 \\
1 = connector K0001 \\
etc. \\
This parameter not only defines the transmit data, but also their position in the transmit telegram. \\
i001: Word 1 in PZD section of telegram \\
i002: Word 2 in PZD section of telegram \\
... \\
i016: Word 16 in PZD section of telegram \\
Status word 1 (K0032) should be linked to word 1.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 16 FS=0 \\
Type: L2
\end{tabular} & \begin{tabular}{l}
\[
\text { P052 = } 3
\] \\
Online
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline \text { n735 } \\
& (2735) \\
& (\text { Z110 }) \\
& (\text { Z111 })
\end{aligned}
\] & \begin{tabular}{l}
Display of transmit data to CB/TB \\
i001: \(\quad 1^{\text {st }}\) process data word to \(1^{\text {st }} \mathrm{CB}\) or TB \\
... \\
i016 \(16^{\text {th }}\) process data word to \(1^{\text {st }} \mathrm{CB}\) or TB \\
i017: \(1^{\text {st }}\) process data word to \(2^{\text {nd }} C B\) \\
... \\
i032: \(\quad 16^{\text {th }}\) process data word to \(2^{\text {nd }} C B\)
\end{tabular} & & \begin{tabular}{l}
Ind: 32 \\
Type: L2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \hline \text { U736 } \\
& \text { (2736) } \\
& \text { (Z111) }
\end{aligned}
\] & \begin{tabular}{l}
Transmit data for second CB (higher slot letter) \\
Selection of connectors whose contents must be injected as transmit data to a communications board (CB) with a higher slot ID letter. \\
0 = connector K0000 \\
1 = connector K0001 \\
etc. \\
This parameter not only defines the transmit data, but also their position in the transmit telegram. \\
i001: Word 1 in PZD section of telegram \\
i002: Word 2 in PZD section of telegram \\
... \\
i016: Word 16 in PZD section of telegram \\
Status word 1 (K0032) should be linked to word 1.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 16 FS=0 \\
Type: L2
\end{tabular} & \begin{tabular}{l}
\[
\text { P052 = } 3
\] \\
Online
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \mathbf{n 7 3 8} \\
& (2738) \\
& \\
& (Z 110) \\
& (\text { Z111 })
\end{aligned}
\] & \begin{tabular}{l}
Display of PKW job from supplementary boards \\
Details refer to "Function diagrams", Section 8 Sheets Z110 and Z111
\end{tabular} & & \begin{tabular}{l}
Ind: 12 \\
Type: L2
\end{tabular} & P052 = 3 \\
\hline \[
\begin{array}{|l}
\hline \mathbf{n 7 3 9} \\
(2739) \\
\\
(Z 110) \\
(\text { Z111 })
\end{array}
\] & \begin{tabular}{l}
Display of PKW response to supplementary boards \\
i001: \(\quad 1^{\text {st }}\) word of PKW job from \(1^{\text {st }} \mathrm{CB}\) \\
i004 \(4^{\text {th }}\) word of PKW job from \(1^{\text {st }} \mathrm{CB}\) \\
i005: \(1^{\text {st }}\) word of PKW job from location \(2^{\text {nd }} C B\) \\
... \\
i008 \(4^{\text {th }}\) word of PKW job from \(2^{\text {nd }} C B\) \\
i009: \(\quad 1^{\text {st }}\) word of PKW job from TB \\
... \\
i012: \(4^{\text {th }}\) word of PKW job from TB \\
Details refer to "Function diagrams", Section 8 Sheets Z110 and Z111
\end{tabular} & & \begin{tabular}{l}
Ind: 12 \\
Type: L2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline
\end{tabular}

\subsection*{11.82 Configuring the SIMOLINK board}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
U740 \\
(2740) \\
(Z121)
\end{tabular} & \begin{tabular}{l}
SLB Node address \\
Node address of the SIMOLINK board (SLB) on the bus. The node address defines the telegrams to which the relevant board has write access. The node address also defines whether a node is to perform the additional function of dispatcher.
\[
\begin{array}{ll}
0= & \text { Dispatcher (generates telegram circulation) } \\
\text { Not } 0= & \text { Transceiver }
\end{array}
\] \\
Only one node in a SIMOLINK ring may perform the function of dispatcher. Node address 0 may not be assigned to any node if a higher-level PLC is performing the dispatcher function as the SIMOLINK master. When an SLB is selected to operate as dispatcher, all nodes must be assigned consecutive addresses, starting with address 0 for the dispatcher. \\
i001: For first SLB in unit \\
i002: Reserved
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 200 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = 3 } \\
& \text { P051 =40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U741 \\
(2741) \\
(Z121)
\end{tabular} & \begin{tabular}{l}
SLB Telegram failure time \\
[SW 1.5 and later] \\
The telegram failure time defines the period within which a valid synchronizing telegram (SYNC telegram) must be received. Failure of any SYNC telegram to arrive within the set period indicates a communications error. The unit activates fault message F015 (see also U753) as a function of \(U 741\). \\
\(0=\) No telegram failure monitoring \\
i001: For first SLB in unit \\
i002: Reserved
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 6500 \\
& {[\mathrm{~ms}]} \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 =40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U742 } \\
& (2742) \\
& * \\
& (Z 121)
\end{aligned}
\] & \begin{tabular}{l}
SLB Transmitter power \\
Setting of power of fiber optic transmitter
\[
\begin{aligned}
& 1=0 \mathrm{~m} \text { to } 15 \mathrm{~m} \text { (length of plastic fiber optic cable) } \\
& 2=15 \mathrm{~m} \text { to } 25 \mathrm{~m} \text { (length of plastic fiber optic cable) } \\
& 3=25 \mathrm{~m} \text { to } 40 \mathrm{~m} \text { (length of plastic fiber optic cable) }
\end{aligned}
\] \\
Operation at a lower transmitter power increases the service life of the transmitter and receiver modules. Reducing the transmitter power also allows hidden fault sources on the transmission path (e.g. poor contacts on fiber optics) to be detected. \\
i001: For first SLB in unit \\
i002: Reserved
\end{tabular} & \[
\begin{aligned}
& \hline 1 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 \\
FS=3 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 =40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
U744 (2744) \\
(Z121)
\end{tabular} & \begin{tabular}{l}
SLB Selection of active SLB board \\
Selection of the active SIMOLINK board (SLB) when two SLBs are installed in one unit.
\[
\begin{aligned}
& 0=\text { Binector B0000 } \\
& 1=\text { Binector B0001 etc. }
\end{aligned}
\] \\
A binector value of 0 means "SLB in low slot is active". \\
A binector value of 1 is reserved for "SLB in high slot is active".
\end{tabular} & All binector numbers & \begin{tabular}{l}
Ind: None FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = 3 } \\
& \text { P051 =40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U745 } \\
& (2745) \\
& * \\
& (Z 121)
\end{aligned}
\] & \begin{tabular}{l}
SLB No. of channels \\
[SW 1.5 and later] \\
Number of channels which dispatcher provides for each transceiver. Together with U746, the number of channels determines the number of addressable nodes. \\
This parameter is relevant only for the dispatcher. \\
i001: For first SLB in unit \\
i002: Reserved
\end{tabular} & \[
\begin{aligned}
& \hline 1 \text { to } 8 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 \\
FS=3 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 =3 } \\
& \text { P051 =40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U746 } \\
& (2746) \\
& * \\
& (Z 121)
\end{aligned}
\] & \begin{tabular}{l}
SLB Cycle time \\
[SW 1.5 and later] \\
The cycle time is the period required for all telegrams to be passed around the SIMOLINK ring. Together with U745, the cycle time determines the number of addressable nodes. \\
This parameter is relevant only for the dispatcher. \\
i001: For first SLB in unit \\
i002: Reserved \\
Caution: \\
Settings 0.20 ms to 0.99 ms are permissible only if option SOO is not activated. Otherwise F059 with fault value 3 is output. \\
If option S00 (free function blocks) is not activated and if an SLB cycle time of \(<1.00 \mathrm{~ms}\) is set in parameter U746, connectors K7001 to K7008 are updated immediately every time a telegram is received. The other connectors (K7009 to K7016) and binectors B7100 to B7915 are updated only once in each computation cycle ( \(=1 / 6\) line period). In addition, the connectors selected in U751.001 to U751.008 are read with every transmit telegram and the relevant up-to-date value transmitted. The connectors selected in parameters U751.009 to U751.016 are read only once in each computation cycle and written to the transmit buffer of the SLB. \\
[A cycle time of \(<1.00 \mathrm{~ms}\) can be set in SW 1.9 and later]
\end{tabular} & \[
\begin{aligned}
& 0.20 \text { to } 6.50 \\
& {[\mathrm{~ms}]} \\
& 0.01
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { Ind:2 } \\
& \text { FS=1.20 } \\
& \text { Type: O2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 = 3 } \\
& \text { P051 =40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { n748 } \\
& (2748) \\
& (Z 121)
\end{aligned}
\] & \begin{tabular}{l}
SLB Diagnosis \\
Visualization parameter which displays diagnostic information for an installed SIMOLINK board (SLB) \\
i001: Number of error-free synchronizing telegrams \\
i002: Number of CRC errors \\
i003: Number of timeout errors \\
i004: Last accessible bus address \\
i005: Address of node sending the special telegram "Timeout" \\
i006: Implemented bus cycle time \\
i007: Number of new configurations \\
i008: Reserved \\
i016: Reserved
\end{tabular} & & Ind: 16 Type: O2 & \(\mathrm{P} 052=3\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U749 } \\
& (2749) \\
& * \\
& (Z 122)
\end{aligned}
\] & \begin{tabular}{l}
SLB Read address \\
[SW 1.5 and later] \\
Definition of node addresses and channels from which the SLB must read data (a total of 8 channels can be read according to the index entries). The digits before the decimal point in the input value define the node address and those after the point the channel number (see also Section 7 "Starting up SIMOLINK boards" and Section 8 "SIMOLINK board: Receiving, transmitting"). \\
Example: \\
2.0 = address 2 channel 0
\end{tabular} & \[
\begin{aligned}
& \hline \hline 0.0 \text { to } 200.7 \\
& 0.1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 8 FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 =40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { n750 } \\
& (2750) \\
& (Z 122)
\end{aligned}
\] & \begin{tabular}{l}
SLB Receive data \\
[SW 1.5 and later] \\
Visualization parameter for data received via the SIMOLINK board (see also Section 7 "Starting up SIMOLINK boards" and Section 8 "SIMOLINK board: Receiving, transmitting") \\
i001: Word 1 in PZD section of telegram ... \\
i016: Word 16 in PZD section of telegram
\end{tabular} & & \begin{tabular}{l}
Ind: 16 \\
Type: L2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \hline \text { U751 } \\
& (2751) \\
& * \\
& (Z 122)
\end{aligned}
\] & \begin{tabular}{l}
SLB Transmit data selection \\
[SW 1.5 and later] \\
Selection of connectors whose contents must be transferred as transmit data by the SLB (see also Section 7 "Starting up SIMOLINK boards" and Section 8 "SIMOLINK board: Receiving, transmitting"). \\
0 = connector K0000 \\
1 = connector K0001 \\
etc. \\
In addition to the transmit data itself, its place in the transmit telegram is also defined. \\
i001: Channel0, low word \\
i002: Channel0, high word ... \\
i015: Channel7, low word \\
i016: Channel7, high word
\end{tabular} & All connector numbers & \[
\begin{array}{|l|}
\hline \text { Ind: } 16 \\
\text { FS=0 } \\
\text { Type: L2 }
\end{array}
\] & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 =40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { n752 } \\
& (2752) \\
& (Z 122) \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
SLB Display of transmit data \\
[SW 1.5 and later] \\
Process data transmitted by SLB via SIMOLINK in hexadecimal notation (see also Section 7 "Starting up SIMOLINK boards" and Section 8 "SIMOLINK board: Receiving, transmitting")
\end{tabular} & & \begin{tabular}{l}
Ind: 16 \\
Type: L2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \hline \text { U753 } \\
& (2753) \\
& * \\
& (Z 121)
\end{aligned}
\] & SLB Fault delay \(\quad\) [SW 1.5 and later]
Delay in activation of fault message F015 (see also U741)
\(0=\) fault message is activated immediately the telegram failure monitor
responds & \[
\begin{array}{|l}
\hline 0.0 \text { to } 100.0 \\
{[\mathrm{~s}]} \\
0.1
\end{array}
\] & \begin{tabular}{l}
Ind: None FS=0.0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 =40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.83 Configuring the EB1 expansion board}
\begin{tabular}{|c|c|c|c|c|c|}
\hline U755 & Signal type of analog inputs on EB1 & [SW 1.5 and later] & 0 to 1 & Ind: 2
FS \(=0\) & P052 \(=3\)
\(\mathrm{P} 051=40\) \\
\hline (2755) & \(0=\) Voltage input 0 to \(\pm 10 \mathrm{~V}\) & & 1 & \begin{tabular}{l}
FS=0 \\
Type: O2
\end{tabular} & \(\mathrm{P} 051=40\) Online \\
\hline & \(1=\) Current input 0 to \(\pm 20 \mathrm{~mA}\) & & & & \\
\hline \[
\begin{aligned}
& \text { (Z112) } \\
& (\text { Z115 })
\end{aligned}
\] & \begin{tabular}{l}
i001: Al1 of the first EB1 \\
i002: Al1 of the second EB1
\end{tabular} & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U756 } \\
& (2756) \\
& \\
& (Z 112) \\
& (Z 115)
\end{aligned}
\] & \begin{tabular}{l}
Normalization of analog inputs on EB1 \\
This parameter specifies the percentage value which is generated for an input voltage of 10 V (or an input current of 20 mA ) at the analog input. \\
The following general rule applies: \\
With a voltage input:
\[
U 756[\%]=10 \mathrm{~V} * \frac{Y}{X}
\] \\
X .. input voltage in volts \\
Y .. \% value which is generated for input voltage \(X\) \\
With a current input:
\[
U 756[\%]=20 m A * \frac{Y}{X}
\] \\
X .. input current in mA \\
Y .. \% value which is generated for input current \(X\) \\
i001: Al1 of the first EB1 \\
i002: AI2 of the first EB1 \\
i003: AI3 of the first EB1 \\
i004: Al1 of the second EB1 \\
i005: Al2 of the second EB1 \\
i006: AI3 of the second EB1
\end{tabular} & ```
-1000.0 to 1000.0
[%]
0.1%
``` & \begin{tabular}{l}
Ind: 6 FS=100.0 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = 3 } \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U757 } \\
& (2757) \\
& \\
& (Z 112) \\
& (Z 115)
\end{aligned}
\] & \begin{tabular}{l}
Offset for analog inputs on EB1 \\
[SW 1.5 and later] \\
i001: Al1 of the first EB1 \\
i002: Al2 of the first EB1 \\
i003: Al3 of the first EB1 \\
i004: Al1 of the second EB1 \\
i005: AI2 of the second EB1 \\
i006: AI3 of the second EB1
\end{tabular} & \[
\begin{aligned}
& \hline-100.00 \text { to } 100.00 \\
& \text { [\%] } \\
& 0.01 \%
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Ind: } 6 \\
\text { FS=0.00 } \\
\text { Type: } 12 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U758 } \\
& \text { (2758) } \\
& \text { * } \\
& \\
& (\text { Z112 }) \\
& (Z 115)
\end{aligned}
\] & \begin{tabular}{l}
Mode of signal injection at analog inputs on EB1 [SW 1.5 and later] \\
\(0=\) Injection of signal with sign \\
\(1=\) Injection of absolute value of signal \\
2 = Injection of signal with sign, inverted \\
3 = Injection of absolute value of signal, inverted \\
i001: Al1 of the first EB1 \\
i002: Al2 of the first EB1 \\
i003: Al3 of the first EB1 \\
i004: Al1 of the second EB1 \\
i005: AI2 of the second EB1 \\
i006: Al3 of the second EB1
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & Ind: 6 FS=0 Type: O2 & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U759 } \\
& (2759) \\
& * \\
& \text { (Z112) } \\
& \text { (Z115) }
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of sign reversal at \\
[SW 1.5 and later] analog inputs on EB1 \\
Selection of binector to control sign reversal at the analog input ("1" state = reverse sign) \\
\(0=\) binector B0000 \\
1 = binector B0001 \\
etc. \\
i001: Al1 of the first EB1 \\
i002: Al2 of the first EB1 \\
i003: Al3 of the first EB1 \\
i004: Al1 of the second EB1 \\
i005: Al2 of the second EB1 \\
i006: Al3 of the second EB1
\end{tabular} & All binector numbers 1 & Ind: 6 FS=0 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U760 } \\
& (2760) \\
& * \\
& \\
& (\text { Z112 }) \\
& (Z 115)
\end{aligned}
\] & \begin{tabular}{l}
Filtering time for analog inputs on EB1 \\
Note: Hardware filtering of approximately 0.2 ms is applied as standard \\
i001: Al1 of the first EB1 \\
i002: AI2 of the first EB1 \\
i003: AI3 of the first EB1 \\
i004: Al1 of the second EB1 \\
i005: AI2 of the second EB1 \\
i006: AI3 of the second EB1
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & \begin{tabular}{l}
Ind: 6 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U761 } \\
& (2761) \\
& * \\
& \\
& (Z 112) \\
& (Z 115)
\end{aligned}
\] & \begin{tabular}{l}
Source for enabling of analog inputs on EB1 \\
[SW 1.5 and later] \\
Selection of binector to control enabling of the analog input ("1" state = enabled) \\
\(0=\) binector B0000 \\
1 = binector B0001 \\
etc. \\
i001: Al1 of the first EB1 \\
i002: Al2 of the first EB1 \\
i003: AI3 of the first EB1 \\
i004: Al1 of the second EB1 \\
i005: Al2 of the second EB1 \\
i006: Al3 of the second EB1
\end{tabular} & All binector numbers 1 & Ind: 6 FS=1 Type: L2 & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { n762 } \\
& (2762) \\
& \\
& (\text { Z112 }) \\
& (Z 115)
\end{aligned}
\] & \begin{tabular}{l}
Display of analog inputs on EB1 \\
[SW 1.5 and later] \\
i001: Al1 of the first EB1 \\
i002: AI2 of the first EB1 \\
i003: AI3 of the first EB1 \\
i004: Al1 of the second EB1 \\
i005: Al2 of the second EB1 \\
i006: AI3 of the second EB1
\end{tabular} & \[
\begin{aligned}
& \hline-200.0 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: 6 Type: I2 & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { U763 } \\
& (2763) \\
& * \\
& (\text { Z113 }) \\
& (\text { Z116 })
\end{aligned}
\] & \begin{tabular}{l}
Source for output value at analog outputs on EB1 [SW 1.5 and later] \\
Selection of connector whose value must be output at the analog output \\
0 = connector K0000 \\
1 = connector K0001 \\
etc. \\
i001: AO1 of the first EB1 \\
i002: AO2 of the first EB1 \\
i003: AO1 of the second EB1 \\
i004: AO2 of the second EB1
\end{tabular} & \[
\begin{aligned}
& \text { All connector } \\
& \text { numbers } \\
& 1
\end{aligned}
\] & Ind: 4 FS=0 Type: L2 & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U764 } \\
& (2764) \\
& * \\
& \\
& (Z 113) \\
& (Z 116)
\end{aligned}
\] & \begin{tabular}{l}
Mode of signal injection at analog outputs on EB1 [SW 1.5 and later] \\
\(0=\) Injection of signal with sign \\
\(1=\) Injection of absolute value of signal \\
\(2=\) Injection of signal with sign, inverted \\
3 = Injection of absolute value of signal, inverted \\
i001: AO1 of the first EB1 \\
i002: AO2 of the first EB1 \\
i003: AO1 of the second EB1 \\
i004: AO2 of the second EB1
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 4 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U765 } \\
& (2765) \\
& * \\
& (Z 113) \\
& (Z 116)
\end{aligned}
\] & \begin{tabular}{l}
Filtering time for analog outputs on EB1 \\
[SW 1.5 and later] \\
i001: AO1 of the first EB1 \\
i002: AO2 of the first EB1 \\
i003: AO1 of the second EB1 \\
i004: AO2 of the second EB1
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 10000 \\
& {[\mathrm{~ms}]} \\
& 1 \mathrm{~ms}
\end{aligned}
\] & Ind: 4 FS=0 Type: O2 & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U766 } \\
& (2766) \\
& \\
& (Z 113) \\
& (Z 116)
\end{aligned}
\] & \begin{tabular}{l}
Normalization of analog outputs on EB1
\[
y[V]=x * \frac{U 766}{100 \%}
\] \\
\(x=\) normalization input (corresponds to filtering output) \\
\(y=\) normalization output (corresponds to output voltage at analog output with an offset of 0) \\
i001: AO1 of the first EB1 \\
i002: AO2 of the first EB1 \\
i003: AO1 of the second EB1 \\
i004: AO2 of the second EB1
\end{tabular} & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& {[\mathrm{~V}]} \\
& 0.01 \mathrm{~V}
\end{aligned}
\] & Ind: 4 FS=10.00 Type: I2 & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U767 } \\
& (2767) \\
& \\
& (Z 113) \\
& (Z 116)
\end{aligned}
\] & \begin{tabular}{l}
Offset for analog outputs on EB1 \\
[SW 1.5 and later] \\
i001: AO1 of the first EB1 \\
i002: AO2 of the first EB1 \\
i003: AO1 of the second EB1 \\
i004: AO2 of the second EB1
\end{tabular} & \[
\begin{array}{|l}
\hline-10.00 \text { to } 10.00 \\
{[\mathrm{~V}]} \\
0.01 \mathrm{~V}
\end{array}
\] & Ind: 4 FS=0.00 Type: I2 & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { n768 } \\
& (2768) \\
& \\
& (Z 113) \\
& (Z 116)
\end{aligned}
\] & \begin{tabular}{l}
Display of analog outputs on EB1 \\
[SW 1.5 and later] \\
i001: AO1 of the first EB1 \\
i002: AO2 of the first EB1 \\
i003: AO1 of the second EB1 \\
i004: AO2 of the second EB1
\end{tabular} & \[
\begin{aligned}
& \hline \hline-200.0 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: 4 Type: I2 & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { U769 } \\
& (2769) \\
& * \\
& \\
& (Z 114) \\
& (Z 117)
\end{aligned}
\] & \begin{tabular}{l}
Source for output values at binary outputs on EB1 [SW 1.5 and later] \\
Selection of binectors to be applied to binary outputs at terminals 43-46. \\
0 = Binector B0000 \\
1 = Binector B0001 \\
etc. \\
i001: BO1 of the first EB1 \\
i002: BO2 of the first EB1 \\
i003: BO3 of the first EB1 \\
i004: BO4 of the first EB1 \\
i005: BO1 of the second EB1 \\
i006: BO2 of the second EB1 \\
i007: BO3 of the second EB1 \\
i008: BO4 of the second EB1
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 8 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { n770 } \\
& (2770) \\
& \\
& (Z 114) \\
& (Z 117)
\end{aligned}
\] & \begin{tabular}{l}
Display of status of binary inputs and outputs on EB1 \\
[SW 1.5 and later] \\
Representation on operator panel (PMU): \\
Segment ON: Corresponding terminal is activated (HIGH level is applied) \\
Segment OFF: Corresponding terminal is not activated (LOW level is applied) \\
Segment or bit \\
0 Terminal 40 \\
1 Terminal 41 \\
2 Terminal 42 \\
3 Terminal 43 \\
4 Terminal 44 \\
5 Terminal 45 \\
6 Terminal 46 \\
i001: Terminal states of first EB1 \\
i002: Terminal states of second EB1
\end{tabular} & & \begin{tabular}{l}
Ind: 2 \\
Type: V2
\end{tabular} & P052 = 3 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.84 Configuring the EB2 expansion board}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { n773 } \\
& \text { (2773) } \\
& \\
& \text { (Z118) } \\
& \text { (Z119) }
\end{aligned}
\] & \begin{tabular}{l}
Display of status of binary inputs and outputs on EB2 \\
Representation on operator panel (PMU): \\
Segment ON: Corresponding terminal is activated (HIGH level is applied) \\
Segment OFF: Corresponding terminal is not activated (LOW level is applied) \\
Segment or bit \\
0 Terminal 53 \\
1 Terminal 54 \\
2 Terminal 39 \\
3 Terminal 41 \\
4 Terminal 43 \\
5 \(\qquad\) Terminal 45 \\
i001: Terminal states of first EB2 \\
i002: Terminal states of second EB2
\end{tabular} & & \begin{tabular}{l}
Ind: 2 \\
Type: V2
\end{tabular} & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \hline \text { U774 } \\
& (2774) \\
& * \\
& \text { (Z118) } \\
& (\text { Z119) }
\end{aligned}
\] & \begin{tabular}{l}
Source for output values at binary outputs on EB2 [SW 1.5 and later] \\
Selection of binectors to be applied to binary outputs at terminals 39-46. \\
0 = binector B0000 \\
1 = binector B0001 \\
etc. \\
i001: BO1 of the first EB2 \\
i002: BO2 of the first EB2 \\
i003: BO3 of the first EB2 \\
i004: BO4 of the first EB2 \\
i005: BO1 of the second EB2 \\
i006: BO2 of the second EB2 \\
i007: BO3 of the second EB2 \\
i008: BO4 of the second EB2
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 8 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U775 } \\
& (2775) \\
& * \\
& (\text { Z118) } \\
& (\text { Z119) }
\end{aligned}
\] & \begin{tabular}{l}
Signal type of analog input on EB2 \\
[SW 1.5 and later] \\
\(0=\) voltage input 0 to \(\pm 10 \mathrm{~V}\) \\
1 = current input 0 to \(\pm 20 \mathrm{~mA}\) \\
i001: Al1 of the first EB2 \\
i002: Al1 of the second EB2
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U776 } \\
& (2776) \\
& \\
& (\text { Z118) } \\
& (\text { Z119) }
\end{aligned}
\] & \begin{tabular}{l}
Normalization of analog input on EB2 \\
[SW 1.5 and later] \\
This parameter specifies the percentage value which is generated for an input voltage of 10 V (or an input current of 20 mA) at the analog input. \\
The following general rule applies: \\
With a voltage input:
\[
\begin{aligned}
U 776[\%]=10 V * \frac{Y}{X} & \mathrm{X} . . \text { input voltage in volts } \\
& \mathrm{Y} . . \% \text { value which is generated for input } \\
& \text { voltage } \mathrm{X}
\end{aligned}
\] \\
With a current input:
\[
U 776[\%]=20 m A * \frac{Y}{X}
\] \\
\(X\).. input current in \(m A\) \\
Y .. \% value which is generated for input current X \\
i001: AI of the first EB2 \\
i002: Al of the second EB2
\end{tabular} & ```
-1000.0 to 1000.0
[%]
0.1%
``` & Ind: 2 FS=100.0 Type: 12 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U777 } \\
& (2777) \\
& \text { (Z118) } \\
& \text { (Z119) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Offset for analog input on EB2 \\
[SW 1.5 and later] \\
i001: Al of the first EB2 \\
i002: Al of the second EB2
\end{tabular} & \[
\begin{aligned}
& \hline-100.00 \text { to } 100.00 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 FS=0.00 \\
Type: I2
\end{tabular} & \[
\begin{aligned}
& \hline \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U778 } \\
& \text { (2778) } \\
& \text { * } \\
& \text { (Z118) } \\
& \text { (Z119) }
\end{aligned}
\] & \begin{tabular}{l}
Mode of signal injection at analog input on EB2 [SW 1.5 and later] \\
\(0=\) Injection of signal with sign \\
1 = Injection of absolute value of signal \\
\(2=\) Injection of signal with sign, inverted \\
\(3=\) Injection of absolute value of signal, inverted \\
i001: Al of the first EB2 \\
i002: Al of the second EB2
\end{tabular} & \[
0 \text { to } 3
\] & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U779 } \\
& \text { (2779) } \\
& * \\
& \text { * (Z118) } \\
& \text { (Z119) }
\end{aligned}
\] & \begin{tabular}{l}
Source for selection of sign reversal at analog input on EB2 \\
Selection of binector to control sign reversal at the analog input ("1" state = reverse sign) \\
\(0=\) binector B0000 \\
1 = binector B0001 \\
etc. \\
i001: Al of the first EB2 \\
i002: Al of the second EB2
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U780 } \\
& (2780) \\
& \\
& \text { (Z118) } \\
& \text { (Z119) }
\end{aligned}
\] & \begin{tabular}{l}
Filtering time for analog input on EB2 \\
Note: Hardware filtering of approximately 0.2 ms is applied as standard \\
i001: AI of the first EB2 \\
i002: AI of the second EB2
\end{tabular} & \[
\begin{array}{|l}
\hline 0 \text { to } 10000 \\
{[\mathrm{~ms}]} \\
1 \mathrm{~ms}
\end{array}
\] & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U781 } \\
& (2781) \\
& * \\
& \text { (Z118) } \\
& (\text { Z119 })
\end{aligned}
\] & \begin{tabular}{l}
Source for enabling of analog inputs on EB2 \\
[SW 1.5 and later] \\
Selection of binector to control enabling of the analog input ("1" state = enabled) \\
\(0=\) binector B0000 \\
1 = binector B0001 \\
etc. \\
i001: Al of the first EB2 \\
i002: Al of the second EB2
\end{tabular} & All binector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=1 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { n782 } \\
& (2782) \\
& \text { (Z118) } \\
& \text { (Z119) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Display of analog input on EB2 \\
[SW 1.5 and later] \\
i001: Al of the first EB2 \\
i002: Al of the second EB2
\end{tabular} & \[
\begin{aligned}
& \hline-200.0 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & Ind: 2 Type: I2 & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \text { U783 } \\
& \text { (2783) } \\
& * \\
& \\
& \text { (Z118) } \\
& \text { (Z119) }
\end{aligned}
\] & \begin{tabular}{l}
Source for output value at analog output on EB2 [SW 1.5 and later] \\
Selection of connector whose value must be output at the analog output \\
0 = connector K0000 \\
1 = connector K0001 \\
etc. \\
i001: AO of the first EB2 \\
i002: AO of the second EB2
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 2 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U784 } \\
& (2784) \\
& * \\
& \\
& \text { (Z118) } \\
& \text { (Z119) }
\end{aligned}
\] & \begin{tabular}{l}
Mode of signal injection at analog output on EB2 [SW 1.5 and later] \\
\(0=\) Injection of signal with sign \\
1 = Injection of absolute value of signal \\
\(2=\) Injection of signal with sign, inverted \\
\(3=\) Injection of absolute value of signal, inverted \\
i001: AO of the first EB2 \\
i002: AO of the second EB2
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U785 } \\
& (2785) \\
& (\text { Z118 }) \\
& \text { (Z119) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Filtering time for analog outputs on EB2 \\
[SW 1.5 and later] \\
i001: AO of the first EB2 \\
i002: AO of the second EB2
\end{tabular} & \[
\begin{array}{|l}
\hline 0 \text { to } 10000 \\
{[\mathrm{~ms}]} \\
1 \mathrm{~ms}
\end{array}
\] & \begin{tabular}{l}
Ind: 2 \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U786 } \\
& (2786) \\
& \\
& \text { (Z118) } \\
& (\text { Z119 })
\end{aligned}
\] & \begin{tabular}{l}
Normalization of analog outputs on EB2 \\
[SW 1.5 and later]
\[
y[V]=x * \frac{U 786}{100 \%}
\] \\
\(x=\) normalization input (corresponds to filtering output) \\
\(y=\) normalization output (corresponds to output voltage at analog output with an offset of 0 ) \\
i001: AO of the first EB2 \\
i002: AO of the second EB2
\end{tabular} & \[
\begin{aligned}
& \hline-200.00 \text { to } 199.99 \\
& \text { [V] } \\
& 0.01 \mathrm{~V}
\end{aligned}
\] & Ind: 2 FS=10.00 Type: 12 & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U787 } \\
& (2787) \\
& (\text { Z118 }) \\
& (Z 119) \\
& \hline
\end{aligned}
\] & ```
Offset for analog output on EB2
[SW 1.5 and later]
i001: AO of the first EB2
i002:AO of the second EB2
``` & \[
\begin{aligned}
& -10.00 \text { to } 10.00 \\
& {[\mathrm{~V}]} \\
& 0.01 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ind: } 2 \\
& \text { FS=0.00 } \\
& \text { Type: } 12
\end{aligned}
\] & \[
\begin{aligned}
& \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { n788 } \\
& (2788) \\
& (\text { Z118 }) \\
& (Z 119) \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Display of analog outputs on EB2 \\
[SW 1.5 and later] \\
i001: AO of the first EB2 \\
i002: AO of the second EB2
\end{tabular} & \[
\begin{aligned}
& \hline-200.00 \text { to } 199.99 \\
& {[\%]} \\
& 0.01 \%
\end{aligned}
\] & \begin{tabular}{l}
Ind: 2 \\
Type: I2
\end{tabular} & P052 = 3 \\
\hline
\end{tabular}

\subsection*{11.85 Configuring the SBP pulse encoder board}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \text { U790 } \\
(2790) \\
* \\
(Z 120)
\end{array}
\] & \begin{tabular}{l}
Configuration of input level of A/B and CRTL tracks [SW 1.5 and later] \\
0: HTL unipolar \\
1: TTL unipolar \\
2: HTL differential input \\
3: TTL/RS422 differential input
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 3 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=1 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U791 } \\
& (2791) \\
& * \\
& (Z 120)
\end{aligned}
\] & & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = 40 } \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U792 } \\
(2792) \\
* \\
(Z 120) \\
\hline
\end{array}
\] & \begin{tabular}{l}
Number of pulses per revolution \\
[SW 1.5 and later] \\
Number of lines on one track around circumference of disk
\end{tabular} & \[
\begin{aligned}
& 100 \text { to } 20000 \\
& 1
\end{aligned}
\] & Ind: None FS=1024 Type: O 2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline \text { U793 } \\
(2793) \\
* \\
(Z 120)
\end{array}
\] & \begin{tabular}{cl}
Encoder type & [SW 1.5 and later] \\
\(0:\) & Encoder with A/B track (two tracks displaced by 90 degrees) \\
\(1:\) & Encoder with separate forward and reverse tracks
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U794 } \\
& (2794) \\
& (Z 120)
\end{aligned}
\] & Reference speed \(\quad\) [SW 1.5 and later]
When actual speed = reference speed a value of \(100 \%\) is output in the
appropriate diagnostic parameter (n795) and connector & \[
\begin{aligned}
& 50.0 \text { to } 6500.0 \\
& \text { [rev/min] } \\
& 0.1
\end{aligned}
\] & Ind: None FS=500.0 Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { n795 } \\
(2795) \\
(Z 120) \\
\hline
\end{array}
\] & Display of actual speed in \% of reference speed [SW 1.5 and later] & \[
\begin{aligned}
& -200.00 \text { to } 199.99 \\
& \text { [\%] }
\end{aligned}
\] & Ind: None Type: I2 & \(\mathrm{P} 052=3\) \\
\hline \[
\begin{aligned}
& \hline \text { U796 } \\
& (2796) \\
& * \\
& \text { S00 } \\
& (Z 120)
\end{aligned}
\] & \begin{tabular}{l}
Resetting the position counter \\
Setting the type of resetting for position acquisition
\[
\begin{aligned}
& 0=\text { free-running (no reset) } \\
& 1=\text { see function diagram Z120 } \\
& 2=\text { see function diagram Z120 }
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 2 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: none FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=2 \\
& \text { P051 }=40 \\
& \text { online }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l}
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l}
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l}
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.86 Configuration of paralleling interface}

Notes about parameterization of the paralleling interface see Chapter 6.3.2
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U800 } \\
& (2800) \\
& * \\
& \text { (G195) }
\end{aligned}
\] & Control word for parallel connection of SIMOREG converters & \[
\begin{aligned}
& 0 \text { to } 2 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U803 } \\
& (2803) \\
& \star
\end{aligned}
\] & \begin{tabular}{l}
Operating mode for the parallel connection \\
[SW 1.7 and later] \\
0 Standard mode \\
All parallel-connected SIMOREG devices must be in continuous operation. Failure (fault message, fuse blown) of one of the parallel-connected SIMOREG devices causes immediate pulse disabling for all SIMOREG devices. \\
\(1 \quad\) " \(\mathrm{N}+1\) mode" (redundancy mode) On failure (fault message, fuse blown) of one of the parallelconnected SIMOREG devices, operation is maintained with the remaining SIMOREG devices.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U804 } \\
& (2804) \\
& *
\end{aligned}
\] & \begin{tabular}{l}
Transmit data on paralleling interface \\
Selection of connectors whose contents must be injected as transmit data (master to slaves or slave to master) for the paralleling interface.
\[
\begin{aligned}
& 0=\text { connector K0000 } \\
& 1=\text { connector K0001 } \\
& \text { etc. }
\end{aligned}
\] \\
This parameter not only defines the transmit data, but also their position in the transmit telegram.
\end{tabular} & All connector numbers 1 & \begin{tabular}{l}
Ind: 10 FS=0 \\
Type: L2
\end{tabular} & \[
\begin{aligned}
& \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U805 } \\
& \text { (2805) } \\
& \text { (G195) }
\end{aligned}
\] & \begin{tabular}{l}
Control word for bus terminator of paralleling interface \\
0: \(\quad\) No bus terminator \\
1: Bus terminator active
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U806 } \\
& (2806) \\
& * \\
& \text { (G195) }
\end{aligned}
\] & \begin{tabular}{l}
Address for the parallel connection of SIMOREG devices \\
i001: Address of the masters or of the slaves \\
i002: Address of the "standby master" or slaves [SW 1.7 and later] \\
Slave device with address 2 \\
Slave device with address 3 \\
Slave device with address 4 \\
Slave device with address 5 \\
Slave device with address 6 \\
Master device for 1 slave device with address 2 \\
Master device for 2 slave devices with addresses 2 and 3 \\
Master device for 3 slave devices with addresses 2, 3 and 4 \\
Master device for 4 slave devices with addresses 2, 3, 4 and 5 \\
Master device for 5 slave devices with addresses 2, 3, 4, 5 and 6 \\
In "Standard" mode (U803 = 0), i001 and i002 must be set to the same value. \\
In "N+1 mode" (U803 = 1), a SIMOREG device has the "master" function, a SIMOREG device has the "standby Master" function and all other devices are slaves. In the slaves, i001 and i002 must be set to the same value. On the master, a value of 12 to 16 must be set in i001, in i002 a value of 2 to 6. \\
In the "standby master", a value of 2 to 6 must be set in i001, in i002 a value of 12 to 16 .
\end{tabular} & see column on left & \begin{tabular}{l}
Ind: 2 FS=2 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U807 } \\
& (2807) \\
& \text { (G195) }
\end{aligned}
\] & \begin{tabular}{l}
Telegram failure time on paralleling interface \\
0 \\
No time monitoring \\
0.001...65.000 Permissible time interval between two data exchange operations before a fault message is output. \\
Fault message F014 is displayed if no data are exchanged with the parallelconnected converter within this delay period. \\
The monitoring function is implemented within a 20 ms cycle. For this reason, only setting values which constitute a multiple of 20 ms are meaningful. \\
Note: \\
The telegram monitoring function is active \\
- from the receipt of the first error-free telegram after connection of the electronics power supply \\
- from the receipt of the first error-free telegram after the telegram monitor has responded (i.e. monitoring timeout).
\end{tabular} & \[
\begin{aligned}
& \hline 0.000 \text { to } 65.000 \\
& {[\mathrm{~s}]} \\
& 0.001 \mathrm{~s}
\end{aligned}
\] & Ind: None FS=0.100 Type: O2 & \[
\begin{aligned}
& \hline \hline \mathrm{P} 052=3 \\
& \text { P051 = } 40 \\
& \text { Online }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U808 } \\
& (2808) \\
& *
\end{aligned}
\] & \begin{tabular}{l}
Source for triggering of message F014 \\
Selection of binector which must trigger message F014 when it switches to log. "1"
\[
\begin{aligned}
& 6040=\text { binector B6040 } \\
& 6041=\text { binector B6041 }
\end{aligned}
\]
\end{tabular} & 6040, 6041 & Ind: None FS=6040 Type: L2 & \[
\begin{aligned}
& \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { n809 } \\
& (2809) \\
& \text { (G195) }
\end{aligned}
\] & \begin{tabular}{l}
Diagnostic information for paralleling interface \\
i001 to i008=Free-running counter, overflow at 65535 \\
i001: Error-free Telegram Counter \\
i002: Errored Telegram Counter \\
i003: Transmit Error Counter \\
i004: Receive Error Counter \\
i005: Phase Error Counter \\
i006: Baud rate Error Counter \\
i007: Bad BCC Counter \\
i008: Timeout Counter \\
i009: Bit 2: Valid telegram received from (if master) / for (if slave) address 2 \\
Bit6: Valid telegram received from (if master) / for (if slave) address 6
\end{tabular} & 0 to 65535 & \begin{tabular}{l}
Ind: 9 \\
Type: O2
\end{tabular} & \(\mathrm{P} 052 \geq 0\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { n810 } \\
& (2810) \\
& \text { (G195) }
\end{aligned}
\] & \begin{tabular}{l}
Diagnostic information for the paralleling interface \\
Paralleling master: (i.e. when U800 \(=1\)) \\
Segment \\
0. \(\qquad\) \\
1
\(\qquad\) Illuminated: Slave with address 2 responding \\
3 \(\qquad\) Illuminated: Slave with address 3 responding \\
4 \(\qquad\) Illuminated: Slave with address 4 responding
\(\qquad\) \\
6 \(\qquad\) Illuminated: Slave with address 5 responding 7 \(\qquad\) \\
8 Dark \\
9 \(\qquad\) Dark \\
10 \(\qquad\) \\
11 \(\qquad\) \\
12 \(\qquad\) \\
13 \(\qquad\) \\
14 \(\qquad\) \\
15 \(\qquad\) Illuminated: Master function active \\
Paralleling slave: (i.e. when \(\mathrm{U} 800=2\)) \\
Segment \\
0. \(\qquad\) \\
1
\(\qquad\) Illuminated: Data for slave with address 2 are ok \\
3 \(\qquad\) Illuminated: Data for slave with address 3 are ok \\
4 \(\qquad\) Illuminated: Data for slave with address 4 are ok \\
5 \(\qquad\)
\(\qquad\) Illuminated: Data for slave with address 6 are ok 7. \(\qquad\) \\
8 \(\qquad\) Illuminated: Slave function active \\
9 \(\qquad\) Illuminated: Firing pulses of master are used \\
10 \(\qquad\) \\
11 \(\qquad\) \\
12 \(\qquad\) \\
13 \(\qquad\) \\
14 \(\qquad\) \\
15 Dark
\end{tabular} & & Ind: None Type: V2 & P052 = 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { n812 } \\
& (2812) \\
& (\mathrm{G} 195)
\end{aligned}
\] & \begin{tabular}{l}
Receive data on paralleling interface \\
When U806=1 (master) is selected \\
When U806=2 to 6 (slave) is selected: \\
i001 Receive data from master, word 1 \\
... \\
i005 Receive data from master, word 5 \\
\(i 006\) Not in use \\
i025 Not in use
\end{tabular} & ```
0000 to FFFFFH
1
``` & \begin{tabular}{l}
Ind: 25 \\
Type: L2
\end{tabular} & \(\mathrm{P} 052 \geq 0\) \\
\hline \[
\begin{array}{|l}
\hline \begin{array}{l}
\text { n813 } \\
(2813)
\end{array} \\
(\mathrm{G} 195)
\end{array}
\] & \begin{tabular}{l} 
Transmit data on paralleling interface \\
When U806=1 (master) is selected \\
\hline i001 Transmit data to slaves, word 1 \\
\(\ldots\) \\
i005 Transmit data to slaves, word 5 \\
When U806=2 to 6 (slave) is selected: \\
\hline i001 Transmit data to master, word 1 \\
\(\ldots\) \\
i005 Transmit data to master, word 5
\end{tabular} & 0 to FFFFH & \begin{tabular}{l}
Ind: 5 \\
Type: L2
\end{tabular} & \(\mathrm{P} 052 \geq 0\) \\
\hline
\end{tabular}

\subsection*{11.87 Parameters for SIMOREG CM (Control Module)}
\begin{tabular}{|l|l|l|l|}
\hline U819 & These parameters have no meaning for SIMOREG DC Master! & & \\
to & The SIMOREG CM (Control Module, control section for converting or & & \\
U833 & upgrading systems) requires these parameters. \\
(2819 to & (for details see operating instructions for SIMOREG CM, order No. & & \\
\(2833)\) & 6RX1700-OBD76) & & \\
\hline
\end{tabular}

\subsection*{11.88 Rated DC current of external field device}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U838 } \\
& (2838)
\end{aligned}
\] & \begin{tabular}{l}
Rated DC current of external field device \\
0.00 Parameter not yet set \\
Note: \\
This parameter is operative only if P082 >= 21 .
\end{tabular} & [SW 1.9 and later] & \[
\begin{aligned}
& 0.00 \text { to } 600.00 \\
& {[\mathrm{~A}]} \\
& 0.01 \mathrm{~A}
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0.00 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.89 Simulation operation}

\section*{Simulation operation}

Simulation operation is used to test the power section (measurement of the firing pulses with a current probe). Firing pulses are output to a single thyristor (pulse distance \(=20 \mathrm{~ms}\), pulse duration = approx. 1 ms , firing pulse chopping as in normal operation). The thyristor is selected with parameter U840. The line voltage does not have to be applied during simulation operation.
Simulation operation is activated by setting a value \(>0\) in Parameter U840.
Simulation operation is then actually started when the SIMOREG DC master is in an operating state \(\geq 07\).
As soon as the SIMOREG DC master is in simulation operation, it goes into operating state 08.1 (simulation operation). Simulation operation is exited by resetting parameter U840 to zero.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U840 } \\
& (2840)
\end{aligned}
\] & Contro
0
11
\(\ldots\)
16
21
\(\ldots\)
26 & \begin{tabular}{l}
rameters for simulation operation \\
No simulation operation \\
Firing cable 11 \\
Firing cable 16 \\
Firing cable 21 \\
Firing cable 26
\end{tabular} & [SW 1.7 and later] & \[
\begin{aligned}
& 0, \\
& 11 \text { to } 16, \\
& 21 \text { to } 26 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.90 Parameter for DriveMonitor}
\begin{tabular}{|l|l|l|l|}
\hline n845 & These parameters are used by DriveMonitor & & \\
to & & & \\
n909 & & & \\
\((2840\) to & & & \\
\hline 2909\()\) & & \\
\hline
\end{tabular}

\subsection*{11.91 Slot deactivation}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { U910 } \\
& (2910) \\
& \star \\
& \text { (G101) }
\end{aligned}
\] & \begin{tabular}{l}
Slot deactivation parameter \\
Parameter for deactivating supplementary boards, e.g. during start-up or troubleshooting (for details of slot identification codes, see diagram under parameter r063) \\
The deactivated slot is ignored during the search for installed supplementary boards when the supply voltage is next switched on. Likewise, activation of a slot does not take effect until the supply voltage has been switched off and on again. \\
Note: \\
Slot E can simply be deactivated to conceal a technology board (large format). \\
If a communications board is installed in addition to the technology board, and the technology board is concealed, then the communications board will not be processed either.
\end{tabular} & \[
\begin{aligned}
& 0 \text { and } 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: 5
\[
F S=0
\] \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \mathrm{P} 052=3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.92 Parameter for DriveMonitor}
\begin{tabular}{|l|l|l|l|}
\hline n911 & These parameters are used by DriveMonitor & & \\
to & & & \\
n949 & & & \\
\((2911\) to & & & \\
\hline 2949\()\) & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.93 Technology software in the basic converter, Option S00: Sampling times}

Only active with optional technology software S00

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PNU & \multicolumn{6}{|l|}{Description} & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \multirow[t]{52}{*}{\[
\begin{aligned}
& \hline 0951 \\
& (2951) \\
& * \\
& \text { S00 }
\end{aligned}
\]} & \multicolumn{6}{|l|}{Selection of time slices for function blocks FB101 to FB200} & 1, 2, 4, 10,20 & Ind: 100 & \[
\text { P052 = } 3
\] \\
\hline & Index & Function block & Time slice (FS) & Index & Function block & Time slice (FS) & & \begin{tabular}{l}
see column on left \\
Type: O2
\end{tabular} & off-line \\
\hline & i001 & FB101 & 1 & i051 & FB151 & 1 & & & \\
\hline & i002 & FB102 & 1 & i052 & FB152 & 1 & & & \\
\hline & i003 & FB103 & 1 & i053 & FB153 & 1 & & & \\
\hline & i004 & FB104 & 1 & i054 & FB154 & 1 & & & \\
\hline & i005 & FB105 & 1 & i055 & FB155 & 1 & & & \\
\hline & i006 & FB106 & 1 & i056 & FB156 & 1 & & & \\
\hline & i007 & FB107 & 1 & i057 & FB157 & 1 & & & \\
\hline & i008 & FB108 & 1 & i058 & FB158 & 1 & & & \\
\hline & i009 & FB109 & 1 & i059 & FB159 & 1 & & & \\
\hline & i010 & FB110 & 1 & i060 & FB160 & 1 & & & \\
\hline & i011 & FB111 & 1 & i061 & FB161 & 1 & & & \\
\hline & i012 & FB112 & 1 & i062 & FB162 & 1 & & & \\
\hline & i013 & FB113 & 1 & i063 & FB163 & 1 & & & \\
\hline & i014 & FB114 & 1 & i064 & FB164 & 1 & & & \\
\hline & i015 & FB115 & 1 & i065 & FB165 & 1 & & & \\
\hline & i016 & FB116 & 2 & i066 & FB166 & 1 & & & \\
\hline & i017 & FB117 & 20 & i067 & FB167 & 1 & & & \\
\hline & i018 & FB118 & 1 & i068 & FB168 & 1 & & & \\
\hline & i019 & FB119 & 1 & i069 & FB169 & 1 & & & \\
\hline & i020 & FB120 & 1 & i070 & FB170 & 1 & & & \\
\hline & i021 & FB121 & 1 & i071 & FB171 & 1 & & & \\
\hline & i022 & FB122 & 1 & i072 & FB172 & 1 & & & \\
\hline & i023 & FB123 & 1 & i073 & FB173 & 1 & & & \\
\hline & i024 & FB124 & 1 & i074 & FB174 & 1 & & & \\
\hline & i025 & FB125 & 1 & i075 & FB175 & 1 & & & \\
\hline & i026 & FB126 & 1 & i076 & FB176 & 1 & & & \\
\hline & i027 & FB127 & 1 & 1077 & FB177 & 1 & & & \\
\hline & i028 & FB128 & 1 & i078 & FB178 & 1 & & & \\
\hline & i029 & FB129 & 1 & i079 & FB179 & 1 & & & \\
\hline & i030 & FB130 & 1 & i080 & FB180 & 1 & & & \\
\hline & i031 & FB131 & 1 & i081 & FB181 & 1 & & & \\
\hline & i032 & FB132 & 1 & i082 & FB182 & 1 & & & \\
\hline & i033 & FB133 & 1 & i083 & FB183 & 1 & & & \\
\hline & i034 & FB134 & 1 & i084 & FB184 & 1 & & & \\
\hline & i035 & FB135 & 1 & i085 & FB185 & 1 & & & \\
\hline & i036 & FB136 & 1 & i086 & FB186 & 1 & & & \\
\hline & i037 & FB137 & 1 & i087 & FB187 & 1 & & & \\
\hline & i038 & FB138 & 1 & i088 & FB188 & 1 & & & \\
\hline & i039 & FB139 & 1 & i089 & FB189 & 1 & & & \\
\hline & i040 & FB140 & 1 & i090 & FB190 & 1 & & & \\
\hline & i041 & FB141 & 1 & i091 & FB191 & 1 & & & \\
\hline & i042 & FB142 & 1 & i092 & FB192 & 1 & & & \\
\hline & i043 & FB143 & 1 & i093 & FB193 & 1 & & & \\
\hline & i044 & FB144 & 1 & i094 & FB194 & 1 & & & \\
\hline & i045 & FB145 & 1 & i095 & FB195 & 1 & & & \\
\hline & i046 & FB146 & 1 & 1096 & FB196 & 10 & & & \\
\hline & i047 & FB147 & 1 & i097 & FB197 & 10 & & & \\
\hline & i048 & FB148 & 20 & i098 & FB198 & 10 & & & \\
\hline & i049 & FB149 & 20 & i099 & FB199 & 10 & & & \\
\hline & i050 & FB150 & 1 & i100 & FB200 & 1 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline PNU & \multicolumn{6}{|l|}{Description} & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \multirow[t]{52}{*}{\[
\begin{aligned}
& \hline 0952 \\
& (2952) \\
& * \\
& \text { S00 }
\end{aligned}
\]} & \multicolumn{6}{|l|}{Selection of time slices for function blocks FB201 to FB300} & 1,2, 4, 10, 20 & Ind: 100 & \[
\text { P052 = } 3
\] \\
\hline & Index & Function block & Time slice (FS) & Index & Function block & Time slice (FS) & & \begin{tabular}{l}
see column on left \\
Type: O2
\end{tabular} & off-line \\
\hline & i001 & FB201 & 1 & i051 & FB251 & 1 & & & \\
\hline & i002 & FB202 & 1 & i052 & FB252 & 1 & & & \\
\hline & i003 & FB203 & 1 & i053 & FB253 & 1 & & & \\
\hline & i004 & FB204 & 1 & i054 & FB254 & 1 & & & \\
\hline & i005 & FB205 & 1 & i055 & FB255 & 20 & & & \\
\hline & i006 & FB206 & 1 & i056 & FB256 & 1 & & & \\
\hline & i007 & FB207 & 1 & i057 & FB257 & 1 & & & \\
\hline & i008 & FB208 & 1 & i058 & FB258 & 1 & & & \\
\hline & i009 & FB209 & 1 & i059 & FB259 & 1 & & & \\
\hline & i010 & FB210 & 1 & i060 & FB260 & 10 & & & \\
\hline & i011 & FB211 & 1 & i061 & FB261 & 10 & & & \\
\hline & i012 & FB212 & 10 & i062 & FB262 & 10 & & & \\
\hline & i013 & FB213 & 10 & i063 & FB263 & 10 & & & \\
\hline & i014 & FB214 & 10 & i064 & FB264 & 10 & & & \\
\hline & i015 & FB215 & 1 & i065 & FB265 & 10 & & & \\
\hline & i016 & FB216 & 1 & i066 & FB266 & 10 & & & \\
\hline & i017 & FB217 & 1 & i067 & FB267 & 10 & & & \\
\hline & i018 & FB218 & 1 & i068 & FB268 & 10 & & & \\
\hline & i019 & FB219 & 1 & i069 & FB269 & 10 & & & \\
\hline & i020 & FB220 & 1 & i070 & FB270 & 10 & & & \\
\hline & i021 & FB221 & 1 & i071 & FB271 & 10 & & & \\
\hline & i022 & FB222 & 1 & i072 & FB272 & 10 & & & \\
\hline & i023 & FB223 & 1 & i073 & FB273 & 10 & & & \\
\hline & i024 & FB224 & 1 & i074 & FB274 & 10 & & & \\
\hline & i025 & FB225 & 1 & i075 & FB275 & 10 & & & \\
\hline & i026 & FB226 & 1 & i076 & FB276 & 10 & & & \\
\hline & i027 & FB227 & 1 & i077 & FB277 & 10 & & & \\
\hline & i028 & FB228 & 1 & i078 & FB278 & 10 & & & \\
\hline & i029 & FB229 & 10 & i079 & FB279 & 10 & & & \\
\hline & i030 & FB230 & 1 & i080 & FB280 & 10 & & & \\
\hline & i031 & FB231 & 1 & i081 & FB281 & 10 & & & \\
\hline & i032 & FB232 & 1 & i082 & FB282 & 10 & & & \\
\hline & i033 & FB233 & 1 & i083 & FB283 & 10 & & & \\
\hline & i034 & FB234 & 20 & i084 & FB284 & 10 & & & \\
\hline & i035 & FB235 & 20 & i085 & FB285 & 10 & & & \\
\hline & i036 & FB236 & 20 & i086 & FB286 & 10 & & & \\
\hline & i037 & FB237 & 20 & i087 & FB287 & 10 & & & \\
\hline & i038 & FB238 & 20 & i088 & FB288 & 10 & & & \\
\hline & i039 & FB239 & 20 & i089 & FB289 & 10 & & & \\
\hline & i040 & FB240 & 1 & i090 & FB290 & 10 & & & \\
\hline & i041 & FB241 & 1 & i091 & FB291 & 10 & & & \\
\hline & i042 & FB242 & 1 & i092 & FB292 & 10 & & & \\
\hline & i043 & FB243 & 1 & i093 & FB293 & 10 & & & \\
\hline & i044 & FB244 & 1 & i094 & FB294 & 10 & & & \\
\hline & i045 & FB245 & 1 & i095 & FB295 & 10 & & & \\
\hline & i046 & FB246 & 10 & i096 & FB296 & 10 & & & \\
\hline & i047 & FB247 & 10 & i097 & FB297 & 10 & & & \\
\hline & i048 & FB248 & 10 & i098 & FB298 & 10 & & & \\
\hline & i049 & FB249 & 10 & i099 & FB299 & 20 & & & \\
\hline & i050 & FB250 & 1 & i100 & FB300 & 20 & & & \\
\hline
\end{tabular}

\subsection*{11.94 Parameter for DriveMonitor}
\begin{tabular}{|l|l|l|l|}
\hline n953 & These parameters are used by DriveMonitor & & \\
to & & & \\
n959 & & & \\
\((2953\) to & & & \\
\hline 2959\()\) & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.95 Technology software in basic unit, S00 option: Altering the processing sequence of function blocks}

Only active with optional technology software SOO

\section*{Processing sequence of function blocks}

The function blocks of the SOO technology software are processed within the computational cycle in the sequence defined in parameters U960 to U962:
1. Function block with number set in U960 index. 001
100. Function block with number set in U960 index. 100
101. Function block with number set in U961 index. 001
200. Function block with number set in U961 index. 100
201. Function block with number set in U962 index. 001 etc.
The numbers are parameterized in ascending sequence ( \(1,2,3, \ldots\) ) in the factory setting (standard sequence).

\section*{Altering the processing sequence:}

If a new function block number is entered (i.e. moved from another location) in a certain index of parameter U960, U961 or U962, then the new processing sequence is defined such that the function block previously entered in this index will be processed after the newly entered block. The gap which may be left at the old location of the moved (newly entered) function block is closed by shifting the function block numbers behind the space forward by one position.

\section*{Example 1:}

Starting with the standard sequence setting, the processing sequence must be altered such that function block 90 (analog signal selector switch) will be processed immediately after function block 83 (tracking/storage element):
Function block no. 90 must be entered in the index in which the number of the function block previously processed after block 83 ( 84 in U960.9065) is currently stored. Function block numbers ( 84 and 85 ) in the following indices of U960 will be shifted up to the next index automatically.
\begin{tabular}{c}
\begin{tabular}{c} 
Function \\
block
\end{tabular} \\
\hline 91 \\
\hline 90 \\
\hline 85 \\
\hline 84 \\
\hline 83 \\
\hline 82 \\
\hline 81 \\
\hline
\end{tabular}
Processing
sequence
\(\uparrow\)\begin{tabular}{r} 
U960.Index 068 \\
\(\underline{\text { U960.Index } 067}\) \\
U960.Index 066 \\
U960.Index 065 \\
U960.Index 064 \\
U960.Index 063 \\
U960.Index 062
\end{tabular}


Processing sequence
\(\uparrow\) U960.Index 068
U960.Index 067
U960.Index 066
U960.Index 065
U960.Index 064
U960.Index 063
U960.Index 062

\section*{Example 2:}

Starting with the standard sequence setting, the processing sequence must be altered such that function block 38 (sign inverter) will be processed immediately after function block 45 (divider):
Function block number 38 must be entered in the index in which the number of the function block previously processed after function block 45 (46 in U960.iO35) is currently stored. The function block numbers stored in the indices immediately above this position shift up by one index, then all numbers immediately above the gap left shift down automatically by one index.

\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & \begin{tabular}{l}
Value range [Unit] \\
Steps
\end{tabular} & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { U960 } \\
& (2960) \\
& * \\
& \text { S00 }
\end{aligned}
\] & \begin{tabular}{l}
Processing sequence of function blocks of S00 technology software (1) \\
i001: Number of function block for \(1^{\text {st }}\) place in processing sequence \\
i002: Number of function block for \(2^{\text {nd }}\) place in processing sequence \\
etc.
\end{tabular} & Numbers of all function blocks & Ind: 100 FS= Standard sequence Type: O2 & \[
\begin{aligned}
& \hline \hline \text { P052 = } \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { U961 } \\
& (2961) \\
& * \\
& \text { S00 }
\end{aligned}
\] & \begin{tabular}{l}
Processing sequence of function blocks of S00 technology software (2) \\
i001: Number of function block for \(101^{\text {st }}\) place in processing sequence \\
i002: Number of function block for \(102^{\text {nd }}\) place in processing sequence \\
etc.
\end{tabular} & Numbers of all function blocks & Ind: 100 FS= Standard sequence Type: O2 & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U962 } \\
& \text { (2962) } \\
& \text { * } \\
& \text { S00 }
\end{aligned}
\] & \begin{tabular}{l}
Processing sequence of function blocks of S00 technology software (3) \\
i001: Number of function block for \(201^{\text {st }}\) place in processing sequence \\
i002: Number of function block for \(202^{\text {nd }}\) place in processing sequence \\
etc.
\end{tabular} & Numbers of all function blocks & Ind: 100 FS= Standard sequence Type: O2 & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 = } 40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { U969 } \\
& (2969) \\
& \text { * } \\
& \text { S00 }
\end{aligned}
\] & \begin{tabular}{l}
Automatic setting and activation of the execution sequence \\
\(\begin{array}{ll}0 & \text { Return } \\ 1 & \text { Set standard sequence: }\end{array}\) \\
The numbers of the function blocks are entered in ascending order in Parameters U960, U961 and U962. The parameter is then automatically set to value 0 . \\
2 Set optimum sequence: U960, U961, and U962 are set in such a way that as few deadtimes as possible occur. After that, the parameter is automatically set to value 0 again. \\
3 Set standard setting of the sampling times. U950, U951, and U952 are set to the factory setting. \\
4 Automatic activation / deactivation: U950, U951 and U952 are set in such a way that the unwired function blocks are deselected and the wired function blocks are selected (activated), if they are not yet selected. \\
The time slice 10 (sampling time 20 ms ) is set for all function blocks not previously activated, the time slice is left unchanged for all previously activated function blocks.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 4 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { off-line }
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.96 Enabling of technology software in basic unit, S00 option ("freely assignable function blocks")}

The S00 technology option can only be utilized on SIMOREG DC Master converters on which this option has been enabled by a proper PIN number. The software remains enabled after software updates, i.e. it need not be enabled again after new software has been installed.

\section*{Permanent enabling of \(\mathbf{S 0 0}\) technology option (subject to charge):}

Please proceed as follows if you wish to enable the S00 technology option:
1. Find out the serial number of your SIMOREG DC Master unit (e.g. "Q6K31253320005"):
- The serial number is specified on the delivery note
- The serial number is printed on the rating plate of the SIMOREG DC Master
- The serial number can be displayed in parameter r069 on the OP1S
2. Find out the PIN number (a number between 2001 and 65535 ) which matches the converter serial number:
- If you have ordered the SIMOREG Master with S00 option, you will find the PIN number printed on a sticker on the unit and specified on the delivery note.
- If not, please contact your local Siemens sales office to obtain the correct PIN number.
3. Enter the PIN number in parameter U977 and complete your entry by pressing button <P>. This parameter is automatically reset to 0 after the entry is made. Enter the PIN number with care as you only have five attempts.
4. Technology option S 00 is now enabled, which can be verified in \(\mathrm{n} 978=2000\).

Technology option S00 can be disabled by entering U997 = PIN-1 (e.g. for test purposes). Parameter n978 then displays 500 . The option is enabled again by entering U977 = PIN.

\section*{Temporary enabling of SOO technology option (free of charge):}

The S00 technology option can be enabled once, free of charge, on all converters for 500 hours of use by means of a special PIN number. This 500 -hour period can be used for test purposes or for the operation of replacement units which have been ordered without the S00 option (i.e. to cover the period until a PIN number for permanent enabling is obtained).
The 500 hours are counted by the hours run counter ( r 048 ) , i.e. only the time that the drive is actually switched on is counted. When the 500 -hour period has expired, the S00 option is disabled automatically if the PIN number for permanent enabling has not been entered in the meantime.
The special PIN number is: U977 = 1500 (identical number for all units)
Temporary enabling of the option can be interrupted with PIN U977 \(=\mathbf{5 0 0}\). The remaining time credit remains valid for the next period of use with the temporarily enabling PIN number.
Alarm A059 is output if the time credit is less than 50 hours and the S00 technology option is temporarily enabled.
Fault message F059 is displayed if the time credit of 500 hours has run out and the \(\mathbf{S 0 0}\) option is still temporarily enabled.

\section*{System response when \(\mathbf{S O O}\) technology option is not enabled:}

The connectors and binectors associated with freely assignable function blocks are not updated (they are set to 0 when the electronics voltage is connected; when the time credit for temporary enabling has run out, they remain frozen at the last recorded values until the electronics voltage is disconnected again).
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \text { U977 } \\
(2977) \\
* \\
\text { S00 }
\end{array}
\] & \begin{tabular}{l}
PIN number for \(\mathbf{S 0 0}\) option \\
This parameter is automatically reset to "0" after entry of the PIN number. Take care to enter the PIN number correctly. You are only allowed up to 5 attempts!
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 65535 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \hline \text { P052 }=3 \\
& \text { P051 }=40 \\
& \text { Offline }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
\hline \text { n978 } \\
(2978) \\
\text { S00 }
\end{array}
\] & \begin{tabular}{l}
"S00 enabled" display \\
\(0 \quad\) The optional S00 technology software is disabled The time credit for temporary enabling has run out \\
xxx The optional S00 technology software is not enabled. xxx = number of credit hours which are still available for use under temporary enabling PIN number \\
1xxx The optional SOO technology software is temporarily enabled. xxx = number of credit hours still available \\
2000 The optional S00 technology software is permanently enabled.
\end{tabular} & see column on left & Ind: None Type: O2 & P052 = 3 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline PNU & Description & \begin{tabular}{l} 
Value range \\
[Unit] \\
Steps
\end{tabular} & \begin{tabular}{l} 
No. indices \\
Factory \\
setting \\
Type
\end{tabular} & \begin{tabular}{l} 
See \\
Change \\
(Access / \\
Status)
\end{tabular} \\
\hline \hline
\end{tabular}

\subsection*{11.97 Parameter access for experts}
\begin{tabular}{|c|c|c|c|c|}
\hline U979 (2979) & \begin{tabular}{l}
Parameter access for experts \\
999 Parameter access for experts is activated. \\
This means that even offline parameters can be modified in operation. \\
Notes: \\
The value of this parameter is lost when the electronics power supply is switched off. \\
Parameters can be modified only if both P051 and P052 as well as P927 are set to the correct values.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 2000 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
Ind: None \\
FS=0 \\
Type: O2
\end{tabular} & \[
\begin{aligned}
& \text { P052 = } 3 \\
& \text { P051 = } 40 \\
& \text { on-line }
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{11.98 List of existing and modified \(\mathbf{U}\) and n parameters}

\begin{tabular}{|c|c|c|c|c|}
\hline PNU & Description & Value range [Unit] Steps & No. indices Factory setting Type & See Change (Access / Status) \\
\hline \[
\begin{aligned}
& \hline \hline \text { n993 } \\
& (2993)
\end{aligned}
\] & List of modified parameters, continuation See 1990. & & Ind: 101 Type: O2 & P052 = 3 \\
\hline \[
\begin{aligned}
& \text { n9944 } \\
& (2994)
\end{aligned}
\] & List of modified parameters, continuation See n990. & & \begin{tabular}{l}
Ind: 101 \\
Type: O2
\end{tabular} & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { n995 } \\
& (2995)
\end{aligned}
\] & List of modified parameters, continuation See n990. & & Ind: 101 Type: O2 & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { n996 } \\
& (2996)
\end{aligned}
\] & List of modified parameters, continuation See n990. & & \[
\begin{array}{|l|}
\hline \text { Ind: } 101 \\
\text { Type: O2 }
\end{array}
\] & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { n997 } \\
& \text { (2997) }
\end{aligned}
\] & List of modified parameters, continuation See n 990. & & \begin{tabular}{l}
Ind: 101 \\
Type: O2
\end{tabular} & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { n998 } \\
& (2998)
\end{aligned}
\] & List of modified parameters, continuation See n990. & & \begin{tabular}{l}
Ind: 101 \\
Type: O2
\end{tabular} & P052 = 3 \\
\hline \[
\begin{aligned}
& \hline \text { n999 } \\
& \text { (2999) }
\end{aligned}
\] & List of modified parameters, continuation See n990. & & \[
\begin{array}{|l}
\hline \text { Ind: } 101 \\
\text { Type: O2 }
\end{array}
\] & \(\mathrm{P} 052=3\) \\
\hline
\end{tabular}

\section*{12 List of connectors and binectors}

\section*{12．1 Connector list}

The values of connectors can be displayed via parameters r041，r042，r043 and P044．
The following numeric representation applies to all connectors：
In the internal software representation，100\％corresponds to the number \(4000 \mathrm{hex}=16384 \mathrm{dec}\) ．The value range is \(-200.00 \% \ldots+199.99 \%\) ，corresponding to 8000 hex ．．．7FFF hex．The connectors are transferred via the serial interfaces in this internal mode of representation．
\(100 \%\) corresponds to converter rated quantities r072．i02（currents，armature），r073．i02（currents，field）， P078．i01（line voltages，armature）．
\begin{tabular}{|c|c|c|c|}
\hline Connector & Description & Normalization & Function diag．，Sheet \\
\hline \multicolumn{4}{|l|}{Fixed values} \\
\hline K0000 & Fixed value 0 & & G120 \\
\hline K0001 & Fixed value 100．00\％ & \(16384 \wedge 100 \%\) & G120 \\
\hline K0002 & Fixed value 200．00\％ & \(16384 \wedge 100 \%\) & G120 \\
\hline K0003 & Fixed value－100．00\％ & \(16384 \wedge 100 \%\) & G120 \\
\hline K0004 & Fixed value－200．00\％ & \(16384 \wedge 100 \%\) & G120 \\
\hline K0005 & Fixed value 50．00\％ & \(16384 \wedge 100 \%\) & G120 \\
\hline K0006 & Fixed value 150．00\％ & \(16384 \wedge 100 \%\) & G120 \\
\hline K0007 & Fixed value－50．00\％ & \(16384 \wedge 100 \%\) & G120 \\
\hline K0008 & Fixed value－150．00\％ & \(16384 \wedge 100 \%\) & G120 \\
\hline K0009 & Fixed value 0 or special function specified in each case & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Analog inputs} \\
\hline K0010 & \begin{tabular}{l}
Analog input，terminal 4 ／ 5 （main setpoint） \\
Raw value after A／D conversion（unfiltered，not normalized）
\end{tabular} & \(16384 \wedge 100 \%\) & G113 \\
\hline K0011 & Analog input，terminal 4 ／ 5 （main setpoint） After normalization，offset injection，filtering & 16384 へ 100\％ & G113 \\
\hline K0012 & Analog input，terminal 103／104（main actual value） Raw value after A／D conversion（unfiltered，not normalized） & 16384 へ 100\％ & G113 \\
\hline K0013 & Analog input，terminal 103／104（main actual value） After normalization，offset injection，filtering & \(16384 \wedge 100 \%\) & G113 \\
\hline K0014 & Analog input，terminal 6 ／ 7 （analog selectable input 1） Raw value after A／D conversion（unfiltered，not normalized） & 16384 へ 100\％ & G113 \\
\hline K0015 & Analog input，terminal \(6 / 7\)（analog selectable input 1） After normalization，offset injection，filtering & 16384 へ 100\％ & G113 \\
\hline K0016 & Analog input，terminal 8 ／ 9 （analog selectable input 2） Raw value after A／D conversion（unfiltered，not normalized） & \(16384 \wedge 100 \%\) & G114 \\
\hline K0017 & Analog input，terminal 8 ／ 9 （analog selectable input 2） After normalization，offset injection，filtering & 16384 へ 100\％ & G114 \\
\hline K0018 & Analog input，terminal 10 ／ 11 （analog selectable input 3） Raw value after A／D conversion（unfiltered，not normalized） & \(16384 \wedge 100 \%\) & G114 \\
\hline K0019 & Analog input，terminal 10 ／ 11 （analog selectable input 3） After normalization，offset injection，filtering & \(16384 \wedge 100 \%\) & G114 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Connector & Description & Normalization & Function diag., Sheet \\
\hline \multicolumn{4}{|l|}{Binary inputs, binary outputs} \\
\hline K0020 & \begin{tabular}{l}
Binary inputs, terminals 36 to 43 and 211 to 214, E Stop \\
Bit0 \(=\) Status of terminal 36 \\
Bit1 = Status of terminal 37 \\
Bit2 = Status of terminal 38 \\
Bit3 \(=\) Status of terminal 39 \\
Bit4 \(=\) Status of terminal 40 \\
Bit5 = Status of terminal 41 \\
Bit6 = Status of terminal 42 \\
Bit7 = Status of terminal 43 \\
Bit8 = Status of terminal 211 \\
Bit9 = Status of terminal 212 \\
Bit10 \(=\) Status of terminal 213 \\
Bit11 = Status of terminal 214 \\
Bit12 \(=0\)... E Stop is active \\
1 ... No E Stop is active
\end{tabular} & \(1 \wedge 1\) & G110 \\
\hline K0021 & \begin{tabular}{l}
Binary outputs, terminals 46 to 52, 109/110 \\
Bit0 \(=\) Status of terminal 46 \\
Bit1 = Status of terminal 48 \\
Bit2 \(=\) Status of terminal 50 \\
Bit3 \(=\) Status of terminal 52 \\
Bit7 = Status of terminal 109/110
\end{tabular} & \(1 \wedge 1\) & \begin{tabular}{l}
G112 \\
G117
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|l|}{ Analog outputs } & \(16384 \wedge 100 \%\) & G115 \\
\hline K0026 & Analog output, terminal \(14 / 15\) & \(16384 \triangleq 100 \%\) & G115 \\
\hline K0027 & Analog output, terminal \(16 / 17\) & \(16384 \triangleq 100 \%\) & G116 \\
\hline K0028 & Analog output, terminal \(18 / 19\) & \(16384 \triangleq 100 \%\) & G116 \\
\hline K0029 & Analog output, terminal \(20 / 21\) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Control word, status word } & \(1 \triangleq 1\) \\
\hline K0030 & Control word 1 & \(1 \triangleq 1\) & G180 \\
\hline K0031 & Control word 2 & \(1 \triangleq 1\) & G181 \\
\hline K0032 & Status word 1 & [ SW 2.0 and later & \(1 \triangleq 1\) & G182 \\
\hline K0033 & Status word 2 & [ SW 2.0 and later & \(1 \triangleq 1\) & G183 \\
\hline K0034 & Active function data set & G175 \\
\hline K0035 & Active BICO data set & G175 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Evaluation of the pulse encoder board SBP} & [ SW 1.6 and later] \\
\hline KK0036 & Position actual value of SBP & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z120 \\
\hline K0038 & Actual speed value of SBP in rev./min & [ SW 2.0 and later] & \(1 \triangleq 1 \mathrm{rpm}\) & Z120 \\
\hline K0039 & Actual speed value of SBP & & \(16384 \wedge 100 \%\) & Z120 \\
\hline
\end{tabular}

\section*{Pulse encoder evaluation}

The pulse encoder evaluation function supplies an actual speed value (K0040 und K0041)
and an actual position value (K0042, K0043, K0044, KK0046).
The pulses of the pulse encoder are counted according to sign to generate the actual position value (a hardware counter is used for this purpose.)
The setting in parameter P144 (multiple evaluation) is also relevant,
i.e. when P144 \(=0\), every positive edge of the first track of the pulse encoder is counted,
when P144 = 1, every edge of the first track of the encoder is counted,
when P144 = 2, every edge of both tracks of the encoder is counted.
When P145 = 1 (automatic switchover of multiple evaluation), the position sensor (K0042, K0043, K0044, KK0046) produces invalid data!
K0042 and K0043 together form a signed 24-bit actual position value.
(value range: FF80 0000H to 007F FFFFH or \(-2^{23}\) to \(+2^{23}-1\) )
\begin{tabular}{|l|l|l|l|}
\hline K0040 & Actual speed value from pulse encoder & \(16384 \wedge 100 \%\) & G145 \\
\hline K0041 & Absolute actual speed value from pulse encoder & \(16384 \wedge 100 \%\) & G145 \\
\hline K0042 & \begin{tabular}{l} 
Actual position value, LOW word \\
LOW word of 24-bit actual position value
\end{tabular} & \(1 \triangleq 1\) & G145 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Connector & Description & Normalization & Function diag., Sheet \\
\hline K0043 & Actual position value, HIGH word HIGH word of 24-bit actual position value & \(1 \triangleq 1\) & G145 \\
\hline K0044 & Actual position value, number of zero markers & \(1 \triangleq 1\) & G145 \\
\hline KK0046 & \begin{tabular}{l}
Actual position value \\
[ SW 1.9 and later] \\
Actual position value extended in the software to a 32 -bit value (value range: 80000000 H to 7 FFF FFFFH or \(-2^{31}\) to \(+2^{31}-1\) )
\end{tabular} & \(1 \triangleq 1\) & G145 \\
\hline KK0047 & \begin{tabular}{l}
Deceleration distance \\
[ SW 1.9 and later] \\
When setpoint 0 is applied to the ramp-function generator input, the speed setpoint at the generator output is reduced to zero according to the current settings for ramp-down and transition roundings. \\
This double-word connector specifies the requisite deceleration distance as the number of increments of the pulse encoder (defined in parameters P140 ff.). \\
This deceleration distance calculation is correct only on the condition that the parameterized ramp-down time and transition roundings do not change during the braking operation.
\end{tabular} & \(1 \triangleq 1\) & G136 \\
\hline K0048 & Actual speed value from pulse encoder in rpm [ SW 2.0 and later] & \(1 \triangleq 1 \mathrm{rpm}\) & G145 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Heatsink temperature } \\
\hline K0050 & Heatsink temperature & \(16384 \wedge 100^{\circ} \mathrm{C}\) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{7}{|l|}{\begin{tabular}{l} 
Motor interface \\
K0050 is always set to 0 when a PTC thermistor or no temperature sensor is connected \((P 490 . x \neq 1)\).
\end{tabular}} \\
\hline K0051 & Motor temperature 1 (from sensor to terminal 22 / 23) & \(16384 \triangleq 100^{\circ} \mathrm{C}\) & G185 \\
\hline K0052 & Motor temperature 2 (from sensor to terminal 204/205) & \(16384 \wedge 100^{\circ} \mathrm{C}\) & G185 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Closed-loop armature current control, auto-reversing stage, armature gating unit} \\
\hline K0100 & Firing angle (armature) & \[
\begin{aligned}
& 16384 \triangleq 0^{\circ} \\
& 0 \triangleq 90^{\circ} \\
& -16384 \triangleq 180^{\circ}
\end{aligned}
\] & G163 \\
\hline K0101 & Firing angle (armature) before limitation & \[
\begin{aligned}
& 16384 \triangleq 0^{\circ} \\
& 0 \triangleq 90^{\circ} \\
& -16384 \triangleq 180^{\circ}
\end{aligned}
\] & G163 \\
\hline K0102 & Precontrol value + armature current controller output (gating unit input) & \[
\begin{aligned}
& 16384 \triangleq 0^{\circ} \\
& 0 \triangleq 90^{\circ} \\
& -16384 \triangleq 180^{\circ}
\end{aligned}
\] & G162 \\
\hline K0103 & \[
100 \% * \frac{\text { duration of current flow }}{\text { time between } 2 \text { firing pulses }} \quad[\text { SW } 2.0 \text { and later] }
\] & \(16384 \wedge 100 \%\) & G162 \\
\hline K0105 & Code of triggered thyristor pair in a thyristor bridge for switching through the corresponding line phase: & \(1 \wedge 1\) & \\
\hline K0106 & Selected torque direction & \[
\begin{array}{|l|l|}
\hline 0=\text { No torque direction } \\
1=\text { Torque direction I } \\
2=\text { Torque direction II } \\
\hline
\end{array}
\] & G163 \\
\hline K0107 & \begin{tabular}{l}
Internal actual current value, signed (armature), averaged over the last 6 current peaks in each case, normalized to rated motor current \\
[ SW 1.9 and later]
\end{tabular} & \(16384 \wedge 100 \%\) of P100 & G162 \\
\hline K0109 & Internal signed actual current value (armature), averaged over the last 6 current peaks in each case & \(16384 \wedge 100 \%\) & G162 \\
\hline K0110 & Current controller output (armature) & \(16384 \wedge 100 \%\) & G162 \\
\hline K0111 & Current controller output, P component (armature) & \(16384 \wedge 100 \%\) & G162 \\
\hline K0112 & Current controller output, I component (armature) & \(16384 \wedge\) ^ \(100 \%\) & G162 \\
\hline K0113 & Current controller actual value/setpoint deviation (armature) & \(16384 \wedge 100 \%\) & G162 \\
\hline K0114 & Internal signed actual current value (armature), averaged over one firing cycle & 16384 へ 100\% & G162 \\
\hline K0115 & Current controller actual value (armature) & \(16384 \wedge 100 \%\) & G162 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Connector & Description & Normalization & Function diag., Sheet \\
\hline K0116 & Absolute value of internal actual current (armature) & \(16384 \wedge 100 \%\) & G162 \\
\hline K0117 & Internal signed actual current value (armature) & \(16384 \wedge 100 \%\) & G162 \\
\hline K0118 & Current controller setpoint (armature) & \(16384 \wedge\) ^ \(100 \%\) & G162 \\
\hline K0119 & Current controller setpoint (armature) before absolute-value generation & \(16384 \wedge 100 \%\) & G162 \\
\hline K0120 & Current setpoint (armature) before reduced gear stressing & \(16384 \wedge\) ^ \(100 \%\) & G161 \\
\hline K0121 & Precontrol output (armature) & \[
\begin{aligned}
& 16384 \wedge 0^{\circ} \\
& 0 \triangleq 90^{\circ} \\
& -16384 \triangleq 180^{\circ}
\end{aligned}
\] & G162 \\
\hline K0122 & EMF which is applied as an input value for the armature precontrol (generated from K0123 or K0124 depending on P162, filtered acc. to P163) & \[
16384 \triangleq \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}
\] & G162 \\
\hline K0123 & \begin{tabular}{l}
\(E M F=U_{a}-l_{a}{ }^{*} P_{a}-L_{a}{ }^{*} d j / d t\), where the measured armature voltage is applied as \(U_{a}\) \\
(Note: K0287 is the result of PT1 filtering with 10 ms )
\end{tabular} & \[
16384 \triangleq \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}
\] & \\
\hline K0124 & \(E M F=U_{a}-l_{a}{ }^{*} P_{a}-L_{a}{ }^{*} d \dot{d} / d t\), where the armature voltage calculated from the delay angle, measured armature conduction interval and mean line voltage is applied as \(U_{a}\). If this calculation cannot be made or is insufficiently accurate (e.g. with a conduction angle \(<10^{\circ}\), average armature current value \(<2\) \% in r072.002), K0124 assumes the value set in K0123. & \[
16384 \triangleq \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}
\] & \\
\hline K0125 & Armature current setpoint after reduced gearbox stressing or current setpoint integrator & & G162 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Current limitation } \\
\hline K0131 & Lowest positive current limit (armature) & \(16384 \wedge 100 \%\) & G161 \\
\hline K0132 & Highest negative current limit (armature) & \(16384 \wedge 100 \%\) & G161 \\
\hline K0133 & Current setpoint (armature) before limitation (incl. additional setpoint) & \(16384 \wedge 100 \%\) & G161 \\
\hline K0134 & Current setpoint (armature) before torque limitation & \(16384 \wedge 100 \%\) & G160 \\
\hline
\end{tabular}

\section*{Torque limitation, speed limiting controller}

Normalization of torque connectors:
An armature current corresponding to \(100 \%\) of the converter rated DC current (r072.002) with a motor flux (K0290) corresponding to \(100 \%\) of the rated motor field current (P102) produces a torque of \(100 \%\).
Note:
Whether connectors K0140, K0141, K0145 and K0147 act as the torque setpoint or the current setpoint depends on P170 (setting determines which quantity is divided by motor flux).
\begin{tabular}{|c|c|c|c|}
\hline K0136 & Speed limiting controller, active torque limit 1 & \(16384 \wedge 100 \%\) & G160 \\
\hline K0137 & Speed limiting controller, active torque limit 2 & \(16384 \wedge 100 \%\) & G160 \\
\hline K0140 & Torque setpoint (after speed limiting controller) & \(16384 \wedge 100 \%\) & G160 \\
\hline K0141 & Torque setpoint (after torque limitation) & \(16384 \wedge 100 \%\) & G160 \\
\hline K0142 & Actual torque value & \(16384 \wedge 100 \%\) & G162 \\
\hline K0143 & Upper torque limit & \(16384 \wedge 100 \%\) & G160 \\
\hline K0144 & Lower torque limit & \(16384 \wedge 100 \%\) & G160 \\
\hline K0145 & Torque setpoint before limitation (incl. additional setpoint) & \(16384 \wedge 100 \%\) & G160 \\
\hline K0147 & Torque setpoint before limitation (without additional setpoint) & \(16384 \wedge 100 \%\) & G160 \\
\hline K0148 & Torque setpoint (from speed controller) & \(16384 \wedge 100 \%\) & G152 \\
\hline K0149 & Torque actual value related to P100 * P102 [ SW 2.0 and latel & ]16384 \(\wedge 100 \%\) & G162 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{8}{|l|}{ Compensation of moment of inertia (dv/dt injection) } & \(16384 \wedge 100 \%\) \\
\hline K0150 & \begin{tabular}{l} 
Component of precontrol for speed controller \\
calculated from d(K0168)/dt * P540
\end{tabular} & G153 \\
\hline K0152 & \begin{tabular}{l} 
Component of precontrol for speed controller \\
calculated from f(K0164) * P541 (= function of speed actual value/setpoint \\
deviation in K0164)
\end{tabular} & \(16384 \wedge 100 \%\) & G153 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Connector & Description & Normalization & Function diag．，Sheet \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Speed controller \\
Setpoint processing，ramp－function generator，friction and moment of inertia compensation
\end{tabular}} \\
\hline K0160 & Speed controller output & \(16384 \wedge 100 \%\) & G152 \\
\hline K0161 & P component & \(16384 \wedge 100 \%\) & G152 \\
\hline K0162 & I component & 16384 へ 100\％ & G152 \\
\hline K0164 & Setpoint／actual value deviation & \(16384 \wedge 100 \%\) & G152 \\
\hline K0165 & Generation of setpoint／actual value deviation output & \(16384 \wedge 100 \%\) & G152 \\
\hline K0166 & Selected actual speed value（absolute value） & \(16384 \wedge 100 \%\) & G152 \\
\hline K0167 & Selected actual speed value（signed） & \(16384 \wedge 100 \%\) & G152 \\
\hline K0168 & D component output＊（－1） & \(16384 \wedge 100 \%\) & G152 \\
\hline K0169 & D component output & \(16384 \wedge 100 \%\) & G152 \\
\hline K0170 & Speed setpoint from ramp－function generator after limitation & \(16384 \wedge 100 \%\) & G136 \\
\hline K0171 & Precontrol for speed controller （friction and moment of inertia compensation） & 16384 へ 100\％ & G153 \\
\hline K0172 & Component of precontrol determined by friction for speed controller & 16384 へ 100\％ & G153 \\
\hline K0173 & Filtered component of precontrol determined by moment of inertia for speed controller & \(16384 \wedge 100 \%\) & G153 \\
\hline K0174 & Filtering element output for nset filtering & \(16384 \wedge 100 \%\) & G152 \\
\hline K0176 & Speed droop & \(16384 \wedge 100 \%\) & G151 \\
\hline K0177 & Band－stop output 1 & 16384 へ 100\％ & G152 \\
\hline K0178 & Band－stop output 2 & \(16384 \wedge 100 \%\) & G152 \\
\hline K0179 & Filtering element output for nact filtering & \(16384 \wedge 100 \%\) & G152 \\
\hline K0181 & Lowest positive setpoint limit & 16384 へ 100\％ & G136 \\
\hline K0182 & Highest negative setpoint limit & \(16384 \wedge 100 \%\) & G136 \\
\hline K0183 & Speed setpoint before limitation & \(16384 \wedge 100 \%\) & G136 \\
\hline K0190 & Ramp－function generator output（before speed setpoint limitation） & 16384 へ 100\％ & G136 \\
\hline K0191 & dv／dt（rise in ramp－function generator output in time period set in P542） & \(16384 \wedge 100 \%\) & G136 \\
\hline K0192 & Effective ramp－function generator input variable & 16384 へ 100\％ & G136 \\
\hline K0193 & Setpoint input for ramp－function generator & 16384 へ 100\％ & G135 \\
\hline K0194 & Total of main setpoint（limited）＋additional setpoint & \(16384 \wedge 100 \%\) & G135 \\
\hline K0195 & \begin{tabular}{l}
Ramp－function generator input before the setpoint reduction \\
［ SW 1.6 and later］
\end{tabular} & \(16384 \wedge 100 \%\) & G135 \\
\hline K0196 & Effective positive limit for main setpoint & \(16384 \wedge 100 \%\) & G135 \\
\hline K0197 & Effective negative limit for main setpoint & 16384 へ 100\％ & G135 \\
\hline K0198 & Main setpoint before limitation & \(16384 \wedge 100 \%\) & G135 \\
\hline
\end{tabular}

\section*{Crawling setpoint，inching setpoint，oscillation，fixed setpoint}
\begin{tabular}{|l|l|l|l|}
\hline K0201 & Crawling setpoint & \(16384 \triangleq 100 \%\) & G130 \\
\hline K0202 & Inching setpoint & \(16384 \triangleq 100 \%\) & G129 \\
\hline K0203 & Oscillation setpoint & \(16384 \wedge 100 \%\) & G128 \\
\hline K0204 & Fixed setpoint & \(16384 \triangleq 100 \%\) & G127 \\
\hline K0206 & Crawling setpoint：Output value of function block & \(16384 \wedge 100 \%\) & G130 \\
\hline K0207 & Inching setpoint：Output value of function block & \(16384 \triangleq 100 \%\) & G129 \\
\hline K0208 & Oscillation：Output value of function block & \(16384 \triangleq 100 \%\) & G128 \\
\hline K0209 & Fixed setpoint：Output value of function block & \(16384 \triangleq 100 \%\) & G127 \\
\hline
\end{tabular}

\section*{Connector selector switches}
\begin{tabular}{|l|ll|l|l|}
\hline K0230 & Output of connector selector switch 1 & ［ SW 1．9 and later］ & \(1 \triangleq 1\) & G124 \\
\hline K0231 & Output of connector selector switch 2 & ［ SW 1．9 and later］ & \(1 \triangleq 1\) & G124 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Connector & Description & Normalization & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Motorized potentiometer } \\
\hline K0240 & Motorized potentiometer output (setpoint from potentiometer) & \(16384 \wedge 100 \%\) & G126 \\
\hline K0241 & \begin{tabular}{l} 
dy/dt (rise in ramp-function generator output in time period set in P542 + \\
P465)
\end{tabular} & \(16384 \triangleq 100 \%\) & G126 \\
\hline K0242 & Ramp-function generator input in motorized potentiometer (setpoint) & \(16384 \triangleq 100 \%\) & G126 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Closed-loop field current control, field gating unit} \\
\hline K0250 & Firing angle (field) & \[
\begin{aligned}
& 16384 \triangleq 0^{\circ} \\
& 0 \triangleq 90^{\circ} \\
& -16384 \triangleq 180^{\circ}
\end{aligned}
\] & G166 \\
\hline K0251 & Firing angle (field) before limitation & \[
\begin{aligned}
& 16384 \triangleq 0^{\circ} \\
& 0 \triangleq 90^{\circ} \\
& -16384 \triangleq 180^{\circ} \\
& \hline
\end{aligned}
\] & G166 \\
\hline K0252 & Precontrol value + field current controller output (gating unit input) & \[
\begin{aligned}
& 16384 \triangleq 0^{\circ} \\
& 0 \triangleq 90^{\circ} \\
& -16384 \triangleq 180^{\circ}
\end{aligned}
\] & G166 \\
\hline K0260 & Current controller output (field) & \(16384 \wedge 100 \%\) & G166 \\
\hline K0261 & Current controller P component (field) & \(16384 \wedge 100 \%\) & G166 \\
\hline K0262 & Current controller I component (field) & \(16384 \wedge\) ^100\% & G166 \\
\hline K0263 & Current controller setpoint/actual value deviation (field) & \(16384 \wedge\) ¢ \(100 \%\) & G166 \\
\hline K0265 & Actual value at field current controller input & \(16384 \wedge 100 \%\) & G166 \\
\hline K0266 & Absolute internal actual current value (field) & \(16384 \wedge 100 \%\) & G166 \\
\hline K0268 & Setpoint at field current controller input & \(16384 \wedge 100 \%\) & G166 \\
\hline K0271 & Precontrol output (field) & \(16384 \wedge 100 \%\) & G166 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Closed-loop EMF control} \\
\hline K0273 & Lowest positive current limit (field) & \(16384 \wedge 100 \%\) & G165 \\
\hline K0274 & Lowest negative current limit (field) & \(16384 \wedge 100 \%\) & G165 \\
\hline K0275 & Current controller setpoint (field) before standstill field & \(16384 \wedge 100 \%\) & G165 \\
\hline K0276 & Current controller setpoint (field) before limitation & \(16384 \wedge 100 \%\) & G165 \\
\hline K0277 & Current controller setpoint (field) before summing stage at limiter input & \(16384 \wedge 100 \%\) & G165 \\
\hline K0278 & Precontrol value + EMF controller output & \(16384 \wedge 100 \%\) & G165 \\
\hline K0280 & EMF controller output & \(16384 \wedge 100 \%\) & G165 \\
\hline K0281 & P component of EMF controller & \(16384 \wedge 100 \%\) & G165 \\
\hline K0282 & I component of EMF controller & \(16384 \wedge 100 \%\) & G165 \\
\hline K0283 & EMF controller, setpoint/actual value deviation & \(16384 \wedge 100 \%\) & G165 \\
\hline K0284 & EMF controller, setpoint/actual value deviation after droop & \(16384 \wedge 100 \%\) & G165 \\
\hline K0285 & EMF controller actual value & \[
16384 \triangleq \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}
\] & G165 \\
\hline K0286 & Absolute value of actual EMF & \[
16384 \triangleq P 078.001 * \frac{3 \sqrt{2}}{\pi}
\] & G165 \\
\hline K0287 & Signed actual EMF value & \[
16384 \triangleq \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}
\] & G165 \\
\hline K0288 & EMF controller setpoint & \[
16384 \triangleq \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}
\] & G165 \\
\hline K0289 & EMF setpoint & \[
16384 \triangleq \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}
\] & G165 \\
\hline K0290 & Motor flux & \begin{tabular}{l}
\[
16384 \wedge 100 \%
\] \\
\(100 \%\) motor flux is reached at rated motor field current (P102)
\end{tabular} & G166 \\
\hline K0291 & Absolute actual armature voltage & \[
16384 \wedge \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Connector & Description & Normalization & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline K0292 & Signed actual armature voltage & \(16384 \wedge P 078.001 * \frac{3 \sqrt{2}}{\pi}\) & \\
\hline K0293 & Precontrol output (EMF) & \(16384 \triangleq 100 \%\) & G165 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{General connectors} \\
\hline K0301 & Line voltage U-V (armature) & \(16384 \triangleq \mathrm{P} 078.001\) & \\
\hline K0302 & Line voltage V-W (armature) & \(16384 \triangleq \mathrm{P} 078.001\) & \\
\hline K0303 & Line voltage W-U (armature) & \(16384 \wedge\) P078.001 & \\
\hline K0304 & Line voltage (field) & \(16384 \wedge 400 \mathrm{~V}\) & \\
\hline K0305 & Average line voltage (armature), filtered & \(16384 \wedge\) P078.001 & \\
\hline K0306 & Line frequency & \(16384 \triangleq 50.0 \mathrm{~Hz}\) & \\
\hline K0307 & \begin{tabular}{l}
Motor power output \\
Normalization: \(16384 \triangleq\) P100 * (P101 - P100 * P110)
\end{tabular} & see Column 2 & \\
\hline K0309 & \begin{tabular}{l}
Calculated motor temperature rise \\
Normalization: \(16384 \wedge\) the overtemperature which is reached at a continuous current corresponding to the rated motor armature current
\end{tabular} & see Column 2 & \\
\hline K0310 & Calculated thyristor temperature rise as \% of maximum permissible thyristor temperature rise & \(16384 \wedge 100 \%\) & \\
\hline K0311 & Hours run [ SW 1.9 and later] & \(1 \wedge 1 \mathrm{~h}\) & G189 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Fixed setpoints} \\
\hline K0401 & Fixed value 1 (P401) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0402 & Fixed value 2 (P402) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0403 & Fixed value 3 (P403) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0404 & Fixed value 4 (P404) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0405 & Fixed value 5 (P405) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0406 & Fixed value 6 (P406) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0407 & Fixed value 7 (P407) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0408 & Fixed value 8 (P408) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0409 & Fixed value 9 (P409) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0410 & Fixed value 10 (P410) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0411 & Fixed value 11 (P411) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0412 & Fixed value 12 (P412) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0413 & Fixed value 13 (P413) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0414 & Fixed value 14 (P414) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0415 & Fixed value 15 (P415) & \(16384 \wedge 100 \%\) & G120 \\
\hline K0416 & Fixed value 16 (P416) & \(16384 \wedge 100 \%\) & G120 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Start pulse for the speed controller } \\
\hline K0451 & Fixed setting value 1 for the \(n\) controller I component & \(16384 \wedge 100 \%\) of P100 & G150 \\
\hline K0452 & Setting value 1 for the \(n\) controller I component, weighted & \(16384 \triangleq 100 \%\) of P100 & G150 \\
\hline K0453 & Fixed setting value 2 for the n controller I component & \(16384 \triangleq 100 \%\) of P100 & G150 \\
\hline K0454 & Setting value for the \(n\) controller I component & \(16384 \triangleq 100 \%\) of P100 & G150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 4-step & er switch & & [ SW 1.7 and later] \\
\hline K0510 & Setpoint of the 4-step master switch & \(16384 \wedge 100 \%\) & G125 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|l|}{} \\
\hline General connectors & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Connector & Description & Normalization & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline K0801 & \begin{tabular}{l} 
Latest fault and alarm message \\
Low byte: Latest alarm message \\
If several alarms are active simultaneously, the alarm with the \\
lowest number if displayed here. \\
Value "0" means that no alarm is active.
\end{tabular} & G189 \\
High byte: Latest fault message \\
Value "0" means that no fault is active.
\end{tabular}\(\quad\)\begin{tabular}{l} 
K0810 \\
\begin{tabular}{l} 
Limitation bits \\
The meaning of these bits is described in Section 11, Parameter List, under \\
parameter r040.
\end{tabular}
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline K0900 & Optimization run, setpoint 0 & & \\
\hline K0901 & Optimization run, setpoint 1 & & \\
\hline K0902 & Optimization run, setpoint 2 & & \\
\hline K0903 & Optimization run, setpoint 3 & & \\
\hline K0904 & Optimization run, setpoint 4 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Connectors for raw data of pulse encoder evaluation} \\
\hline K0910 & \begin{tabular}{l}
Measuring time for speed evaluation of pulse encoder \\
1 corresponds to 41.6666 ns if K0912 = xxxx xx0x (divisor 1:1) \\
1 corresponds to 83.3333 ns if K0912 = xxxx x01x (divisor 1:2) \\
1 corresponds to 166.666 ns if K0912 = xxxx x11x (divisor 1:4) \\
This value is always slightly higher than the measuring time set in P147.
\end{tabular} & & G145 \\
\hline K0911 & \begin{tabular}{l}
Number of pulses during measuring time set in K0910 \\
The speed of the pulse encoder can be calculated from connectors K0910, K0911 and K0912 by the following equation:
\[
n_{\text {act }}[\mathrm{rev} / \mathrm{s}]=\frac{K 0911 * 24000000}{\text { Pulse no. of encoder } * \text { Meas. time }}
\] \\
Pulse number of encoder \(=1^{*} \mathrm{P} 141\), if K0912 \(=\mathrm{xx} 0 \mathrm{x}\) xxxx ( 1 x evaluation) \\
Pulse number of encoder \(=2^{*}\) P141, if K0912 \(=x 01 x\) xxxx ( \(2 x\) evaluation) \\
Pulse number of encoder \(=4^{*}\) P141, if \(\mathrm{K} 0912=x 11 \mathrm{x} x \mathrm{xxx}\) (4x evaluation) \\
Meas. time \(=\) 1* \(^{*}\) K0910 if K0912 =xxxx xx0x (divisor 1:1) \\
Meas. time \(=2^{*}\) K0910 if K0912 =xxxx x01x (divisor 1:2) \\
Meas. time \(=\) 4* \(^{*}\) K0910 if K0912 =xxxx x11x (divisor 1:4)
\end{tabular} & & G145 \\
\hline K0912 & \begin{tabular}{l}
Status of speed evaluation of pulse encoder \\
xxxx xxx0 = asynchronous measurement \\
xxxx xxx1 = (gating-pulse-)synchronized measurement \\
xxxx xx0x = divisor 1:1 \\
xxxx x01x = divisor 1:2 \\
xxxx \(\times 11 \mathrm{x}=\) divisor 1:4 \\
xxx0 0xxx = pulse encoder type1 (P140 = 1) \\
xxx1 0xxx = pulse encoder type1a \(\quad(\mathrm{P} 140=2)\) \\
\(x x x 01 \times x x=\) pulse encoder type2 \(\quad(\) P140 \(=3)\) \\
\(x x x 11 x x x=\) pulse encoder type3 \(\quad(P 140=4)\) \\
\(x x 0 x \times x x x=1 x\) evaluation \\
\(x 01 \mathrm{xxxxx}=2 \mathrm{x}\) evaluation \\
\(\mathrm{x} 11 \mathrm{x} x \mathrm{xxx}=4 \mathrm{x}\) evaluation \\
\(0 x x x\) xxxx = No pulse encoder error \\
\(1 \times x x\) xxxx = Pulse encoder signal states occurred during the measurement which may not occur on a rotating pulse encoder. They indicate a signal short circuit or an interruption in a pulse encoder signal. \\
When the pulse encoder is stationary or oscillating around one position, signal states of this type are perfectly normal and do not indicate a signal fault.
\end{tabular} & & G145 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Connector & Description & Normalization & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline K0960 & \begin{tabular}{l} 
Time interval between averaged line synchronization time reference point \\
and "unfiltered" zero crossing of scanned and software-filtered line voltage \\
in \(1.334 \mu\) (when P152 = 1 to 20)
\end{tabular} & \(1 \triangleq 1.334 \mu \mathrm{~s}\) \\
\hline K0970 & Positive line zero crossing of phase U-V (as T1 instant) & & \\
\hline K0971 & Negative line zero crossing of phase W-U (as T1 instant) & & \\
\hline K0972 & Positive line zero crossing of phase V-W (as T1 instant) & & \\
\hline K0973 & Negative line zero crossing of phase U-V (as T1 instant) & & \\
\hline K0974 & Positive line zero crossing of phase W-U (as T1 instant) & & \\
\hline K0975 & Negative line zero crossing of phase V-W (as T1 instant) & & \\
\hline K0976 & Positive line zero crossing, field supply & & \\
\hline K0977 & Negative line zero crossing, field supply & & \\
\hline K0984 & Last line zero crossing used (as T1 instant) (field) & & \\
\hline K0985 & Field firing instant (as T1 instant) & & \\
\hline K0986 & Last line zero crossing used (as T1 instant) (armature) & & \\
\hline K0987 & Armature firing instant (as T1 instant) & & \\
\hline K0988 & Firing pulse cycle time (time difference between current and previous \\
armature firing instant) in T1 increments of 1.334 \(\mu\) each & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Connector & Description & Normalization & Function diag., Sheet \\
\hline K0989 & \begin{tabular}{l}
Information about torque direction and firing angle \\
Nibble 0 .. Torque direction
\[
\begin{aligned}
& 0=\text { M0 }(--) \\
& 1=\text { MI } \\
& 2=\text { MII }
\end{aligned}
\] \\
\(9=\) The master waits in MO until all slaves have reached the RUN state \\
Nibble 1 .. Code number for firing angle \\
1 = Firing angle requested by current controller+precontrol implemented \\
\(2=\) Firing angle requested by current controller+precontrol was > P151. It has been implemented or limited to \(165^{\circ}\) \\
\(3=\) Alpha-W pulse at \(165^{\circ}\) \\
\(4=\) Alpha-W pulse at P151 angle setting \\
\(5=\) Firing angle requested by current controller+precontrol could not be implemented due to strong pulse compression \\
\(6=\) Slave connected in parallel could not adapt its computing cycle to the firing angle of the paralleling master \\
\(7=\) No firing angle received from paralleling master \\
\(8=\) The cycle time received from the paralleling master is too long \\
\(9=\) The firing angle of the paralleling master has been implemented \\
Nibble 2 .. Code number for requested torque direction \\
0 : Not RUN ( \(\geq 01.0\) ) \\
1: Torque direction acc. to current setpoint K119 (==> MO, MI, MII) \\
2: Wait for enable from parallel drive [ acc. to P165] (==> MO) \\
3: Firing angle of \(>165\) degrees requested (==> M0) \\
4: Additional wait time in auto-reversing stage (==> M0) \\
5: Output 165-degree pulse without second pulse in the old torque direction (==> MI, MII) \\
6: Output Alpha-W pulse (as set in P151) without second pulse in the old torque direction (==> MI, MII) \\
7: Torque direction request during short-circuit test of thyristor check function (==> MI) \\
8: Torque direction request during open circuit test of thyristor check function (==> M0, MI, MII) \\
9: The selected thyristor pair is disabled during thyristor check (==> M0) \\
A: No meaning \\
B: Torque direction of paralleling is being implemented (==> MO, MI, MII) \\
C: Simulation operation (==> MI, MII) [ SW 1.8 and later] \\
D: The command "Fire all thyristors simultaneously" is being executed (see also under P0176) \\
[ SW 1.8 and later] \\
E: Output 165-degree pulse with second pulse in the old torque direction (==> MI, MII) (see also P0179) \\
[ SW 1.9 and later] \\
F: Output Alpha-W pulse (as set in P151) with second pulse in the old torque direction (==> MI, MII) (see also P0179) \\
[ SW 1.9 and later] \\
Nibble 3 .. \\
Code number for zero current signal \\
[ SW 1.9 and later] \\
0 : The " \(\mathrm{I}=0\) " signal is not evaluated because no change in torque direction is required \\
1: \(I<>0\) \\
2: \(I=0\) for less than 0.1 msec \\
3: \(I=0\) for more than 0.1 msec \\
4: \(I=0\) for more than 0.6 msec \\
5: la-act (K116) is < \(1 \%\) for more than 6 current peaks
\end{tabular} & & \\
\hline K0990 & Current total processor capacity utilization (C167) & & \\
\hline K0991 & Projected total processor capacity utilization (C167) for maximum line frequency ( 65 Hz ) & & \\
\hline K0992 & Total processor capacity (C167) currently utilized by background routines & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Connector & Description & Normalization & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline K0993 & \begin{tabular}{l} 
Total processor capacity (C167) currently utilized by routines synchronized \\
with field firing pulses
\end{tabular} & & \\
\hline K0994 & \begin{tabular}{l} 
Total processor capacity (C167) currently utilized by routines synchronized \\
with armature firing pulses
\end{tabular} & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Serial interface 1 (USS1 on G-SST1)} \\
\hline K2001 & USS1 receive data, word 1 & & \(1 \wedge 1\) & G170 \\
\hline K2002 & USS1 receive data, word 2 & & \(1 \wedge 1\) & G170 \\
\hline K2003 & USS1 receive data, word 3 & & \(1 \triangleq 1\) & G170 \\
\hline K2004 & USS1 receive data, word 4 & & \(1 \wedge 1\) & G170 \\
\hline K2005 & USS1 receive data, word 5 & & \(1 \triangleq 1\) & G170 \\
\hline K2006 & USS1 receive data, word 6 & & \(1 \triangleq 1\) & G170 \\
\hline K2007 & USS1 receive data, word 7 & & \(1 \triangleq 1\) & G170 \\
\hline K2008 & USS1 receive data, word 8 & & \(1 \triangleq 1\) & G170 \\
\hline K2009 & USS1 receive data, word 9 & & \(1 \triangleq 1\) & G170 \\
\hline K2010 & USS1 receive data, word 10 & & \(1 \triangleq 1\) & G170 \\
\hline K2011 & USS1 receive data, word 11 & & \(1 \triangleq 1\) & G170 \\
\hline K2012 & USS1 receive data, word 12 & & \(1 \wedge 1\) & G170 \\
\hline K2013 & USS1 receive data, word 13 & & \(1 \wedge 1\) & G170 \\
\hline K2014 & USS1 receive data, word 14 & & \(1 \triangleq 1\) & G170 \\
\hline K2015 & USS1 receive data, word 15 & & \(1 \triangleq 1\) & G170 \\
\hline K2016 & USS1 receive data, word 16 & & \(1 \triangleq 1\) & G170 \\
\hline K2020 & Output of binector/connector converter for G-SST1 & [ SW 1.4 and later] & \(1 \wedge 1\) & G170 \\
\hline KK2031 & USS1 receive data, word 1 and 2 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK2032 & USS1 receive data, word 2 and 3 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK2033 & USS1 receive data, word 3 and 4 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK2034 & USS1 receive data, word 4 and 5 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK2035 & USS1 receive data, word 5 and 6 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK2036 & USS1 receive data, word 6 and 7 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK2037 & USS1 receive data, word 7 and 8 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK2038 & USS1 receive data, word 8 and 9 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK2039 & USS1 receive data, word 9 and 10 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK2040 & USS1 receive data, word 10 and 11 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK2041 & USS1 receive data, word 11 and 12 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK2042 & USS1 receive data, word 12 and 13 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK2043 & USS1 receive data, word 13 and 14 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK2044 & USS1 receive data, word 14 and 15 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK2045 & USS1 receive data, word 15 and 16 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Process data exchange with \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\)} \\
\hline K3001 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1 & \(1 \triangleq 1\) & Z110 \\
\hline K3002 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2 & \(1 \triangleq 1\) & 2110 \\
\hline K3003 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3 & \(1 \triangleq 1\) & Z110 \\
\hline K3004 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4 & \(1 \wedge 1\) & Z110 \\
\hline K3005 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5 & \(1 \wedge 1\) & Z110 \\
\hline K3006 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6 & \(1 \wedge 1\) & Z110 \\
\hline K3007 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7 & \(1 \wedge 1\) & Z110 \\
\hline K3008 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8 & \(1 \stackrel{\text { 人 }}{ } 1\) & Z110 \\
\hline K3009 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9 & \(1 \stackrel{\wedge}{\wedge}\) & Z110 \\
\hline K3010 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 10 & \(1 \wedge 1\) & Z110 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Connector & \multicolumn{2}{|l|}{Description} & Normalization & Function diag., Sheet \\
\hline K3011 & \multicolumn{2}{|l|}{Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 11} & \(1 \wedge 1\) & Z110 \\
\hline K3012 & \multicolumn{2}{|l|}{Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 12} & \(1 \triangleq 1\) & Z110 \\
\hline K3013 & \multicolumn{2}{|l|}{Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 13} & \(1 \stackrel{\wedge}{\wedge}\) & Z110 \\
\hline K3014 & \multicolumn{2}{|l|}{Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 14} & \(1 \triangleq 1\) & Z110 \\
\hline K3015 & \multicolumn{2}{|l|}{Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 15} & \(1 \triangleq 1\) & Z110 \\
\hline K3016 & \multicolumn{2}{|l|}{Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 16} & \(1 \wedge 1\) & Z110 \\
\hline K3020 & Output of binector/connector converter for \(\mathrm{T}^{\text {st }} \mathrm{CB} / \mathrm{TB}\) & [ SW 1.9 and later] & \(1 \triangleq 1\) & Z110 \\
\hline KK3031 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1 and 2 & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK3032 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2 and 3 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK3033 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3 and 4 & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK3034 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4 and 5 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK3035 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5 and 6 & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK3036 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6 and 7 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK3037 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7 and 8 & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK3038 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8 and 9 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK3039 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9 and 10 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK3040 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 10 and 11 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK3041 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 11 and 12 & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK3042 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 12 and 13 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK3043 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 13 and 14 & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK3044 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 14 and 15 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK3045 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 15 and 16 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{SCB1 with SCl1} \\
\hline K4101 & SCI, slave 1, analog input 1 & [ SW 1.9 and later] & \(1 \triangleq 1\) & Z150 \\
\hline K4102 & SCI, slave 1, analog input 2 & [ SW 1.9 and later] & \(1 \wedge 1\) & Z150 \\
\hline K4103 & SCI, slave 1, analog input 3 & [ SW 1.9 and later] & \(1 \wedge 1\) & Z150 \\
\hline K4201 & SCI, slave 2 , analog input 1 & [ SW 1.9 and later] & \(1 \wedge 1\) & Z151 \\
\hline K4202 & SCI, slave 2, analog input 2 & [ SW 1.9 and later] & \(1 \wedge 1\) & Z151 \\
\hline K4203 & SCI, slave 2, analog input 3 & [ SW 1.9 and later] & \(1 \triangleq 1\) & Z151 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Expansion boards} & [ SW 1.5 and later] \\
\hline K5101 & 1st analog input of 1st plugged EB1 & \(16384 \wedge 100 \%\) & Z112 \\
\hline K5102 & 2nd analog input of 1st plugged EB1 & \(16384 \wedge 100 \%\) & Z112 \\
\hline K5103 & 3rd analog input of 1st plugged EB1 & \(16384 \wedge\) ^ 100\% & Z112 \\
\hline K5104 & 1st analog output of 1st plugged EB1 & \(16384 \wedge 100 \%\) & Z113 \\
\hline K5105 & 2nd analog output of 1st plugged EB1 & \(16384 \wedge\) ^ \(100 \%\) & Z113 \\
\hline K5106 & Binary inputs and outputs of 1st plugged EB1 & \(1 \triangleq 1\) & Z114 \\
\hline K5111 & Analog input of 1st plugged EB2 & \(16384 \wedge\) ^ 100\% & Z118 \\
\hline K5112 & Analog output of 1st plugged EB2 & \(16384 \wedge 100 \%\) & Z118 \\
\hline K5113 & Binary inputs and outputs of 1st plugged EB2 & \(1 \triangleq 1\) & Z118 \\
\hline K5201 & 1st analog input of 2nd plugged EB1 & \(16384 \wedge 100 \%\) & Z115 \\
\hline K5202 & 2nd analog input of 2nd plugged EB1 & \(16384 \wedge 100 \%\) & Z115 \\
\hline K5203 & 3rd analog input of 2nd plugged EB1 & \(16384 \wedge 100 \%\) & Z115 \\
\hline K5204 & 1st analog output of 2nd plugged EB1 & \(16384 \wedge 100 \%\) & Z116 \\
\hline K5205 & 2nd analog output of 2nd plugged EB1 & \(16384 \wedge 100 \%\) & Z116 \\
\hline K5206 & Binary inputs and outputs of 2nd plugged EB1 & \(1 \triangleq 1\) & Z117 \\
\hline K5211 & Analog input of 2nd plugged EB2 & \(16384 \wedge 100 \%\) & Z119 \\
\hline K5212 & Analog output of 2nd plugged EB2 & \(16384 \wedge 100 \%\) & Z119 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Connector & Description & Normalization & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline K5213 & Binary inputs and outputs of 2nd plugged EB2 & \(1 \wedge 1\) & Z119 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2)} \\
\hline K6001 & USS2 / Peer2 receive data, word 1 & & \(1 \triangleq 1\) & G171, G173 \\
\hline K6002 & USS2 / Peer2 receive data, word 2 & & \(1 \triangleq 1\) & G171, G173 \\
\hline K6003 & USS2 / Peer2 receive data, word 3 & & \(1 \triangleq 1\) & G171, G173 \\
\hline K6004 & USS2 / Peer2 receive data, word 4 & & \(1 \wedge 1\) & G171, G173 \\
\hline K6005 & USS2 / Peer2 receive data, word 5 & & \(1 \triangleq 1\) & G171, G173 \\
\hline K6006 & USS2 receive data, word 6 & & \(1 \stackrel{\text { 人 }}{ } 1\) & G171 \\
\hline K6007 & USS2 receive data, word 7 & & \(1 \triangleq 1\) & G171 \\
\hline K6008 & USS2 receive data, word 8 & & \(1 \triangleq 1\) & G171 \\
\hline K6009 & USS2 receive data, word 9 & & \(1 \triangleq 1\) & G171 \\
\hline K6010 & USS2 receive data, word 10 & & \(1 \triangleq 1\) & G171 \\
\hline K6011 & USS2 receive data, word 11 & & \(1 \triangleq 1\) & G171 \\
\hline K6012 & USS2 receive data, word 12 & & \(1 \triangleq 1\) & G171 \\
\hline K6013 & USS2 receive data, word 13 & & \(1 \triangleq 1\) & G171 \\
\hline K6014 & USS2 receive data, word 14 & & \(1 \stackrel{\wedge}{\text { ® }}\) & G171 \\
\hline K6015 & USS2 receive data, word 15 & & \(1 \wedge 1\) & G171 \\
\hline K6016 & USS2 receive data, word 16 & & \(1 \triangleq 1\) & G171 \\
\hline K6020 & Output of binector/connector converter for G-SST2 & [ SW 1.4 and later] & \(1 \triangleq 1\) & G171, G173 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|l|}{ Paralleling interface } & \(1 \triangleq 1\) \\
\hline K6021 & Word 1 from master / Word 1 from slave with address 2 & \(1 \triangleq 1\) & G195 \\
\hline K6022 & Word 2 from master / Word 2 from slave with address 2 & G195 \\
\hline K6023 & Word 3 from master / Word 3 from slave with address 2 & \(1 \triangleq 1\) & G195 \\
\hline K6024 & Word 4 from master / Word 4 from slave with address 2 & \(1 \triangleq 1\) & G195 \\
\hline K6025 & Word 5 from master / Word 5 from slave with address 2 & \(1 \triangleq 1\) & G195 \\
\hline K6031 & Word 1 from slave with address 3 & \(1 \triangleq 1\) & G195 \\
\hline K6032 & Word 2 from slave with address 3 & \(1 \triangleq 1\) & G195 \\
\hline K6033 & Word 3 from slave with address 3 & \(1 \triangleq 1\) & G195 \\
\hline K6034 & Word 4 from slave with address 3 & \(1 \triangleq 1\) & G195 \\
\hline K6035 & Word 5 from slave with address 3 & \(1 \triangleq 1\) & G195 \\
\hline K6041 & Word 1 from slave with address 4 & \(1 \triangleq 1\) & G195 \\
\hline K6042 & Word 2 from slave with address 4 & \(1 \triangleq 1\) & G195 \\
\hline K6043 & Word 3 from slave with address 4 & \(1 \triangleq 1\) & G195 \\
\hline K6044 & Word 4 from slave with address 4 & \(1 \triangleq 1\) & G195 \\
\hline K6045 & Word 5 from slave with address 4 & \(1 \triangleq 1\) & G195 \\
\hline K6051 & Word 1 from slave with address 5 & \(1 \triangleq 1\) & G195 \\
\hline K6052 & Word 2 from slave with address 5 & \(1 \triangleq 1\) & G195 \\
\hline K6053 & Word 3 from slave with address 5 & \(1 \triangleq 1\) & G195 \\
\hline K6054 & Word 4 from slave with address 5 & \(1 \triangleq 1\) & G195 \\
\hline K6055 & Word 5 from slave with address 5 & \(1 \triangleq 1\) & G195 \\
\hline K6061 & Word 1 from slave with address 6 & \(1 \triangleq 1\) & G195 \\
\hline K6062 & Word 2 from slave with address 6 & \(1 \triangleq 1\) & G195 \\
\hline K6063 & Word 3 from slave with address 6 & \(1 \triangleq 1\) & G195 \\
\hline K6064 & Word 4 from slave with address 6 & \(1 \triangleq 1\) & G195 \\
\hline K6065 & Word 5 from slave with address 6 & \(1 \triangleq 1\) & G195 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Connector & Description & & Normalization & Function diag., Sheet \\
\hline \multicolumn{5}{|l|}{Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2)} \\
\hline KK6081 & USS2 / Peer2 receive data, word 1 and 2 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK6082 & USS2 / Peer2 receive data, word 2 and 3 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK6083 & USS2 / Peer2 receive data, word 3 and 4 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK6084 & USS2 / Peer2 receive data, word 4 and 5 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK6085 & USS2 receive data, word 5 and 6 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK6086 & USS2 receive data, word 6 and 7 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK6087 & USS2 receive data, word 7 and 8 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK6088 & USS2 receive data, word 8 and 9 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK6089 & USS2 receive data, word 9 and 10 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK6090 & USS2 receive data, word 10 and 11 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK6091 & USS2 receive data, word 11 and 12 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK6092 & USS2 receive data, word 12 and 13 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK6093 & USS2 receive data, word 13 and 14 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK6094 & USS2 receive data, word 14 and 15 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK6095 & USS2 receive data, word 15 and 16 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Process data exchange with SIMOLINK} & [ SW 1.5 and later] \\
\hline K7001 & Receive data from SIMOLINK, word 1 & & \(1 \wedge 1\) & Z122 \\
\hline K7002 & Receive data from SIMOLINK, word 2 & & \(1 \triangleq 1\) & Z122 \\
\hline K7003 & Receive data from SIMOLINK, word 3 & & \(1 \wedge 1\) & Z122 \\
\hline K7004 & Receive data from SIMOLINK, word 4 & & \(1 \triangleq 1\) & Z122 \\
\hline K7005 & Receive data from SIMOLINK, word 5 & & \(1 \triangleq 1\) & Z122 \\
\hline K7006 & Receive data from SIMOLINK, word 6 & & \(1 \wedge 1\) & Z122 \\
\hline K7007 & Receive data from SIMOLINK, word 7 & & \(1 \wedge 1\) & Z122 \\
\hline K7008 & Receive data from SIMOLINK, word 8 & & \(1 \wedge 1\) & Z122 \\
\hline K7009 & Receive data from SIMOLINK, word 9 & & \(1 \triangleq 1\) & Z122 \\
\hline K7010 & Receive data from SIMOLINK, word 10 & & \(1 \wedge 1\) & Z122 \\
\hline K7011 & Receive data from SIMOLINK, word 11 & & \(1 \triangleq 1\) & Z122 \\
\hline K7012 & Receive data from SIMOLINK, word 12 & & \(1 \triangleq 1\) & Z122 \\
\hline K7013 & Receive data from SIMOLINK, word 13 & & \(1 \triangleq 1\) & Z122 \\
\hline K7014 & Receive data from SIMOLINK, word 14 & & \(1 \triangleq 1\) & Z122 \\
\hline K7015 & Receive data from SIMOLINK, word 15 & & \(1 \triangleq 1\) & Z122 \\
\hline K7016 & Receive data from SIMOLINK, word 16 & & \(1 \triangleq 1\) & Z122 \\
\hline KK7031 & Receive data from SIMOLINK, word 1 and 2 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK7032 & Receive data from SIMOLINK, word 2 and 3 & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK7033 & Receive data from SIMOLINK, word 3 and 4 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK7034 & Receive data from SIMOLINK, word 4 and 5 & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK7035 & Receive data from SIMOLINK, word 5 and 6 & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK7036 & Receive data from SIMOLINK, word 6 and 7 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK7037 & Receive data from SIMOLINK, word 7 and 8 & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline K7101 & Receive data from SIMOLINK, special data word 1 & & \(1 \triangleq 1\) & Z122 \\
\hline K7102 & Receive data from SIMOLINK, special data word 2 & & \(1 \triangleq 1\) & Z122 \\
\hline K7103 & Receive data from SIMOLINK, special data word 3 & & \(1 \triangleq 1\) & Z122 \\
\hline K7104 & Receive data from SIMOLINK, special data word 4 & & \(1 \wedge 1\) & Z122 \\
\hline K7105 & Receive data from SIMOLINK, special data word 5 & & \(1 \wedge 1\) & Z122 \\
\hline K7106 & Receive data from SIMOLINK, special data word 6 & & \(1 \triangleq 1\) & Z122 \\
\hline K7107 & Receive data from SIMOLINK, special data word 7 & & \(1 \wedge 1\) & Z122 \\
\hline K7108 & Receive data from SIMOLINK, special data word 8 & & \(1 \triangleq 1\) & Z122 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Connector & Description & Normalization & Function diag., Sheet \\
\hline KK7131 & Receive data from SIMOLINK, special data word 1 and 2 [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK7132 & Receive data from SIMOLINK, special data word 2 and 3 [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK7133 & Receive data from SIMOLINK, special data word 3 and 4 [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK7134 & Receive data from SIMOLINK, special data word 4 and 5 [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK7135 & Receive data from SIMOLINK, special data word 5 and 6 [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK7136 & Receive data from SIMOLINK, special data word 6 and 7 [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK7137 & Receive data from SIMOLINK, special data word 7 and 8 [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Process data exchange with \(2^{\text {nd }} C B\)} \\
\hline K8001 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1 & & \(1 \triangleq 1\) & Z111 \\
\hline K8002 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2 & & \(1 \triangleq 1\) & Z111 \\
\hline K8003 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3 & & \(1 \triangleq 1\) & Z111 \\
\hline K8004 & Receive data from \({ }^{\text {nd }} \mathrm{CB}\), word 4 & & \(1 \triangleq 1\) & Z111 \\
\hline K8005 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5 & & \(1 \wedge 1\) & Z111 \\
\hline K8006 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6 & & \(1 \triangleq 1\) & Z111 \\
\hline K8007 & Receive data from \({ }^{\text {nd }} \mathrm{CB}\), word 7 & & \(1 \triangleq 1\) & Z111 \\
\hline K8008 & Receive data from \({ }^{\text {nd }} \mathrm{CB}\), word 8 & & \(1 \triangleq 1\) & Z111 \\
\hline K8009 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9 & & \(1 \triangleq 1\) & Z111 \\
\hline K8010 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 10 & & \(1 \triangleq 1\) & Z111 \\
\hline K8011 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 11 & & \(1 \triangleq 1\) & Z111 \\
\hline K8012 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 12 & & \(1 \wedge 1\) & Z111 \\
\hline K8013 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 13 & & \(1 \wedge 1\) & Z111 \\
\hline K8014 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 14 & & \(1 \wedge 1\) & Z111 \\
\hline K8015 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 15 & & \(1 \wedge 1\) & Z111 \\
\hline K8016 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 16 & & \(1 \wedge 1\) & Z111 \\
\hline K8020 & Output of binector/connector converter for \(2^{\text {nd }} \mathrm{CB}\) & [ SW 1.9 and later] & \(1 \wedge 1\) & Z111 \\
\hline KK8031 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1 and 2 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK8032 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2 and 3 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK8033 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3 and 4 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK8034 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4 and 5 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK8035 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5 and 6 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK8036 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6 and 7 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK8037 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7 and 8 & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK8038 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8 and 9 & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK8039 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9 and 10 & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline KK8040 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 10 and 11 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK8041 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 11 and 12 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK8042 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 12 and 13 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK8043 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 13 and 14 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK8044 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 14 and 15 & [ SW 2.0 and later] & \(1 \wedge 1\) & Z124 \\
\hline KK8045 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 15 and 16 & [ SW 2.0 and later] & \(1 \triangleq 1\) & Z124 \\
\hline
\end{tabular}

\section*{Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3)}
\begin{tabular}{|l|l|l|l|}
\hline K9001 & USS3 / Peer3 receive data, word 1 & \(1 \triangleq 1\) & G172, G174 \\
\hline K9002 & USS3 / Peer3 receive data, word 2 & \(1 \triangleq 1\) & G172, G174 \\
\hline K9003 & USS3 / Peer3 receive data, word 3 & \(1 \triangleq 1\) & G172, G174 \\
\hline K9004 & USS3 / Peer3 receive data, word 4 & \(1 \triangleq 1\) & G172, G174 \\
\hline K9005 & USS3 / Peer3 receive data, word 5 & \(1 \triangleq 1\) & G172, G174 \\
\hline K9006 & USS3 receive data, word 6 & \(1 \triangleq 1\) & G172 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Connector & Description & & Normalization & Function diag., Sheet \\
\hline K9007 & USS3 receive data, word 7 & & \(1 \triangleq 1\) & G172 \\
\hline K9008 & USS3 receive data, word 8 & & \(1 \wedge 1\) & G172 \\
\hline K9009 & USS3 receive data, word 9 & & \(1 \triangleq 1\) & G172 \\
\hline K9010 & USS3 receive data, word 10 & & \(1 \triangleq 1\) & G172 \\
\hline K9011 & USS3 receive data, word 11 & & \(1 \wedge 1\) & G172 \\
\hline K9012 & USS3 receive data, word 12 & & \(1 \triangleq 1\) & G172 \\
\hline K9013 & USS3 receive data, word 13 & & \(1 \triangleq 1\) & G172 \\
\hline K9014 & USS3 receive data, word 14 & & \(1 \triangleq 1\) & G172 \\
\hline K9015 & USS3 receive data, word 15 & & \(1 \triangleq 1\) & G172 \\
\hline K9016 & USS3 receive data, word 16 & & \(1 \triangleq 1\) & G172 \\
\hline K9020 & Output of binector/connector converter for G-SST3 & [ SW 1.4 and later] & \(1 \triangleq 1\) & G172, G174 \\
\hline KK9081 & USS3 / Peer3 receive data, word 1 and 2 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK9082 & USS3 / Peer3 receive data, word 2 and 3 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK9083 & USS3 / Peer3 receive data, word 3 and 4 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK9084 & USS3 / Peer3 receive data, word 4 and 5 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK9085 & USS3 receive data, word 5 and 6 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK9086 & USS3 receive data, word 6 and 7 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK9087 & USS3 receive data, word 7 and 8 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK9088 & USS3 receive data, word 8 and 9 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK9089 & USS3 receive data, word 9 and 10 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK9090 & USS2 receive data, word 10 and 11 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK9091 & USS3 receive data, word 11 and 12 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK9092 & USS3 receive data, word 12 and 13 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK9093 & USS3 receive data, word 13 and 14 & [ SW 2.0 and later] & \(1 \wedge 1\) & G169 \\
\hline KK9094 & USS3 receive data, word 14 and 15 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline KK9095 & USS3 receive data, word 15 and 16 & [ SW 2.0 and later] & \(1 \triangleq 1\) & G169 \\
\hline
\end{tabular}

\section*{Technology software S00: Binector/connector converters}
\begin{tabular}{|l|ll|l|l|}
\hline K9113 & Output of binector/connector converter 1 & FB 13 & \(1 \triangleq 1\) & B121 \\
\hline K9114 & Output of binector/connector converter 2 & FB 14 & \(1 \triangleq 1\) & B121 \\
\hline K9115 & Output of binector/connector converter 3 & FB 15 & \(1 \triangleq 1\) & B121 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Technology software S00: Adders / Subtracters} \\
\hline K9120 & Output of adder/subtracter 1 & & FB 20 & \(16384 \wedge 100 \%\) & B125 \\
\hline K9121 & Output of adder/subtracter 2 & & FB 21 & \(16384 \wedge 100 \%\) & B125 \\
\hline K9122 & Output of adder/subtracter 3 & & FB 22 & \(16384 \wedge 100 \%\) & B125 \\
\hline K9123 & Output of adder/subtracter 4 & & FB 23 & \(16384 \wedge 100 \%\) & B125 \\
\hline K9124 & Output of adder/subtracter 5 & & FB 24 & \(16384 \wedge 100 \%\) & B125 \\
\hline K9125 & Output of adder/subtracter 6 & & FB 25 & \(16384 \wedge 100 \%\) & B125 \\
\hline K9126 & Output of adder/subtracter 7 & & FB 26 & \(16384 \wedge 100 \%\) & B125 \\
\hline K9127 & Output of adder/subtracter 8 & & FB 27 & \(16384 \wedge 100 \%\) & B125 \\
\hline K9128 & Output of adder/subtracter 9 & & FB 28 & \(16384 \wedge 100 \%\) & B125 \\
\hline K9129 & Output of adder/subtracter 10 & & FB 29 & \(16384 \wedge 100 \%\) & B125 \\
\hline K9130 & Output of adder/subtracter 11 & & FB 30 & \(16384 \wedge 100 \%\) & B125 \\
\hline K9131 & Output of adder/subtracter 12 & & FB 31 & \(16384 \wedge 100 \%\) & B125 \\
\hline K9132 & Output of adder/subtracter 13 & [ SW 1.8 and later] & FB 3 & \(216384 \wedge 100 \%\) & B125 \\
\hline K9133 & Output of adder/subtracter 14 & [ SW 1.8 and later] & FB 3 & \(316384 \wedge 100 \%\) & B125 \\
\hline K9134 & Output of adder/subtracter 15 & [ SW 1.8 and later] & FB 3 & \(416384 \wedge 100 \%\) & B125 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Connector & Description & Normalization & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline Technology software S00: Sign inverters, switchable sign inverters & B125 \\
\hline K9135 & Output of sign inverter 1 & FB 35 & \(16384 \triangleq 100 \%\) & \\
\hline K9136 & Output of sign inverter 2 & FB 36 & \(16384 \triangleq 100 \%\) & B125 \\
\hline K9137 & Output of sign inverter 3 & FB 37 & \(16384 \triangleq 100 \%\) & B125 \\
\hline K9138 & Output of sign inverter 4 & FB 38 & \(16384 \triangleq 100 \%\) & B125 \\
\hline K9140 & Output of switchable sign inverter 1 & FB 40 & \(16384 \triangleq 100 \%\) & B125 \\
\hline K9141 & Output of switchable sign inverter 2 & FB 41 & \(16384 \triangleq 100 \%\) & B125 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Technology software S00: Dividers, multipliers, high-resolution multipliers/dividers} \\
\hline K9142 & Output of divider 4 & [ SW 1.8 and later] & FB 4 & \(216384 \wedge 100 \%\) & B131 \\
\hline K9143 & Output of divider 5 & [ SW 1.8 and later] & FB 4 & \(316384 \wedge 100 \%\) & B131 \\
\hline K9144 & Output of divider 6 & [ SW 1.8 and later] & FB 4 & \(16384 \wedge 100 \%\) & B131 \\
\hline K9145 & Output of divider 1 & & FB 45 & \(16384 \triangleq 100 \%\) & B131 \\
\hline K9146 & Output of divider 2 & & FB 46 & \(16384 \wedge 100 \%\) & B131 \\
\hline K9147 & Output of divider 3 & & FB 47 & \(16384 \wedge 100 \%\) & B131 \\
\hline K9150 & Output of multiplier 1 & & FB 50 & \(16384 \triangleq 100 \%\) & B130 \\
\hline K9151 & Output of multiplier 2 & & FB 51 & \(16384 \wedge 100 \%\) & B130 \\
\hline K9152 & Output of multiplier 3 & & FB 52 & \(16384 \wedge 100 \%\) & B130 \\
\hline K9153 & Output of multiplier 4 & & FB 53 & \(16384 \wedge 100 \%\) & B130 \\
\hline K9155 & Output of high-resolution multiplier/divider 1 & & FB 55 & \(16384 \wedge 100 \%\) & B131 \\
\hline K9156 & Output of high-resolution multiplier/divider 2 & & FB 56 & \(16384 \wedge 100 \%\) & B131 \\
\hline K9157 & Output of high-resolution multiplier/divider 3 & & FB 57 & \(16384 \wedge 100 \%\) & B131 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|}
\hline \multicolumn{5}{|l|}{ Technology software S00: Absolute-value generator with filter } \\
\hline K9160 & Output of absolute-value generator with filter 1 & FB 60 & \(16384 \triangleq 100 \%\) & B135 \\
\hline K9161 & Output of absolute-value generator with filter 2 & FB 61 & \(16384 \triangleq 100 \%\) & B135 \\
\hline K9162 & Output of absolute-value generator with filter 3 & FB 62 & \(16384 \triangleq 100 \%\) & B135 \\
\hline K9163 & Output of absolute-value generator with filter 4 & FB 63 & \(16384 \triangleq 100 \%\) & B135 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Technology software S00: Limiters} \\
\hline K9165 & Limiter 1: Fixed limiting value & & FB 65 & \(16384 \wedge 100 \%\) & B135 \\
\hline K9166 & Limiter 1: Positive limiting value * (-1) & & FB 65 & \(16384 \wedge 100 \%\) & B135 \\
\hline K9167 & Limiter 1: Output & & FB 65 & \(16384 \triangleq 100 \%\) & B135 \\
\hline K9168 & Limiter 2: Fixed limiting value & & FB 66 & \(16384 \wedge 100 \%\) & B135 \\
\hline K9169 & Limiter 2: Positive limiting value * (-1) & & FB 66 & \(16384 \wedge 100 \%\) & B135 \\
\hline K9170 & Limiter 2: Output & & FB 66 & \(16384 \wedge 100 \%\) & B135 \\
\hline K9171 & Limiter 3: Fixed limiting value & & FB 67 & \(16384 \wedge 100 \%\) & B135 \\
\hline K9172 & Limiter 3: Positive limiting value * (-1) & & FB 67 & \(16384 \wedge 100 \%\) & B135 \\
\hline K9173 & Limiter 3: Output & & FB 67 & \(16384 \wedge 100 \%\) & B135 \\
\hline K9174 & Limiter 4: Fixed limiting value & [ SW 2.0 and later] & FB 21 & 216384 へ 100\% & B134 \\
\hline K9175 & Limiter 4: Positive limiting value * (-1) & [ SW 2.0 and later] & FB 21 & \(26384 \wedge 100 \%\) & B134 \\
\hline K9176 & Limiter 4: Output & [ SW 2.0 and later] & FB 21 & \(216384 \wedge 100 \%\) & B134 \\
\hline K9177 & Limiter 5: Fixed limiting value & [ SW 2.0 and later] & FB 210 & \(316384 \wedge 100 \%\) & B134 \\
\hline K9178 & Limiter 5: Positive limiting value * (-1) & [ SW 2.0 and later] & FB 2 & \(36384 \wedge 100 \%\) & B134 \\
\hline K9179 & Limiter 5: Output & [ SW 2.0 and later] & FB 210 & 316384 へ 100\% & B134 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|}
\hline \multicolumn{6}{|l|}{ Technology software S00: Limit-value monitor with filter } \\
\hline K9180 & Limit-value monitor with filter 1: Filtered input quantity & FB 70 & \(16384 \triangleq 100 \%\) & B136 \\
\hline K9181 & Limit-value monitor with filter 1: Fixed operating point & FB 70 & \(16384 \triangleq 100 \%\) & B136 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|}
\hline Connector & Description & Normalization & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline K9182 & Limit-value monitor with filter 2: Filtered input quantity & FB 71 & \(16384 \triangleq 100 \%\) & B136 \\
\hline K9183 & Limit-value monitor with filter 2: Fixed operating point & FB 71 & \(16384 \triangleq 100 \%\) & B136 \\
\hline K9184 & Limit-value monitor with filter 3: Filtered input quantity & FB 72 & \(16384 \triangleq 100 \%\) & B136 \\
\hline K9185 & Limit-value monitor with filter 3: Fixed operating point & FB 72 & \(16384 \triangleq 100 \%\) & B136 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|}
\hline \multicolumn{5}{|l|}{ Technology software S00: Limit-value monitor without filter } \\
\hline K9186 & Limit-value monitor without filter 1: Fixed operating point & FB 73 & \(16384 \triangleq 100 \%\) & B137 \\
\hline K9187 & Limit-value monitor without filter 2: Fixed operating point & FB 74 & \(16384 \triangleq 100 \%\) & B137 \\
\hline K9188 & Limit-value monitor without filter 3: Fixed operating point & FB 75 & \(16384 \triangleq 100 \%\) & B137 \\
\hline K9189 & Limit-value monitor without filter 4: Fixed operating point & FB 76 & \(16384 \triangleq 100 \%\) & B137 \\
\hline K9190 & Limit-value monitor without filter 5: Fixed operating point & FB 77 & \(16384 \triangleq 100 \%\) & B138 \\
\hline K9191 & Limit-value monitor without filter 6: Fixed operating point & FB 78 & \(16384 \triangleq 100 \%\) & B138 \\
\hline K9192 & Limit-value monitor without filter 7: Fixed operating point & FB 79 & \(16384 \triangleq 100 \%\) & B138 \\
\hline
\end{tabular}

Technology software S00: Minimum selection, maximum selection
\begin{tabular}{|l|l|l|l|}
\hline K9193 & Minimum selection output & FB 80 & \(16384 \wedge 100 \%\) \\
\hline K9194 & Maximum selection output & FB 81 & \(16384 \wedge 100 \%\) \\
\hline
\end{tabular}

\section*{Technology software S00: Tracking/storage elements}
\begin{tabular}{l|ll|l|l|}
\hline K9195 & Output of tracking/storage element 1 & FB 82 & \(16384 \triangleq 100 \%\) & B145 \\
\hline K9196 & Output of tracking/storage element 2 & FB 83 & \(16384 \triangleq 100 \%\) & B145 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|}
\hline \multicolumn{1}{|l|}{ Technology software S00: Connector memories } \\
\hline K9197 & Output connector memory 1 & FB 84 & \(16384 \triangleq 100 \%\) & \\
\hline K9198 & Output connector memory 2 & FB 85 & \(16384 \triangleq 100 \%\) & B145 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|}
\hline \multicolumn{5}{|l|}{ Technology software S00: Connector changeover switches } \\
\hline K9210 & Output connector changeover switch 1 & FB 90 & \(16384 \triangleq 100 \%\) & B150 \\
\hline K9211 & Output connector changeover switch 2 & FB 91 & \(16384 \triangleq 100 \%\) & B150 \\
\hline K9212 & Output connector changeover switch 3 & FB 92 & \(16384 \triangleq 100 \%\) & B150 \\
\hline K9213 & Output connector changeover switch 4 & FB 93 & \(16384 \triangleq 100 \%\) & B150 \\
\hline K9214 & Output connector changeover switch 5 & FB 94 & \(16384 \triangleq 100 \%\) & B150 \\
\hline K9215 & Output connector changeover switch 6 & FB 95 & \(16384 \triangleq 100 \%\) & B150 \\
\hline K9216 & Output connector changeover switch 7 & FB 96 & \(16384 \triangleq 100 \%\) & B150 \\
\hline K9217 & Output connector changeover switch 8 & FB 97 & \(16384 \triangleq 100 \%\) & B150 \\
\hline K9218 & Output connector changeover switch 9 & FB 98 & \(16384 \triangleq 100 \%\) & B150 \\
\hline K9219 & Output connector changeover switch 10 & FB 99 & \(16384 \triangleq 100 \%\) & \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|}
\hline \multicolumn{5}{|l|}{ Technology software S00: Integrators } \\
\hline K9220 & Output of integrator 1 & FB 100 & \(16384 \wedge 100 \%\) & B155 \\
\hline K9221 & Output of integrator 2 & FB 101 & \(16384 \wedge 100 \%\) & B155 \\
\hline K9222 & Output of integrator 3 & FB 102 & \(16384 \wedge 100 \%\) & B155 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|}
\hline \multicolumn{5}{|l|}{ Technology software S00: DT1 elements } \\
\hline K9223 & Output of DT1 element 1 & FB 103 & \(16384 \triangleq 100 \%\) & B155 \\
\hline K9224 & Output of DT1 element 1, inverted & FB 103 & \(16384 \triangleq 100 \%\) & B155 \\
\hline K9225 & Output of DT1 element 2 & FB 104 & \(16384 \triangleq 100 \%\) & B155 \\
\hline K9226 & Output of DT1 element 2, inverted & FB 104 & \(16384 \triangleq 100 \%\) & B155 \\
\hline K9227 & Output of DT1 element 3 & FB 105 & \(16384 \triangleq 100 \%\) & B155 \\
\hline K9228 & Output of DT1 element 3, inverted & FB 105 & \(16384 \triangleq 100 \%\) & B155 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|}
\hline \multicolumn{5}{|l|}{ Technology software S00: Characteristic blocks } \\
\hline K9229 & Output of characteristic block 1 & FB 106 & \(16384 \triangleq 100 \%\) & B160 \\
\hline K9230 & Output of characteristic block 2 & FB 107 & \(16384 \triangleq 100 \%\) & B160 \\
\hline K9231 & Output of characteristic block 3 & FB 108 & \(16384 \triangleq 100 \%\) & B160 \\
\hline
\end{tabular}

\section*{Technology software S00: Dead zones}
\begin{tabular}{|l|ll|l|l|}
\hline K9232 & Output of dead zone 1 & FB 109 & \(16384 \triangleq 100 \%\) & B161 \\
\hline K9233 & Output of dead zone 2 & FB 110 & \(16384 \wedge 100 \%\) & B161 \\
\hline K9234 & Output of dead zone 3 & FB 111 & \(16384 \wedge 100 \%\) & B161 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|}
\hline \multicolumn{6}{|l|}{ Technology software S00: Setpoint branching } \\
\hline K9235 & Setpoint branching output & FB 112 & \(16384 \wedge 100 \%\) & B161 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Technology software S00: Simple ramp-function generator} \\
\hline K9236 & Simple ramp-function generator output & FB 113 & \(16384 \wedge 100 \%\) & B165 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Technology software S00: Technology controller} \\
\hline K9240 & Technology controller, signed actual value & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline K9241 & Technology controller, absolute actual value & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline K9242 & D component & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline K9243 & Technology controller, setpoint & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline K9244 & Technology controller, filtered setpoint & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline K9245 & Setpoint/actual value deviation & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline K9246 & Setpoint/actual value deviation after droop & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline K9247 & P component & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline K9248 & I component & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline K9249 & Technology controller output before limitation & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline K9250 & Positive limit for technology controller output & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline K9251 & Negative limit for technology controller output & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline K9252 & Positive limit for technology controller output * (-1) & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline K9253 & Technology controller output after limitation & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline K9254 & Technology controller output after multiplication with & FB 114 & \(16384 \wedge 100 \%\) & B170 \\
\hline
\end{tabular}

Technology software S00: Speed/velocity calculator, velocity/speed calculator
\begin{tabular}{|l|ll|l|l|}
\hline K9256 & Speed/velocity calculator: Actual velocity & FB 115 & \(16384 \wedge 100 \%\) & B190 \\
\hline K9257 & Velocity/speed calculator: Speed setpoint & FB 115 & \(16384 \triangleq 100 \%\) & B190 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|}
\hline Technology software S00: Variable moment of inertia & [ SW 1.8 and later] & \multicolumn{2}{c|}{ FB 116} \\
\hline K9258 & Variable moment of inertia (output) & \(16384 \wedge 100 \%\) & B191 \\
\hline
\end{tabular}

Technology software S00: Limiters
\begin{tabular}{|l|lcc|l|l|}
\hline K9260 & Limiter 6: Fixed limiting value & [ SW 2.0 and later] & FB 21416384 \(\triangleq 100 \%\) & B134 \\
\hline K9261 & Limiter 6: Positive limiting value * (-1) & [ SW 2.0 and later] & FB 2146384 \(\triangleq 100 \%\) & B134 \\
\hline K9262 & Limiter 6: Output & [ SW 2.0 and later] & FB 21416384 \(\triangleq 100 \%\) & B134 \\
\hline
\end{tabular}
\begin{tabular}{|l|lll|l|l|}
\hline \multicolumn{6}{|l|}{ Technology software S00: Connector changeover switches } \\
\hline K9265 & Output connector changeover switch 11 & [ SW 2.0 and later] & FB 19616384 \(\triangleq 100 \%\) & B150 \\
\hline K9266 & Output connector changeover switch 12 & [ SW 2.0 and later] & FB 19716384 \(\triangleq 100 \%\) & \\
\hline K9267 & Output connector changeover switch 13 & [ SW 2.0 and later] & FB 19816384 \(\triangleq 100 \%\) & & B150 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|}
\hline Connector & Description & Normalization & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline K9268 & Output connector changeover switch 14 & [ SW 2.0 and later] & FB 19916384 \(\triangleq 100 \%\) & \\
\hline K9269 & Output connector changeover switch 15 & [ SW 2.0 and later] & FB 22916384 \(\triangleq 100 \%\) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Technology software S00: PI controller 1 [ SW 1.8 and later] & \multicolumn{1}{c|}{ FB260 } \\
\hline K9300 & Input quantity filtered & \(16384 \triangleq 100 \%\) & B180 \\
\hline K9301 & P component & \(16384 \triangleq 100 \%\) & B180 \\
\hline K9302 & I component & \(16384 \triangleq 100 \%\) & B180 \\
\hline K9303 & Output PI controller before limitation & \(16384 \triangleq 100 \%\) & B180 \\
\hline K9304 & Output PI controller after limitation & \(16384 \triangleq 100 \%\) & B180 \\
\hline K9305 & Positive limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B180 \\
\hline K9306 & Positive limit for the output of the PI controller (K9305) \(*-1\) & \(16384 \triangleq 100 \%\) & B180 \\
\hline K9307 & Negative limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B180 \\
\hline
\end{tabular}
\begin{tabular}{llll}
\hline Technology software S00: PI controller 2 & [ SW 1.8 and later] & FB261 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline K9310 & Input quantity filtered & \(16384 \triangleq 100 \%\) & B181 \\
\hline K9311 & P component & \(16384 \triangleq 100 \%\) & B181 \\
\hline K9312 & I component & \(16384 \triangleq 100 \%\) & B181 \\
\hline K9313 & Output PI controller before limitation & \(16384 \triangleq 100 \%\) & B181 \\
\hline K9314 & Output PI controller after limitation & \(16384 \triangleq 100 \%\) & B181 \\
\hline K9315 & Positive limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B181 \\
\hline K9316 & Positive limit for the output of the PI controller (K9315) \(*-1\) & \(16384 \triangleq 100 \%\) & B181 \\
\hline K9317 & Negative limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B181 \\
\hline
\end{tabular}

Technology software S00: PI controller 3 [ SW 1.8 and later]
\begin{tabular}{|l|l|l|l|}
\hline K9320 & Input quantity filtered & \(16384 \triangleq 100 \%\) & B182 \\
\hline K9321 & P component & \(16384 \triangleq 100 \%\) & B182 \\
\hline K9322 & I component & \(16384 \triangleq 100 \%\) & B182 \\
\hline K9323 & Output PI controller before limitation & \(16384 \triangleq 100 \%\) & B182 \\
\hline K9324 & Output PI controller after limitation & \(16384 \triangleq 100 \%\) & B182 \\
\hline K9325 & Positive limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B182 \\
\hline K9326 & Positive limit for the output of the PI controller (K9325) \(*-1\) & \(16384 \triangleq 100 \%\) & B182 \\
\hline K9327 & Negative limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B182 \\
\hline
\end{tabular}

Technology software S00: PI controller 4 [ SW 1.8 and later]
FB263
\begin{tabular}{|l|l|l|l|}
\hline K9330 & Input quantity filtered & \(16384 \triangleq 100 \%\) & B183 \\
\hline K9331 & P component & \(16384 \triangleq 100 \%\) & B183 \\
\hline K9332 & I component & \(16384 \triangleq 100 \%\) & B183 \\
\hline K9333 & Output PI controller before limitation & \(16384 \triangleq 100 \%\) & B183 \\
\hline K9334 & Output PI controller after limitation & \(16384 \triangleq 100 \%\) & B183 \\
\hline K9335 & Positive limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B183 \\
\hline K9336 & Positive limit for the output of the PI controller (K9335) \(*-1\) & \(16384 \triangleq 100 \%\) & B183 \\
\hline K9337 & Negative limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B183 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Technology software S00: PI controller 5 & [ SW 1.8 and later] & \multicolumn{1}{c|}{ FB264 } \\
\hline K9340 & Input quantity filtered & \(16384 \triangleq 100 \%\) & B184 \\
\hline K9341 & P component & \(16384 \triangleq 100 \%\) & B184 \\
\hline K9342 & I component & \(16384 \triangleq 100 \%\) & B184 \\
\hline K9343 & Output PI controller before limitation & \(16384 \triangleq 100 \%\) & B184 \\
\hline K9344 & Output PI controller after limitation & \(16384 \triangleq 100 \%\) & B184 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Connector & Description & Normalization & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline K9345 & Positive limit for the output of the PI controller & \(16384 \wedge 100 \%\) & B184 \\
\hline K9346 & Positive limit for the output of the PI controller (K9345)*-1 & \(16384 \triangleq 100 \%\) & B184 \\
\hline K9347 & Negative limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B184 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Technology software S00: Pl controller 6 \(\quad\) SW 1.8 and later] & \multicolumn{1}{c|}{ FB265 } \\
\hline K9350 & Input quantity filtered & \(16384 \triangleq 100 \%\) & B185 \\
\hline K9351 & P component & \(16384 \triangleq 100 \%\) & B185 \\
\hline K9352 & I component & \(16384 \triangleq 100 \%\) & B185 \\
\hline K9353 & Output PI controller before limitation & \(16384 \triangleq 100 \%\) & B185 \\
\hline K9354 & Output PI controller after limitation & \(16384 \triangleq 100 \%\) & B185 \\
\hline K9355 & Positive limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B185 \\
\hline K9356 & Positive limit for the output of the PI controller (K9355) \(*-1\) & \(16384 \triangleq 100 \%\) & B185 \\
\hline K9357 & Negative limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B185 \\
\hline
\end{tabular}

Technology software S00: PI controller 7 [ SW 1.8 and later]
FB266
\begin{tabular}{|l|l|l|l|}
\hline K9360 & Input quantity filtered & \(16384 \triangleq 100 \%\) & B186 \\
\hline K9361 & P component & \(16384 \triangleq 100 \%\) & B186 \\
\hline K9362 & I component & \(16384 \triangleq 100 \%\) & B186 \\
\hline K9363 & Output PI controller before limitation & \(16384 \triangleq 100 \%\) & B186 \\
\hline K9364 & Output PI controller after limitation & \(16384 \triangleq 100 \%\) & B186 \\
\hline K9365 & Positive limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B186 \\
\hline K9366 & Positive limit for the output of the PI controller (K9365) *-1 & \(16384 \triangleq 100 \%\) & B186 \\
\hline K9367 & Negative limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B186 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Technology software S00: Pl controller \(\mathbf{8} \quad\) [ SW 1.8 and later] & \multicolumn{1}{c|}{ FB267 } \\
\hline K9370 & Input quantity filtered & \(16384 \triangleq 100 \%\) & B187 \\
\hline K9371 & P component & \(16384 \triangleq 100 \%\) & B187 \\
\hline K9372 & I component & \(16384 \triangleq 100 \%\) & B187 \\
\hline K9373 & Output PI controller before limitation & \(16384 \triangleq 100 \%\) & B187 \\
\hline K9374 & Output PI controller after limitation & \(16384 \triangleq 100 \%\) & B187 \\
\hline K9375 & Positive limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B187 \\
\hline K9376 & Positive limit for the output of the PI controller (K9375) \(*-1\) & \(16384 \triangleq 100 \%\) & B187 \\
\hline K9377 & Negative limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B187 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Technology software S00: Pl controller 9 [ SW 1.8 and later]} & FB268 \\
\hline K9380 & Input quantity filtered & \(16384 \wedge 100 \%\) & B188 \\
\hline K9381 & P component & \(16384 \wedge 100 \%\) & B188 \\
\hline K9382 & I component & \(16384 \wedge 100 \%\) & B188 \\
\hline K9383 & Output PI controller before limitation & \(16384 \wedge 100 \%\) & B188 \\
\hline K9384 & Output PI controller after limitation & \(16384 \wedge 100 \%\) & B188 \\
\hline K9385 & Positive limit for the output of the PI controller & \(16384 \wedge 100 \%\) & B188 \\
\hline K9386 & Positive limit for the output of the PI controller (K9385) *-1 & \(16384 \wedge 100 \%\) & B188 \\
\hline K9387 & Negative limit for the output of the PI controller & \(16384 \wedge 100 \%\) & B188 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Technology software S00: PI controller 10 \(\quad\) [ SW 1.8 and later] & \multicolumn{2}{c|}{ FB269 } \\
\hline K9390 & Input quantity filtered & \(16384 \triangleq 100 \%\) & B189 \\
\hline K9391 & P component & \(16384 \triangleq 100 \%\) & B189 \\
\hline K9392 & I component & \(16384 \triangleq 100 \%\) & B189 \\
\hline K9393 & Output PI controller before limitation & \(16384 \triangleq 100 \%\) & B189 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Connector & Description & Normalization & \begin{tabular}{l} 
Function \\
diag．，Sheet
\end{tabular} \\
\hline K9394 & Output PI controller after limitation & \(16384 \triangleq 100 \%\) & B189 \\
\hline K9395 & Positive limit for the output of the PI controller & \(16384 \triangleq 100 \%\) & B189 \\
\hline K9396 & Positive limit for the output of the PI controller（K9395）\(*-1\) & \(16384 \triangleq 100 \%\) & B189 \\
\hline K9397 & Negative limit for the output of the Pl controller & \(16384 \triangleq 100 \%\) & B189 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Technology software S00：Derivative／delay elements} \\
\hline K9400 & Derivative／delay element 1 output & ［ SW 1.8 and later］ & FB 27 & 016384 へ 100\％ & B156 \\
\hline K9401 & Derivative／delay element 2 output & ［ SW 1.8 and later］ & FB 27 & \(116384 \wedge 100 \%\) & B156 \\
\hline K9402 & Derivative／delay element 3 output & ［ SW 1.8 and later］ & FB 27 & \(216384 \wedge 100 \%\) & B156 \\
\hline K9403 & Derivative／delay element 4 output & ［ SW 1.8 and later］ & FB 27 & \(316384 \wedge 100 \%\) & B156 \\
\hline K9404 & Derivative／delay element 5 output & ［ SW 1.8 and later］ & FB 27 & \(416384 \wedge 100 \%\) & B157 \\
\hline K9405 & Derivative／delay element 6 output & ［ SW 1.8 and later］ & FB 27 & \(516384 \wedge 100 \%\) & B157 \\
\hline K9406 & Derivative／delay element 7 output & ［ SW 1.8 and later］ & FB 27 & \(616384 \wedge 100 \%\) & B157 \\
\hline K9407 & Derivative／delay element 8 output & ［ SW 1.8 and later］ & FB 27 & \(716384 \wedge 100 \%\) & B157 \\
\hline K9408 & Derivative／delay element 9 output & ［ SW 1.8 and later］ & FB 27 & \(816384 \wedge 100 \%\) & B158 \\
\hline K9409 & Derivative／delay element 10 output & ［ SW 1.8 and later］ & FB 27 & \(916384 \wedge 100 \%\) & B158 \\
\hline
\end{tabular}
\begin{tabular}{|l|lll|l|}
\hline \multicolumn{5}{|l|}{ Technology software S00：Characteristic blocks } \\
\hline K9410 & Output characteristic block 4 & ［ SW 1．8 and later］ & FB 28p16384 \(\triangleq 100 \%\) & \\
\hline K9411 & Output characteristic block 5 & ［ SW 1．8 and later］ & FB 28116384 \(\triangleq 100 \%\) & \\
\hline K9412 & Output characteristic block 6 & ［ SW 1．8 and later］ & FB 28216384 \(\triangleq 100 \%\) & B160 \\
\hline K9413 & Output characteristic block 7 & ［ SW 1．8 and later］ & FB 28316384 \(\triangleq 100 \%\) & B160 \\
\hline K9414 & Output characteristic block 8 & ［ SW 1．8 and later］ & FB 28416384 \(\triangleq 100 \%\) & B160 \\
\hline K9415 & Output characteristic block 9 & ［ SW 1．8 and later］ & FB 28516384 \(\triangleq 100 \%\) & B160 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Technology software S00：Multiplier} \\
\hline K9430 & Output multiplier 5 & ［ SW 1.8 and later］ & FB 290 & 16384 へ 100\％ & B130 \\
\hline K9431 & Output multiplier 6 & ［ SW 1.8 and later］ & FB 29 & \(116384 \triangleq 100 \%\) & B130 \\
\hline K9432 & Output multiplier 7 & ［ SW 1.8 and later］ & FB 29 & \(216384 \wedge 100 \%\) & B130 \\
\hline K9433 & Output multiplier 8 & ［ SW 1.8 and later］ & FB 293 & \(316384 \wedge 100 \%\) & B130 \\
\hline K9434 & Output multiplier 9 & ［ SW 1.8 and later］ & FB 294 & 416384 へ 100\％ & B130 \\
\hline K9435 & Output multiplier 10 & ［ SW 1.8 and later］ & FB 295 & \(516384 \wedge 100 \%\) & B130 \\
\hline K9436 & Output multiplier 11 & ［ SW 1.8 and later］ & FB 296 & \(616384 \wedge 100 \%\) & B130 \\
\hline K9437 & Output multiplier 12 & ［ SW 1.8 and later］ & FB 297 & 716384 へ 100\％ & B130 \\
\hline
\end{tabular}

\section*{S00 technology software：Software counter}
\begin{tabular}{|c|c|c|c|c|}
\hline K9441 & Minimum value for software counter & ［ SW 1.9 and later］ & \(\mathrm{FB} 891 \wedge 1\) & B196 \\
\hline K9442 & Maximum value for software counter & ［ SW 1.9 and later］ & FB \(891 \triangleq 1\) & B196 \\
\hline K9443 & Setting value for software counter & ［ SW 1.9 and later］ & FB \(891 \wedge 1\) & B196 \\
\hline K9444 & Start value for software counter & ［ SW 1.9 and later］ & FB \(891 \triangleq 1\) & B196 \\
\hline K9445 & Software counter output & ［ SW 1.9 and later］ & FB \(891 \wedge 1\) & B196 \\
\hline
\end{tabular}

Technology software S00：Multiplexer
\begin{tabular}{|l|lll|l|}
\hline K9450 & Output multiplexer 1 & ［ SW 1．8 and later］ & FB 8616384 \(\wedge 100 \%\) & B195 \\
\hline K9451 & Output multiplexer 2 & ［ SW 1．8 and later］ & FB 8 \(716384 \wedge 100 \%\) & B195 \\
\hline K9452 & Output multiplexer 3 & ［ SW 1．8 and later］ & FB 8316384 \(\wedge 100 \%\) & B195 \\
\hline
\end{tabular}

\section*{Technology software S00：Averagers}
\begin{tabular}{l|l} 
K9455 & Output averager 1 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|}
\hline Connector & Description & Normalization & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline K9456 & Output averager 2 & [ SW 1.8 and later] & FB 1716384 へ \(100 \%\) & B139 \\
\hline K9457 & Output averager 3 & [ SW 1.8 and later] & FB 1 \(1316384 \wedge 100 \%\) & B139 \\
\hline K9458 & Output averager 4 & [ SW 1.8 and later] & FB 1 \(1916384 \wedge 100 \%\) & B139 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Technology software S00: Minimum selections, Maximum selections} \\
\hline K9460 & Output Maximum selection 2 & [ SW 1.8 and later] & FB 17 & \(416384 \wedge 100 \%\) & B140 \\
\hline K9461 & Output Maximum selection 3 & [ SW 1.8 and later] & FB 17 & \(516384 \wedge 100 \%\) & B140 \\
\hline K9462 & Output Maximum selection 4 & [ SW 1.8 and later] & FB 17 & \(616384 \wedge 100 \%\) & B140 \\
\hline K9463 & Output Minimum selection 2 & [ SW 1.8 and later] & FB 17 & \(716384 \wedge 100 \%\) & B140 \\
\hline K9464 & Output Minimum selection 3 & [ SW 1.8 and later] & FB 17 & \(816384 \wedge 100 \%\) & B140 \\
\hline K9465 & Output Minimum selection 4 & [ SW 1.8 and later] & FB 17 & \(916384 \wedge 100 \%\) & B140 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Technology software S00: position fixed value, position actual value, positional deviation} \\
\hline KK9471 & Position fixed value1 & [ SW 2.0 and later] & FB 5 & \(416384 \wedge 100 \%\) & B152 \\
\hline KK9472 & Position fixed value2 & [ SW 2.0 and later] & FB 5 & \(416384 \wedge 100 \%\) & B152 \\
\hline KK9473 & Position fixed value3 & [ SW 2.0 and later] & FB 5 & \(416384 \wedge 100 \%\) & B152 \\
\hline KK9474 & Position fixed value4 & [ SW 2.0 and later] & FB 5 & \(416384 \wedge 100 \%\) & B152 \\
\hline KK9481 & Position actual value 1 & [ SW 2.0 and later] & FB 5 & \(416384 \wedge 100 \%\) & B152 \\
\hline KK9482 & Position actual value 2 & [ SW 2.0 and later] & FB 5 & \(416384 \wedge 100 \%\) & B152 \\
\hline KK9483 & Positional deviation & [ SW 2.0 and later] & FB 5 & \(416384 \wedge 100 \%\) & B152 \\
\hline K9484 & Positional deviation limited & [ SW 2.0 and later] & FB 5 & \(416384 \wedge 100 \%\) & B152 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Technology software S00: root extractor} \\
\hline KK9485 & Root extractor output & [ SW 2.0 and later] & FB 5 \(816384 \wedge 100 \%\) & B153 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{S00 technology software: Adders / subtracters for double-word connectors} \\
\hline KK9490 & Output of \(1^{\text {st }}\) adder / subtracter & [ SW 1.9 and later] & FB 4816384* \(16384 \wedge 100 \%\) & B151 \\
\hline K9491 & Output of \(1^{\text {st }}\) adder / subtracter (limited) & [ SW 1.9 and later] & FB \(4816384 \wedge 100 \% 16384\) & B151 \\
\hline KK9492 & Output of \(2^{\text {nd }}\) adder / subtracter & [ SW 1.9 and later] & FB \(4916384^{*} 16384 \wedge 100 \%\) & B151 \\
\hline K9493 & Output of \(2^{\text {nd }}\) adder / subtracter (limited) & [ SW 1.9 and later] & FB \(4916384 \triangleq 100 \% 16384\) & B151 \\
\hline
\end{tabular}
\begin{tabular}{|l|llll|l|}
\hline \multicolumn{6}{|l|}{ S00 technology software: Connector type converters } \\
\hline KK9498 & Output of \(1^{\text {st }}\) connector type converter & [ SW 1.9 and later] & FB 29816384* \(16384 \wedge 100 \%\) & B151 \\
\hline KK9499 & Output of \(2^{\text {nd }}\) connector type converter & [ SW 1.9 and later] & FB 29916384* \(16384 \wedge 100 \%\) & B151 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Technology software S00: Fixed values} & [ SW 1.8 and later] \\
\hline K9501 & Fixed value 1 (U099.01) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9502 & Fixed value 2 (U099.02) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9503 & Fixed value 3 (U099.03) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9504 & Fixed value 4 (U099.04) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9505 & Fixed value 5 (U099.05) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9506 & Fixed value 6 (U099.06) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9507 & Fixed value 7 (U099.07) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9508 & Fixed value 8 (U099.08) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9509 & Fixed value 9 (U099.09) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9510 & Fixed value 10 (U099.10) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9511 & Fixed value 11 (U099.11) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9512 & Fixed value 12 (U099.12) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9513 & Fixed value 13 (U099.13) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Connector & Description & & Normalization & Function diag., Sheet \\
\hline K9514 & Fixed value 14 (U099.14) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9515 & Fixed value 15 (U099.15) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9516 & Fixed value 16 (U099.16) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9517 & Fixed value 17 (U099.17) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9518 & Fixed value 18 (U099.18) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9519 & Fixed value 19 (U099.19) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9520 & Fixed value 20 (U099.20) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9521 & Fixed value 21 (U099.21) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9522 & Fixed value 22 (U099.22) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9523 & Fixed value 23 (U099.23) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9524 & Fixed value 24 (U099.24) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9525 & Fixed value 25 (U099.25) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9526 & Fixed value 26 (U099.26) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9527 & Fixed value 27 (U099.27) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9528 & Fixed value 28 (U099.28) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9529 & Fixed value 29 (U099.29) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9530 & Fixed value 30 (U099.30) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9531 & Fixed value 31 (U099.31) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9532 & Fixed value 32 (U099.32) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9533 & Fixed value 33 (U099.33) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9534 & Fixed value 34 (U099.34) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9535 & Fixed value 35 (U099.35) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9536 & Fixed value 36 (U099.36) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9537 & Fixed value 37 (U099.37) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9538 & Fixed value 38 (U099.38) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9539 & Fixed value 39 (U099.39) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9540 & Fixed value 40 (U099.40) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9541 & Fixed value 41 (U099.41) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9542 & Fixed value 42 (U099.42) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9543 & Fixed value 43 (U099.43) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9544 & Fixed value 44 (U099.44) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9545 & Fixed value 45 (U099.45) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9546 & Fixed value 46 (U099.46) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9547 & Fixed value 47 (U099.47) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9548 & Fixed value 48 (U099.48) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9549 & Fixed value 49 (U099.49) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9550 & Fixed value 50 (U099.50) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9551 & Fixed value 51 (U099.51) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9552 & Fixed value 52 (U099.52) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9553 & Fixed value 53 (U099.53) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9554 & Fixed value 54 (U099.54) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9555 & Fixed value 55 (U099.55) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9556 & Fixed value 56 (U099.56) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9557 & Fixed value 57 (U099.57) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9558 & Fixed value 58 (U099.58) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9559 & Fixed value 59 (U099.59) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9560 & Fixed value 60 (U099.60) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9561 & Fixed value 61 (U099.61) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Connector & \multicolumn{2}{|l|}{Description} & Normalization & Function diag., Sheet \\
\hline K9562 & Fixed value 62 (U099.62) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9563 & Fixed value 63 (U099.63) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9564 & Fixed value 64 (U099.64) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9565 & Fixed value 65 (U099.65) & [ SW 1.8 and later] & 16384 へ \(100 \%\) & B110 \\
\hline K9566 & Fixed value 66 (U099.66) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9567 & Fixed value 67 (U099.67) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9568 & Fixed value 68 (U099.68) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9569 & Fixed value 69 (U099.69) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9570 & Fixed value 70 (U099.70) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9571 & Fixed value 71 (U099.71) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9572 & Fixed value 72 (U099.72) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9573 & Fixed value 73 (U099.73) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9574 & Fixed value 74 (U099.74) & [ SW 1.8 and later] & 16384 へ 100\% & B110 \\
\hline K9575 & Fixed value 75 (U099.75) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9576 & Fixed value 76 (U099.76) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9577 & Fixed value 77 (U099.77) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9578 & Fixed value 78 (U099.78) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9579 & Fixed value 79 (U099.79) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9580 & Fixed value 80 (U099.80) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9581 & Fixed value 81 (U099.81) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9582 & Fixed value 82 (U099.82) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9583 & Fixed value 83 (U099.83) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9584 & Fixed value 84 (U099.84) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9585 & Fixed value 85 (U099.85) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9586 & Fixed value 86 (U099.86) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9587 & Fixed value 87 (U099.87) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9588 & Fixed value 88 (U099.88) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9589 & Fixed value 89 (U099.89) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9590 & Fixed value 90 (U099.90) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9591 & Fixed value 91 (U099.91) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9592 & Fixed value 92 (U099.92) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9593 & Fixed value 93 (U099.93) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9594 & Fixed value 94 (U099.94) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9595 & Fixed value 95 (U099.95) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9596 & Fixed value 96 (U099.96) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9597 & Fixed value 97 (U099.97) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9598 & Fixed value 98 (U099.98) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9599 & Fixed value 99 (U099.99) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline K9600 & Fixed value 100 (U099.100) & [ SW 1.8 and later] & \(16384 \wedge 100 \%\) & B110 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline General connectors & & \\
\hline K9801 & Alarm word 1 (= parameter r953) & & \\
\hline K9802 & Alarm word 2 ( \(=\) parameter r954) & & \\
\hline K9803 & Alarm word 3 ( \(=\) parameter r955) & & \\
\hline K9804 & Alarm word 4 (= parameter r956) & & \\
\hline K9805 & Alarm word 5 (= parameter r957) & & \\
\hline K9806 & Alarm word 6 ( \(=\) parameter r958) & & \\
\hline K9807 & Alarm word 7 (= parameter r959) & & \\
\hline K9808 & Alarm word 8 (= parameter r960) & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Connector & Description & Normalization & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline K9811 & Fault number 1 (= parameter r947.01, last fault number) & G189 \\
\hline K9812 & Fault number 2 (= parameter r947.09, second last fault number) & G189 \\
\hline K9813 & Fault number 3 (= parameter r947.17, third last fault number) & G189 \\
\hline K9814 & Fault number 4 (= parameter r947.25, fourth last fault number) & G189 \\
\hline K9815 & Fault number 5 (= parameter r947.33) & & G189 \\
\hline K9816 & Fault number 6 (= parameter r947.41) & & G189 \\
\hline K9817 & Fault number 7 (= parameter r947.49) & & G189 \\
\hline K9818 & Fault number 8 (= parameter r947.57) & & G189 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline K9990 & Current total processor capacity utilization (C163) & & \\
\hline K9991 & \begin{tabular}{l} 
Projected total processor capacity utilization (C163) for maximum line \\
frequency (65Hz)
\end{tabular} & & \\
\hline K9992 & Current total processor capacity (C163) utilized by background routines & & \\
\hline K9993 & \begin{tabular}{l} 
Current total processor capacity (C163) utilized by routines in foreground \\
cycle 4
\end{tabular} & & \\
\hline K9994 & \begin{tabular}{l} 
Current total processor capacity (C163) utilized by routines in foreground \\
cycle 2
\end{tabular} & & \\
\hline K9995 & \begin{tabular}{l} 
Current total processor capacity (C163) utilized by routines in foreground \\
cycle 1
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{12.2 Binector list}

The states of binectors can be displayed via parameters r045 and P046.
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline Fixed values & Rixed value 0 & G120 \\
\hline B0000 & Fixed value 1 & G120 \\
\hline B0001 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Binary inputs, terminals \(\mathbf{3 6}\) to \(\mathbf{4 3}\)} & \\
\hline B0010 & Status of terminal 36 & G110 \\
\hline B0011 & Status of terminal 36, inverted & G110 \\
\hline B0012 & Status of terminal 37 & G110 \\
\hline B0013 & Status of terminal 37, inverted & G110 \\
\hline B0014 & Status of terminal 38 & G110 \\
\hline B0015 & Status of terminal 38, inverted & G110 \\
\hline B0016 & Status of terminal 39 & G1110 \\
\hline B0017 & Status of terminal 39, inverted & G110 \\
\hline B0018 & Status of terminal 40 & G111 \\
\hline B0019 & Status of terminal 40, inverted & G 111 \\
\hline B0020 & Status of terminal 41 & G 111 \\
\hline B0021 & Status of terminal 41, inverted & G 111 \\
\hline B0022 & Status of terminal 42 & G 111 \\
\hline B0023 & Status of terminal 42, inverted & G111 \\
\hline B0024 & Status of terminal 43 & G111 \\
\hline B0025 & Status of terminal 43, inverted & G111 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline B0032 & No meaning & \\
\hline B0033 & No meaning & \\
\hline B0034 & No meaning & \\
\hline B0035 & No meaning & \\
\hline
\end{tabular}

Binary inputs, terminals 211 to 214 / motor interface
\begin{tabular}{|l|l|l|}
\hline B0040 & Status of terminal 211 / Brush length monitor (binary) (0=fault) & G186 \\
\hline B0041 & Status of terminal 211, inverted & G186 \\
\hline B0042 & Status of terminal 212 / Bearing condition monitor (binary) (1=fault) & G186 \\
\hline B0043 & Status of terminal 212, inverted & G186 \\
\hline B0044 & Status of terminal 213 / Motor fan monitor (binary) (0=fault) & G186 \\
\hline B0045 & Status of terminal 213, inverted & G186 \\
\hline B0046 & Status of terminal 214 / Motor temperature monitor (binary) (0=fault) & G186 \\
\hline B0047 & Status of terminal 214, inverted & G186 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{4}{|l|}{ Analog inputs } \\
\hline B0050 & Analog input, terminal 4: \(1=\) Open circuit \((\mathrm{i} \leq 2 \mathrm{~mA})\) & G113 \\
\hline B0051 & Analog input, terminal 6: \(1=\) Open circuit \((\mathrm{i} \leq 2 \mathrm{~mA})\) & G113 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{7}{|l|}{ Pulse encoder evaluation } & G145 \\
\hline B0052 & Fault in digital speed sensing circuit & \(\quad\) [ SW 1.9 and later] \\
\hline B0053 & \begin{tabular}{l} 
Underflow of actual position value \\
This binector changes to 1 when connector KK0046 (actual position value extended in software to a 32-bit \\
value) counts from value 8000 \(0000 \mathrm{H}\left(=-2^{31}\right)\) to value 7FFF FFFFH \(\left(=+2^{31}-1\right)\). \\
Binector B0053 does not change back to 0 until connector KK0046 assumes a value other than 7FFF \\
FFFFH \(\left(=+2^{31}-1\right)\) again.
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline B0054 & \begin{tabular}{l} 
Overrflow of actual position value \\
This binector changes to 1 when connector KK0046 (actual position value extended in software to a 32-bit \\
value) counts from value 7FFF FFFFH \(\left(=+2^{31}-1\right)\) to value 8000 \(0000 \mathrm{H}\left(=-2^{2}\right)\) ). \\
Binector B0054 does not change back to 0 until connector KK0046 assumes a value other than 8000 \\
\(0000 \mathrm{H}\left(=-2^{31}\right)\) again.
\end{tabular} & G145 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{8}{|l|}{ Evaluation of the pulse encoder board SBP } \\
\hline B0055 & Position acquisition of SBP, underflow & [ SW 2.0 and later] & Z120 \\
\hline B0056 & Position acquisition of SBP, overflow & [ SW 2.0 and later] & Z120 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Monitoring of the armature currents } \\
\hline B0057 & Armature actual value too large (F030 triggered) & [ SW 2.0 and later] & G162 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Status word 1} \\
\hline B0100 & Stat.word 1, bit 0: \(0=\) not ready to switch on, 1=ready to switch on & G182 \\
\hline B0101 & Stat.word 1, bit 0 inverted & G182 \\
\hline B0102 & Stat.word 1, bit 1: 0=not ready, 1=ready (pulses disabled) & G182 \\
\hline B0103 & Stat.word 1, bit 1 inverted & G182 \\
\hline B0104 & Stat.word 1, bit 2: 0=pulses disabled, 1=Run (output terminals energized) & G182 \\
\hline B0105 & Stat.word 1, bit 2 inverted & G182 \\
\hline B0106 & Stat.word 1, bit 3: \(0=\) no active fault, 1=active fault (pulses disabled) & G182 \\
\hline B0107 & Stat.word 1, bit 3 inverted & G182 \\
\hline B0108 & Stat.word 1, bit 4: 0=OFF2 active, 1=no active OFF2 & G182 \\
\hline B0109 & Stat.word 1, bit 4 inverted & G182 \\
\hline B0110 & Stat.word 1, bit 5: 0=OFF3 active, 1=no active OFF3 & G182 \\
\hline B0111 & Stat.word 1, bit 5 inverted & G182 \\
\hline B0112 & Stat.word 1, bit 6: 0=no starting lockout (unit can be switched on), 1=starting lockout active & G182 \\
\hline B0113 & Stat.word 1, bit 6 inverted & G182 \\
\hline B0114 & Stat.word 1, bit 7: 0=no active alarm, 1=alarm active & G182 \\
\hline B0115 & Stat.word 1, bit 7 inverted & G182 \\
\hline B0116 & Stat.word 1, bit 8: \(0=\) setp./act. val. deviation detected, 1=no setp./act. val. deviation & G182 \\
\hline B0117 & Stat.word 1, bit 8 inverted & G182 \\
\hline B0120 & Stat.word 1, bit 10: 0=comparison setpoint not reached, 1=comparison setpoint reached & G182 \\
\hline B0121 & Stat.word 1, bit 10 inverted & G182 \\
\hline B0122 & Stat.word 1, bit 11: \(0=\) undervoltage fault not active, 1=undervoltage fault active & G182 \\
\hline B0123 & Stat.word 1, bit11 inverted & G182 \\
\hline B0124 & Stat.word 1, bit 12: \(0=\) main contactor request not active, 1=request to energize main contactor active & G182 \\
\hline B0125 & Stat.word 1, bit 12 inverted & G182 \\
\hline B0126 & Stat.word 1, bit 13: 0=ramp-function generator not active, 1=ramp-function generator active & G182 \\
\hline B0127 & Stat.word 1, bit 13 inverted & G182 \\
\hline B0128 & Stat.word 1, bit 14: \(0=\) negative speed setpoint, 1=positive speed setpoint & G182 \\
\hline B0129 & Stat.word 1, bit 14 inverted & G182 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Status word 2 & \\
\hline B0136 & Stat.word 2, bit 18: 0=overspeed, 1=no overspeed & G183 \\
\hline B0137 & Stat.word 2, bit 18 inverted & G183 \\
\hline B0138 & Stat.word 2, bit 19: 0=no external fault 1 active, 1=external fault 1 active & G183 \\
\hline B0139 & Stat.word 2, bit 19 inverted & G183 \\
\hline B0140 & Stat.word 2, bit 20: \(0=\) no external fault 2 active, 1=external fault 2 active & G183 \\
\hline B0141 & Stat.word 2, bit 20 inverted & G183 \\
\hline B0142 & Stat.word 2, bit 21: 0=no external alarm active, 1=external alarm active & G183 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline B0143 & Stat.word 2, bit 21 inverted & G183 \\
\hline B0144 & Stat.word 2, bit 22: \(0=\) no overload alarm active, 1=overload alarm active & G183 \\
\hline B0145 & Stat.word 2, bit 22 inverted & G183 \\
\hline B0146 & Stat.word 2, bit 23: \(0=\) no overtemperature fault active, 1=overtemperature fault active & G183 \\
\hline B0147 & Stat.word 2, bit 23 inverted & G183 \\
\hline B0148 & Stat.word 2, bit 24: 0=no overtemperature alarm active, 1=overtemperature alarm active & G183 \\
\hline B0149 & Stat.word 2, bit 24 inverted & G183 \\
\hline B0150 & Stat.word 2, bit 25: 0=no motor overtemperature alarm active, 1=motor overtemperature alarm active & G183 \\
\hline B0151 & Stat.word 2, bit 25 inverted & G183 \\
\hline B0152 & Stat.word 2, bit 26: \(\quad\) 0=no motor overtemperature fault active, 1=motor overtemperature fault active & G183 \\
\hline B0153 & Stat.word 2, bit 26 inverted & G183 \\
\hline B0156 & Stat.word 2, bit 28: \(\quad\) 0=no motor blocked fault active, 1=motor blocked fault active & G183 \\
\hline B0157 & Stat.word 2, bit 28 inverted & G183 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Messages} \\
\hline B0160 & \(0=A U S 1\) or AUS3 active, 1=no AUS1 and no AUS3 is pending & & G180 \\
\hline B0161 & B0160 inverted & & G180 \\
\hline B0164 & \(1=\mathrm{n}<\mathrm{n}_{\text {min }}\) & [ SW 1.4 and later] & G187 \\
\hline B0165 & B0164 inverted & [ SW 1.4 and later] & G187 \\
\hline B0166 & 1 = Voltage at power section is active & [ SW 1.4 and later] & \\
\hline B0167 & B0166 inverted & [ SW 1.4 and later] & \\
\hline B0168 & 1 = E-Stop is active & [ SW 1.4 and later] & G117 \\
\hline B0169 & B0168 inverted & [ SW 1.4 and later] & G117 \\
\hline B0172 & Output of "Setpoint-actual value deviation 2" signal & [ SW 1.9 and later] & G187 \\
\hline B0173 & B0172 inverted & [ SW 1.9 and later] & G187 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Motor interface } \\
\hline B0180 & \(1=\) Monitoring brush length (Terminal 211=0) has responded, condition for A025 or F025 fulfilled & G186 \\
\hline B0181 & \(1=\) Monitoring bearing state (terminal 212=1) has responded, condition for A026 or F026 fulfilled & G186 \\
\hline B0182 & \(1=\) Monitoring motor fan (terminal 213=0) has responded, condition for A027 or F027 fulfilled & G186 \\
\hline B0183 & \(1=\) Monitoring motor temperature (terminal 213=0) has responded, condition for A028 or F028 fulfilled & G186 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Temperature sensor inputs & [ SW 1.6 and later] \\
\hline B0184 & 1=Alarm motor temperature 1 & G185 \\
\hline B0185 & 1=Alarm motor temperature 2 & G185 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Alarms & \multicolumn{1}{l|}{ [ SW 1.6 and later] } \\
\hline B0186 & 1=Alarm A037 (I2t motor) is pending & \\
\hline B0187 & 1=Alarm A039 (I2t power section) is pending & \\
\hline B0188 & 1=Alarm A067 (heat sink temperature) is pending & \\
\hline B0189 & 1=Alarm A067 (device fan) is pending & \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|}
\hline \multicolumn{4}{|l|}{ Torque limitation, current limitation, current controller, armature gating unit } \\
\hline B0190 & \(0=\) pulsating current, \(1=\) continuous current & [ SW 2.0 and later] & G162 \\
\hline B0192 & Speed limitation controller: Positive speed limit reached & [ SW 1.8 and later] & G160 \\
\hline B0193 & Speed limitation controller: Negative speed limit reached & [ SW 1.8 and later] & G160 \\
\hline B0194 & Current limitation: Positive current limit reached & [ SW 1.8 and later] & G161 \\
\hline B0195 & Current limitation: Negative current limit reached & [ SW 1.8 and later] & G161 \\
\hline B0196 & \(\alpha_{G}\) limit reached & [ SW 1.8 and later] & G163 \\
\hline B0197 & \(\alpha_{W}\) limit reached & [ SW 1.8 and later] & G163 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Binector & Name, description & & Function diag., Sheet \\
\hline B0198 & Any positive limit (speed, torque, armature, \(\alpha_{G}\) ) reached & [ SW 2.0 and later] & \\
\hline B0199 & Any positive limit (speed, torque, armature, \(\alpha_{W}\) ) reached & [ SW 2.0 and later] & \\
\hline B0200 & Current limitation active & & G161 \\
\hline B0201 & Speed limiting controller active & & G160 \\
\hline B0202 & Upper torque limitation active & & G160 \\
\hline B0203 & Lower torque limitation active & & G160 \\
\hline B0204 & Torque or current limitation active or current controller at limitation & & G163 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Speed controller } \\
\hline B0205 & Speed controller enabling by sequencing control & G152 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{4}{|l|}{ Setpoint processing, ramp-function generator } & \\
\hline B0206 & Limitation after ramp-function generator (setpoint limitation) has responded & G136 \\
\hline B0207 & Ramp-function generator output \(=0 \quad(\mathrm{y}=0)\) & G 136 \\
\hline B0208 & Ramp-function generator, ramp-up & G136 \\
\hline B0209 & Ramp-function generator, ramp-down & G136 \\
\hline B0210 & \(1=\) no direction of rotation enabled & G135 \\
\hline B0211 & Ramp-function generator: Enable setpoint (1 = setpoint enabled) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{4}{|l|}{ Limit-value monitor for field current } & \\
\hline B0215 & Limit-value signal \(I_{f}<I_{f \min }\) (see P394, P395) & G188 \\
\hline B0216 & Limit-value signal \(I_{f}<I_{f x}\) (see P398, P399) & G188 \\
\hline
\end{tabular}

\section*{Armature gating unit}
\begin{tabular}{|l|l|l|}
\hline B0220 & Enabled torque direction for parallel drive & G163 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{4}{|l|}{ Motorized potentiometer } & \\
\hline B0240 & Motorized potentiometer output \(=0 \quad(\mathrm{y}=0)\) & G 126 \\
\hline B0241 & Ramp-up/ramp-down finished \((\mathrm{y}=\mathrm{x})\) & \(\mathrm{G126}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|}
\hline \multicolumn{4}{|l|}{ Brake control } \\
\hline B0250 & Brake control (1=close brake, 0=release brake) & \\
\hline B0251 & 1 =auxiliaries ON, 0=auxiliaries OFF & G140 \\
\hline B0252 & 1=device fan on, 0=device fan off & [ SW 1.5 and later] & \\
\hline B0255 & B0250 inverted & [ SW 1.4 and later] & G140 \\
\hline B0256 & B0251 inverted & [ SW 1.5 and later] & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Field reversal } \\
\hline B0260 & 1=Close field contactor 1 (control command for one contactor for connection of positive field direction) & G200 \\
\hline B0261 & 1=Close field contactor 2 (control command for one contactor for connection of negative field direction) & G200 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Fixed control bits } \\
\hline B0421 & Control bit 1 (P421) & \\
\hline B0422 & Control bit 2 (P422) & G120 \\
\hline B0423 & Control bit 3 (P423) & G120 \\
\hline B0424 & Control bit 4 (P424) & G120 \\
\hline B0425 & Control bit 5 (P425) & G120 \\
\hline B0426 & Control bit 6 (P426) & G120 \\
\hline B0427 & Control bit 7 (P427) & G120 \\
\hline B0428 & Control bit 8 (P428) & G120 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline \begin{tabular}{|l|l|l|}
\hline Serial interface 1 (USS1 on G-SST1) & G170 \\
\hline B2030 & USS1 telegram monitoring timeout - maintained signal & G170 \\
\hline B2031 & USS1 telegram monitoring timeout - 1s pulse & \\
\hline
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Serial interface 1 (USS1 on G-SST1)} \\
\hline B2100 & USS1 receive data, word 1, bit 0 & G170 \\
\hline B2101 & USS1 receive data, word 1, bit 1 & G170 \\
\hline B2102 & USS1 receive data, word 1, bit 2 & G170 \\
\hline B2103 & USS1 receive data, word 1, bit 3 & G170 \\
\hline B2104 & USS1 receive data, word 1, bit 4 & G170 \\
\hline B2105 & USS1 receive data, word 1, bit 5 & G170 \\
\hline B2106 & USS1 receive data, word 1, bit 6 & G170 \\
\hline B2107 & USS1 receive data, word 1, bit 7 & G170 \\
\hline B2108 & USS1 receive data, word 1, bit 8 & G170 \\
\hline B2109 & USS1 receive data, word 1, bit 9 & G170 \\
\hline B2110 & USS1 receive data, word 1, bit 10 & G170 \\
\hline B2111 & USS1 receive data, word 1, bit 11 & G170 \\
\hline B2112 & USS1 receive data, word 1, bit 12 & G170 \\
\hline B2113 & USS1 receive data, word 1, bit 13 & G170 \\
\hline B2114 & USS1 receive data, word 1, bit 14 & G170 \\
\hline B2115 & USS1 receive data, word 1, bit 15 & G170 \\
\hline B2200 & USS1 receive data, word 2, bit 0 & G170 \\
\hline B2201 & USS1 receive data, word 2, bit 1 & G170 \\
\hline B2202 & USS1 receive data, word 2, bit 2 & G170 \\
\hline B2203 & USS1 receive data, word 2, bit 3 & G170 \\
\hline B2204 & USS1 receive data, word 2, bit 4 & G170 \\
\hline B2205 & USS1 receive data, word 2, bit 5 & G170 \\
\hline B2206 & USS1 receive data, word 2, bit 6 & G170 \\
\hline B2207 & USS1 receive data, word 2 , bit 7 & G170 \\
\hline B2208 & USS1 receive data, word 2, bit 8 & G170 \\
\hline B2209 & USS1 receive data, word 2, bit 9 & G170 \\
\hline B2210 & USS1 receive data, word 2, bit 10 & G170 \\
\hline B2211 & USS1 receive data, word 2, bit 11 & G170 \\
\hline B2212 & USS1 receive data, word 2, bit 12 & G170 \\
\hline B2213 & USS1 receive data, word 2, bit 13 & G170 \\
\hline B2214 & USS1 receive data, word 2, bit 14 & G170 \\
\hline B2215 & USS1 receive data, word 2, bit 15 & G170 \\
\hline B2300 & USS1 receive data, word 3, bit 0 & G170 \\
\hline B2301 & USS1 receive data, word 3, bit 1 & G170 \\
\hline B2302 & USS1 receive data, word 3, bit 2 & G170 \\
\hline B2303 & USS1 receive data, word 3, bit 3 & G170 \\
\hline B2304 & USS1 receive data, word 3, bit 4 & G170 \\
\hline B2305 & USS1 receive data, word 3, bit 5 & G170 \\
\hline B2306 & USS1 receive data, word 3, bit 6 & G170 \\
\hline B2307 & USS1 receive data, word 3, bit 7 & G170 \\
\hline B2308 & USS1 receive data, word 3, bit 8 & G170 \\
\hline B2309 & USS1 receive data, word 3, bit 9 & G170 \\
\hline B2310 & USS1 receive data, word 3, bit 10 & G170 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Binector & Name, description & Function diag., Sheet \\
\hline B2311 & USS1 receive data, word 3, bit 11 & G170 \\
\hline B2312 & USS1 receive data, word 3, bit 12 & G170 \\
\hline B2313 & USS1 receive data, word 3, bit 13 & G170 \\
\hline B2314 & USS1 receive data, word 3, bit 14 & G170 \\
\hline B2315 & USS1 receive data, word 3, bit 15 & G170 \\
\hline B2400 & USS1 receive data, word 4, bit 0 & G170 \\
\hline B2401 & USS1 receive data, word 4, bit 1 & G170 \\
\hline B2402 & USS1 receive data, word 4, bit 2 & G170 \\
\hline B2403 & USS1 receive data, word 4, bit 3 & G170 \\
\hline B2404 & USS1 receive data, word 4, bit 4 & G170 \\
\hline B2405 & USS1 receive data, word 4, bit 5 & G170 \\
\hline B2406 & USS1 receive data, word 4, bit 6 & G170 \\
\hline B2407 & USS1 receive data, word 4, bit 7 & G170 \\
\hline B2408 & USS1 receive data, word 4, bit 8 & G170 \\
\hline B2409 & USS1 receive data, word 4, bit 9 & G170 \\
\hline B2410 & USS1 receive data, word 4, bit 10 & G170 \\
\hline B2411 & USS1 receive data, word 4, bit 11 & G170 \\
\hline B2412 & USS1 receive data, word 4, bit 12 & G170 \\
\hline B2413 & USS1 receive data, word 4, bit 13 & G170 \\
\hline B2414 & USS1 receive data, word 4, bit 14 & G170 \\
\hline B2415 & USS1 receive data, word 4, bit 15 & G170 \\
\hline B2500 & USS1 receive data, word 5, bit 0 & G170 \\
\hline B2501 & USS1 receive data, word 5, bit 1 & G170 \\
\hline B2502 & USS1 receive data, word 5, bit 2 & G170 \\
\hline B2503 & USS1 receive data, word 5, bit 3 & G170 \\
\hline B2504 & USS1 receive data, word 5, bit 4 & G170 \\
\hline B2505 & USS1 receive data, word 5, bit 5 & G170 \\
\hline B2506 & USS1 receive data, word 5, bit 6 & G170 \\
\hline B2507 & USS1 receive data, word 5, bit 7 & G170 \\
\hline B2508 & USS1 receive data, word 5, bit 8 & G170 \\
\hline B2509 & USS1 receive data, word 5, bit 9 & G170 \\
\hline B2510 & USS1 receive data, word 5, bit 10 & G170 \\
\hline B2511 & USS1 receive data, word 5, bit 11 & G170 \\
\hline B2512 & USS1 receive data, word 5, bit 12 & G170 \\
\hline B2513 & USS1 receive data, word 5, bit 13 & G170 \\
\hline B2514 & USS1 receive data, word 5, bit 14 & G170 \\
\hline B2515 & USS1 receive data, word 5, bit 15 & G170 \\
\hline B2600 & USS1 receive data, word 6, bit 0 & G170 \\
\hline B2601 & USS1 receive data, word 6, bit 1 & G170 \\
\hline B2602 & USS1 receive data, word 6, bit 2 & G170 \\
\hline B2603 & USS1 receive data, word 6, bit 3 & G170 \\
\hline B2604 & USS1 receive data, word 6, bit 4 & G170 \\
\hline B2605 & USS1 receive data, word 6, bit 5 & G170 \\
\hline B2606 & USS1 receive data, word 6, bit 6 & G170 \\
\hline B2607 & USS1 receive data, word 6, bit 7 & G170 \\
\hline B2608 & USS1 receive data, word 6, bit 8 & G170 \\
\hline B2609 & USS1 receive data, word 6, bit 9 & G170 \\
\hline B2610 & USS1 receive data, word 6, bit 10 & G170 \\
\hline B2611 & USS1 receive data, word 6, bit 11 & G170 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Binector & Name, description & Function diag., Sheet \\
\hline B2612 & USS1 receive data, word 6, bit 12 & G170 \\
\hline B2613 & USS1 receive data, word 6, bit 13 & G170 \\
\hline B2614 & USS1 receive data, word 6, bit 14 & G170 \\
\hline B2615 & USS1 receive data, word 6, bit 15 & G170 \\
\hline B2700 & USS1 receive data, word 7, bit 0 & G170 \\
\hline B2701 & USS1 receive data, word 7, bit 1 & G170 \\
\hline B2702 & USS1 receive data, word 7, bit 2 & G170 \\
\hline B2703 & USS1 receive data, word 7, bit 3 & G170 \\
\hline B2704 & USS1 receive data, word 7, bit 4 & G170 \\
\hline B2705 & USS1 receive data, word 7, bit 5 & G170 \\
\hline B2706 & USS1 receive data, word 7, bit 6 & G170 \\
\hline B2707 & USS1 receive data, word 7, bit 7 & G170 \\
\hline B2708 & USS1 receive data, word 7, bit 8 & G170 \\
\hline B2709 & USS1 receive data, word 7, bit 9 & G170 \\
\hline B2710 & USS1 receive data, word 7, bit 10 & G170 \\
\hline B2711 & USS1 receive data, word 7, bit 11 & G170 \\
\hline B2712 & USS1 receive data, word 7, bit 12 & G170 \\
\hline B2713 & USS1 receive data, word 7, bit 13 & G170 \\
\hline B2714 & USS1 receive data, word 7, bit 14 & G170 \\
\hline B2715 & USS1 receive data, word 7, bit 15 & G170 \\
\hline B2800 & USS1 receive data, word 8, bit 0 & G170 \\
\hline B2801 & USS1 receive data, word 8, bit 1 & G170 \\
\hline B2802 & USS1 receive data, word 8, bit 2 & G170 \\
\hline B2803 & USS1 receive data, word 8, bit 3 & G170 \\
\hline B2804 & USS1 receive data, word 8, bit 4 & G170 \\
\hline B2805 & USS1 receive data, word 8, bit 5 & G170 \\
\hline B2806 & USS1 receive data, word 8, bit 6 & G170 \\
\hline B2807 & USS1 receive data, word 8, bit 7 & G170 \\
\hline B2808 & USS1 receive data, word 8, bit 8 & G170 \\
\hline B2809 & USS1 receive data, word 8, bit 9 & G170 \\
\hline B2810 & USS1 receive data, word 8, bit 10 & G170 \\
\hline B2811 & USS1 receive data, word 8, bit 11 & G170 \\
\hline B2812 & USS1 receive data, word 8, bit 12 & G170 \\
\hline B2813 & USS1 receive data, word 8, bit 13 & G170 \\
\hline B2814 & USS1 receive data, word 8, bit 14 & G170 \\
\hline B2815 & USS1 receive data, word 8, bit 15 & G170 \\
\hline B2900 & USS1 receive data, word 9, bit 0 & G170 \\
\hline B2901 & USS1 receive data, word 9, bit 1 & G170 \\
\hline B2902 & USS1 receive data, word 9, bit 2 & G170 \\
\hline B2903 & USS1 receive data, word 9, bit 3 & G170 \\
\hline B2904 & USS1 receive data, word 9, bit 4 & G170 \\
\hline B2905 & USS1 receive data, word 9, bit 5 & G170 \\
\hline B2906 & USS1 receive data, word 9, bit 6 & G170 \\
\hline B2907 & USS1 receive data, word 9, bit 7 & G170 \\
\hline B2908 & USS1 receive data, word 9, bit 8 & G170 \\
\hline B2909 & USS1 receive data, word 9, bit 9 & G170 \\
\hline B2910 & USS1 receive data, word 9, bit 10 & G170 \\
\hline B2911 & USS1 receive data, word 9, bit 11 & G170 \\
\hline B2912 & USS1 receive data, word 9, bit 12 & G170 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline B2913 & USS1 receive data, word 9, bit 13 & G170 \\
\hline B2914 & USS1 receive data, word 9, bit 14 & G170 \\
\hline B2915 & USS1 receive data, word 9, bit 15 & G170 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Process data exchange with \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\)} \\
\hline B3030 & Fault delay timeout for \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\) - maintained signal & & Z110 \\
\hline B3031 & Fault delay timeout for \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}-1 \mathrm{~s}\) pulse & & Z110 \\
\hline B3035 & Telegram failure timeout for \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\) & [ SW 1.9 and later] & Z110 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Process data exchange with \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\)} \\
\hline B3100 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 0 & Z110 \\
\hline B3101 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 1 & Z110 \\
\hline B3102 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 2 & Z110 \\
\hline B3103 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 3 & Z110 \\
\hline B3104 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 4 & Z110 \\
\hline B3105 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 5 & Z110 \\
\hline B3106 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 6 & Z110 \\
\hline B3107 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 7 & Z110 \\
\hline B3108 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1 , bit 8 & Z110 \\
\hline B3109 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 9 & Z110 \\
\hline B3110 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 10 & Z110 \\
\hline B3111 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 11 & Z110 \\
\hline B3112 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 12 & Z110 \\
\hline B3113 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 13 & Z110 \\
\hline B3114 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 14 & Z110 \\
\hline B3115 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 1, bit 15 & Z110 \\
\hline B3200 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2, bit 0 & Z110 \\
\hline B3201 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2, bit 1 & Z110 \\
\hline B3202 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2, bit 2 & Z110 \\
\hline B3203 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2, bit 3 & Z110 \\
\hline B3204 & Receive data from 1st CB/TB, word 2, bit 4 & Z110 \\
\hline B3205 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2, bit 5 & Z110 \\
\hline B3206 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2, bit 6 & Z110 \\
\hline B3207 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2, bit 7 & Z110 \\
\hline B3208 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2 , bit 8 & Z110 \\
\hline B3209 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2, bit 9 & Z110 \\
\hline B3210 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2, bit 10 & Z110 \\
\hline B3211 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2, bit 11 & Z110 \\
\hline B3212 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2, bit 12 & Z110 \\
\hline B3213 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2, bit 13 & Z110 \\
\hline B3214 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2, bit 14 & Z110 \\
\hline B3215 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 2, bit 15 & Z110 \\
\hline B3300 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3, bit 0 & Z110 \\
\hline B3301 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3, bit 1 & Z110 \\
\hline B3302 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3, bit 2 & Z110 \\
\hline B3303 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3, bit 3 & Z110 \\
\hline B3304 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3, bit 4 & Z110 \\
\hline B3305 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3, bit 5 & Z110 \\
\hline B3306 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3 , bit 6 & Z110 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Binector & Name, description & Function diag., Sheet \\
\hline B3307 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3, bit 7 & Z110 \\
\hline B3308 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3, bit 8 & Z110 \\
\hline B3309 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3, bit 9 & Z110 \\
\hline B3310 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3, bit 10 & Z110 \\
\hline B3311 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3 , bit 11 & Z110 \\
\hline B3312 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3, bit 12 & Z110 \\
\hline B3313 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3, bit 13 & Z110 \\
\hline B3314 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3, bit 14 & Z110 \\
\hline B3315 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 3, bit 15 & Z110 \\
\hline B3400 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 0 & Z110 \\
\hline B3401 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 1 & Z110 \\
\hline B3402 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 2 & Z110 \\
\hline B3403 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 3 & Z110 \\
\hline B3404 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 4 & Z110 \\
\hline B3405 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 5 & Z110 \\
\hline B3406 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 6 & Z110 \\
\hline B3407 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 7 & Z110 \\
\hline B3408 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 8 & Z110 \\
\hline B3409 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 9 & Z110 \\
\hline B3410 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 10 & Z110 \\
\hline B3411 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 11 & Z110 \\
\hline B3412 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 12 & Z110 \\
\hline B3413 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 13 & Z110 \\
\hline B3414 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 14 & Z110 \\
\hline B3415 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 4, bit 15 & Z110 \\
\hline B3500 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5 , bit 0 & Z110 \\
\hline B3501 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5 , bit 1 & Z110 \\
\hline B3502 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5, bit 2 & Z110 \\
\hline B3503 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5 , bit 3 & Z110 \\
\hline B3504 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5 , bit 4 & Z110 \\
\hline B3505 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5 , bit 5 & Z110 \\
\hline B3506 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5, bit 6 & Z110 \\
\hline B3507 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5 , bit 7 & Z110 \\
\hline B3508 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5 , bit 8 & Z110 \\
\hline B3509 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5 , bit 9 & Z110 \\
\hline B3510 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5, bit 10 & Z110 \\
\hline B3511 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5, bit 11 & Z110 \\
\hline B3512 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5 , bit 12 & Z110 \\
\hline B3513 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5, bit 13 & Z110 \\
\hline B3514 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5, bit 14 & Z110 \\
\hline B3515 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 5, bit 15 & Z110 \\
\hline B3600 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6 , bit 0 & Z110 \\
\hline B3601 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6, bit 1 & Z110 \\
\hline B3602 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6, bit 2 & Z110 \\
\hline B3603 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6, bit 3 & Z110 \\
\hline B3604 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6, bit 4 & Z110 \\
\hline B3605 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6, bit 5 & Z110 \\
\hline B3606 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6, bit 6 & Z110 \\
\hline B3607 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6, bit 7 & Z110 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Binector & Name, description & Function diag., Sheet \\
\hline B3608 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6 , bit 8 & Z110 \\
\hline B3609 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6, bit 9 & Z110 \\
\hline B3610 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6, bit 10 & Z110 \\
\hline B3611 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6, bit 11 & Z110 \\
\hline B3612 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6, bit 12 & Z110 \\
\hline B3613 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6, bit 13 & Z110 \\
\hline B3614 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6, bit 14 & Z110 \\
\hline B3615 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 6, bit 15 & Z110 \\
\hline B3700 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 0 & Z110 \\
\hline B3701 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 1 & Z110 \\
\hline B3702 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 2 & Z110 \\
\hline B3703 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 3 & Z110 \\
\hline B3704 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 4 & Z110 \\
\hline B3705 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 5 & Z110 \\
\hline B3706 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 6 & Z110 \\
\hline B3707 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 7 & Z110 \\
\hline B3708 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 8 & Z110 \\
\hline B3709 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 9 & Z110 \\
\hline B3710 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 10 & Z110 \\
\hline B3711 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 11 & Z110 \\
\hline B3712 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 12 & Z110 \\
\hline B3713 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 13 & Z110 \\
\hline B3714 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 14 & Z110 \\
\hline B3715 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 7, bit 15 & Z110 \\
\hline B3800 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 0 & Z110 \\
\hline B3801 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 1 & Z110 \\
\hline B3802 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 2 & Z110 \\
\hline B3803 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 3 & Z110 \\
\hline B3804 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 4 & Z110 \\
\hline B3805 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 5 & Z110 \\
\hline B3806 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 6 & Z110 \\
\hline B3807 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 7 & Z110 \\
\hline B3808 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 8 & Z110 \\
\hline B3809 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 9 & Z110 \\
\hline B3810 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 10 & Z110 \\
\hline B3811 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 11 & Z110 \\
\hline B3812 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 12 & Z110 \\
\hline B3813 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 13 & Z110 \\
\hline B3814 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 14 & Z110 \\
\hline B3815 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 8, bit 15 & Z110 \\
\hline B3900 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 0 & Z110 \\
\hline B3901 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 1 & Z110 \\
\hline B3902 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 2 & Z110 \\
\hline B3903 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 3 & Z110 \\
\hline B3904 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 4 & Z110 \\
\hline B3905 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 5 & Z110 \\
\hline B3906 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 6 & Z110 \\
\hline B3907 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 7 & Z110 \\
\hline B3908 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 8 & Z110 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Binector & Name, description & Function diag., Sheet \\
\hline B3909 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 9 & Z110 \\
\hline B3910 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 10 & Z110 \\
\hline B3911 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 11 & Z110 \\
\hline B3912 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 12 & Z110 \\
\hline B3913 & Receive data from \({ }^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 13 & Z110 \\
\hline B3914 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 14 & Z110 \\
\hline B3915 & Receive data from \(1^{\text {st }} \mathrm{CB} / \mathrm{TB}\), word 9, bit 15 & Z110 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{SCB1 with SCI} \\
\hline B4100 & SCI, slave 1, binary input 1 & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4101 & SCI, slave 1, binary input 2 & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4102 & SCI, slave 1, binary input 3 & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4103 & SCI, slave 1, binary input 4 & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4104 & SCI, slave 1, binary input 5 & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4105 & SCI, slave 1, binary input 6 & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4106 & SCI, slave 1, binary input 7 & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4107 & SCI, slave 1, binary input 8 & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4108 & SCI, slave 1, binary input 9 & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4109 & SCI, slave 1, binary input 10 & [ SW 1.9 and later] & Z140 \\
\hline B4110 & SCI, slave 1, binary input 11 & [ SW 1.9 and later] & Z140 \\
\hline B4111 & SCI, slave 1, binary input 12 & [ SW 1.9 and later] & Z140 \\
\hline B4112 & SCI, slave 1, binary input 13 & [ SW 1.9 and later] & Z140 \\
\hline B4113 & SCI, slave 1, binary input 14 & [ SW 1.9 and later] & Z140 \\
\hline B4114 & SCI, slave 1, binary input 15 & [ SW 1.9 and later] & Z140 \\
\hline B4115 & SCI, slave 1, binary input 16 & [ SW 1.9 and later] & Z140 \\
\hline B4120 & SCI, slave 1 , binary input 1 inverted & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4121 & SCI, slave 1, binary input 2 inverted & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4122 & SCI, slave 1 , binary input 3 inverted & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4123 & SCI, slave 1, binary input 4 inverted & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4124 & SCI, slave 1, binary input 5 inverted & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4125 & SCI, slave 1, binary input 6 inverted & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4126 & SCI, slave 1, binary input 7 inverted & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4127 & SCI, slave 1, binary input 8 inverted & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4128 & SCI, slave 1 , binary input 9 inverted & [ SW 1.9 and later] & Z130, Z140 \\
\hline B4129 & SCI, slave 1, binary input 10 inverted & [ SW 1.9 and later] & Z140 \\
\hline B4130 & SCI, slave 1, binary input 11 inverted & [ SW 1.9 and later] & Z140 \\
\hline B4131 & SCI, slave 1, binary input 12 inverted & [ SW 1.9 and later] & Z140 \\
\hline B4132 & SCI, slave 1, binary input 13 inverted & [ SW 1.9 and later] & Z140 \\
\hline B4133 & SCI, slave 1, binary input 14 inverted & [ SW 1.9 and later] & Z140 \\
\hline B4134 & SCI, slave 1, binary input 15 inverted & [ SW 1.9 and later] & Z140 \\
\hline B4135 & SCI, slave 1, binary input 16 inverted & [ SW 1.9 and later] & Z140 \\
\hline B4200 & SCI, slave 2, binary input 1 & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4201 & SCI, slave 2, binary input 2 & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4202 & SCI, slave 2, binary input 3 & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4203 & SCI, slave 2, binary input 4 & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4204 & SCI, slave 2, binary input 5 & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4205 & SCI, slave 2, binary input 6 & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4206 & SCI, slave 2, binary input 7 & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4207 & SCI, slave 2, binary input 8 & [ SW 1.9 and later] & Z131, Z141 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Binector & Name, description & & Function diag., Sheet \\
\hline B4208 & SCI, slave 2 , binary input 9 & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4209 & SCI, slave 2, binary input 10 & [ SW 1.9 and later] & Z141 \\
\hline B4210 & SCI, slave 2, binary input 11 & [ SW 1.9 and later] & Z141 \\
\hline B4211 & SCI, slave 2, binary input 12 & [ SW 1.9 and later] & Z141 \\
\hline B4212 & SCI, slave 2, binary input 13 & [ SW 1.9 and later] & Z141 \\
\hline B4213 & SCI, slave 2, binary input 14 & [ SW 1.9 and later] & Z141 \\
\hline B4214 & SCI, slave 2, binary input 15 & [ SW 1.9 and later] & Z141 \\
\hline B4215 & SCI, slave 2 , binary input 16 & [ SW 1.9 and later] & Z141 \\
\hline B4220 & SCI, slave 2 , binary input 1 inverted & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4221 & SCI, slave 2, binary input 2 inverted & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4222 & SCI, slave 2 , binary input 3 inverted & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4223 & SCI, slave 2 , binary input 4 inverted & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4224 & SCI, slave 2 , binary input 5 inverted & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4225 & SCI, slave 2 , binary input 6 inverted & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4226 & SCI, slave 2 , binary input 7 inverted & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4227 & SCI, slave 2, binary input 8 inverted & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4228 & SCI, slave 2, binary input 9 inverted & [ SW 1.9 and later] & Z131, Z141 \\
\hline B4229 & SCI, slave 2, binary input 10 inverted & [ SW 1.9 and later] & Z141 \\
\hline B4230 & SCI, slave 2, binary input 11 inverted & [ SW 1.9 and later] & Z141 \\
\hline B4231 & SCI, slave 2, binary input 12 inverted & [ SW 1.9 and later] & Z141 \\
\hline B4232 & SCI, slave 2, binary input 13 inverted & [ SW 1.9 and later] & Z141 \\
\hline B4233 & SCI, slave 2, binary input 14 inverted & [ SW 1.9 and later] & Z141 \\
\hline B4234 & SCI, slave 2, binary input 15 inverted & [ SW 1.9 and later] & Z141 \\
\hline B4235 & SCI, slave 2, binary input 16 inverted & [ SW 1.9 and later] & Z141 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Optional supplementary boards: 1 st expansion board EB1 & [ SW 1.5 and later] \\
\hline B5101 & Analog input terminal \(50 / 51: 1\) = wire break ( \(\mathbf{i} \leq 2 \mathrm{~mA}\) ) & Z112 \\
\hline B5102 & Analog input terminal 52 (use as digital input): \(1=\) input voltage is > 8V (log "1") & Z112 \\
\hline B5103 & Analog input terminal 53 (use as digital input): 1 = input voltage is > 8V (log "1") & Z112 \\
\hline B5104 & State terminal 43 (bidirectional input/output) inverted & Z114 \\
\hline B5105 & State terminal 43 (bidirectional input/output) & Z114 \\
\hline B5106 & State terminal 44 (bidirectional input/output) inverted & Z114 \\
\hline B5107 & State terminal 44 (bidirectional input/output) & Z114 \\
\hline B5108 & State terminal 45 (bidirectional Input/output) inverted & Z114 \\
\hline B5109 & State terminal 45 (bidirectional input/output) & Z114 \\
\hline B5110 & State terminal 46 (bidirectional input/output) inverted & Z114 \\
\hline B5111 & State terminal 46 (bidirectional Input/output) & Z114 \\
\hline B5112 & State terminal 40 (digital input) inverted & Z114 \\
\hline B5113 & State terminal 40 (digital input) & Z114 \\
\hline B5114 & State terminal 41 (digital input) inverted & Z114 \\
\hline B5115 & State terminal 41 (digital input) & Z114 \\
\hline B5116 & State terminal 42 (digital input) inverted & Z114 \\
\hline B5117 & State terminal 42 (digital input) & Z114 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Optional supplementary boards: 1st Expansion board EB2 & [ SW 1.5 and later] \\
\hline B5121 & Analog input terminal 49 / 50: \(1=\) wire break ( \(\mathbf{i \leq 2 ~ m A )}\) & Z118 \\
\hline B5122 & State terminal 53 (digital input) inverted & Z118 \\
\hline B5123 & State terminal 53 (digital input) & Z118 \\
\hline B5124 & State terminal 54 (digital input) inverted & Z118 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline B5125 & State terminal 54 (digital input) & Z118 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Optional supplementary boards: \({ }^{\text {nd }}\) expansion board EB1} & [ SW 1.5 and later] \\
\hline B5201 & Analog input terminal \(50 / 51\) : \(1=\) wire break ( \(\mathrm{i} \leq 2 \mathrm{~mA}\) ) & Z115 \\
\hline B5202 & Analog input terminal 52 (use as digital input): \(1=\) input voltage is \(>8 \mathrm{~V}\) ( \(\log\) "1") & Z115 \\
\hline B5203 & Analog input terminal 53 (use as digital input): \(1=\) input voltage is > 8V (log "1") & Z115 \\
\hline B5204 & State terminal 43 (bidirectional input/output) inverted & Z117 \\
\hline B5205 & State terminal 43 (bidirectional input/output) & Z117 \\
\hline B5206 & State terminal 44 (bidirectional input/output) inverted & Z117 \\
\hline B5207 & State terminal 44 (bidirectional input/output) & Z117 \\
\hline B5208 & State terminal 45 (bidirectional Input/output) inverted & Z117 \\
\hline B5209 & State terminal 45 (bidirectional input/output) & Z117 \\
\hline B5210 & State terminal 46 (bidirectional input/output) inverted & Z117 \\
\hline B5211 & State terminal 46 (bidirectional Input/output) & Z117 \\
\hline B5212 & State terminal 40 (digital input) inverted & Z117 \\
\hline B5213 & State terminal 40 (digital input) & Z117 \\
\hline B5214 & State terminal 41 (digital input) inverted & Z117 \\
\hline B5215 & State terminal 41 (digital input) & Z117 \\
\hline B5216 & State terminal 42 (digital input) inverted & Z117 \\
\hline B5217 & State terminal 42 (digital input) & Z117 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Optional supplementary boards: \(\mathbf{2}^{\text {nd }}\) Expansion board EB2 } \\
\hline B5221 & Analog input terminal 49 / 50: \(1=\) wire break ( \(\mathrm{i} \leq 2 \mathrm{~mA}\) ) & SW 1.5 and later] \\
\hline B5222 & State terminal 53 (digital input) inverted & Z119 \\
\hline B5223 & State terminal 53 (digital input) & Z119 \\
\hline B5224 & State terminal 54 (digital input) inverted & Z119 \\
\hline B5225 & State terminal 54 (digital input) & Z119 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{4}{|l|}{ Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2) } \\
\hline B6030 & USS2 / Peer2 - Telegram monitoring timeout - maintained signal & G171, G173 \\
\hline B6031 & USS2 / Peer2 - Telegram monitoring timeout - 1s pulse & G171, G173 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Paralleling interface } \\
\hline B6040 & Telegram monitoring timeout - maintained signal & G195 \\
\hline B6041 & Telegram monitoring timeout - 1s pulse & G195 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2) } \\
\hline B6100 & USS2 / Peer2 receive data, word 1, bit 0 & G171, G173 \\
\hline B6101 & USS2 / Peer2 receive data, word 1, bit 1 & G171, G173 \\
\hline B6102 & USS2 / Peer2 receive data, word 1, bit 2 & G171, G173 \\
\hline B6103 & USS2 / Peer2 receive data, word 1, bit 3 & G171, G173 \\
\hline B6104 & USS2 / Peer2 receive data, word 1, bit 4 & G171, G173 \\
\hline B6105 & USS2 / Peer2 receive data, word 1, bit 5 & G171, G173 \\
\hline B6106 & USS2 / Peer2 receive data, word 1, bit 6 & G171, G173 \\
\hline B6107 & USS2 / Peer2 receive data, word 1, bit 7 & G171, G173 \\
\hline B6108 & USS2 / Peer2 receive data, word 1, bit 8 & G171, G173 \\
\hline B6109 & USS2 / Peer2 receive data, word 1, bit 9 & G171, G173 \\
\hline B6110 & USS2 / Peer2 receive data, word 1, bit 10 & G171, G173 \\
\hline B6111 & USS2 / Peer2 receive data, word 1, bit 11 & G171, G173 \\
\hline B6112 & USS2 / Peer2 receive data, word 1, bit 12 & G171, G173 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline B6113 & USS2 / Peer2 receive data, word 1, bit 13 & G171, G173 \\
\hline B6114 & USS2 / Peer2 receive data, word 1, bit 14 & G171, G173 \\
\hline B6115 & USS2 / Peer2 receive data, word 1, bit 15 & G171, G173 \\
\hline B6200 & USS2 / Peer2 receive data, word 2, bit 0 & G171, G173 \\
\hline B6201 & USS2 / Peer2 receive data, word 2, bit 1 & G171, G173 \\
\hline B6202 & USS2 / Peer2 receive data, word 2, bit 2 & G171, G173 \\
\hline B6203 & USS2 / Peer2 receive data, word 2, bit 3 & G171, G173 \\
\hline B6204 & USS2 / Peer2 receive data, word 2, bit 4 & G171, G173 \\
\hline B6205 & USS2 / Peer2 receive data, word 2, bit 5 & G171, G173 \\
\hline B6206 & USS2 / Peer2 receive data, word 2, bit 6 & G171, G173 \\
\hline B6207 & USS2 / Peer2 receive data, word 2, bit 7 & G171, G173 \\
\hline B6208 & USS2 / Peer2 receive data, word 2, bit 8 & G171, G173 \\
\hline B6209 & USS2 / Peer2 receive data, word 2, bit 9 & G171, G173 \\
\hline B6210 & USS2 / Peer2 receive data, word 2, bit 10 & G171, G173 \\
\hline B6211 & USS2 / Peer2 receive data, word 2, bit 11 & G171, G173 \\
\hline B6212 & USS2 / Peer2 receive data, word 2, bit 12 & G171, G173 \\
\hline B6213 & USS2 / Peer2 receive data, word 2, bit 13 & G171, G173 \\
\hline B6214 & USS2 / Peer2 receive data, word 2, bit 14 & G171, G173 \\
\hline B6215 & USS2 / Peer2 receive data, word 2, bit 15 & G171, G173 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Paralleling interface} \\
\hline B6220 & Word 1 from master / Word 1 from slave with address 2, bit 0 & G195 \\
\hline B6221 & Word 1 from master / Word 1 from slave with address 2, bit 1 & G195 \\
\hline B6222 & Word 1 from master / Word 1 from slave with address 2, bit 2 & G195 \\
\hline B6223 & Word 1 from master / Word 1 from slave with address 2, bit 3 & G195 \\
\hline B6224 & Word 1 from master / Word 1 from slave with address 2, bit 4 & G195 \\
\hline B6225 & Word 1 from master / Word 1 from slave with address 2, bit 5 & G195 \\
\hline B6226 & Word 1 from master / Word 1 from slave with address 2 , bit 6 & G195 \\
\hline B6227 & Word 1 from master / Word 1 from slave with address 2, bit 7 & G195 \\
\hline B6228 & Word 1 from master / Word 1 from slave with address 2, bit 8 & G195 \\
\hline B6229 & Word 1 from master / Word 1 from slave with address 2, bit 9 & G195 \\
\hline B6230 & Word 1 from master / Word 1 from slave with address 2, bit 10 & G195 \\
\hline B6231 & Word 1 from master / Word 1 from slave with address 2, bit 11 & G195 \\
\hline B6232 & Word 1 from master / Word 1 from slave with address 2, bit 12 & G195 \\
\hline B6233 & Word 1 from master / Word 1 from slave with address 2, bit 13 & G195 \\
\hline B6234 & Word 1 from master / Word 1 from slave with address 2, bit 14 & G195 \\
\hline B6235 & Word 1 from master / Word 1 from slave with address 2, bit 15 & G195 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2) } \\
\hline B6300 & USS2 / Peer2 receive data, word 3, bit 0 & G171, G173 \\
\hline B6301 & USS2 / Peer2 receive data, word 3, bit 1 & G171, G173 \\
\hline B6302 & USS2 / Peer2 receive data, word 3, bit 2 & G171, G173 \\
\hline B6303 & USS2 / Peer2 receive data, word 3, bit 3 & G171, G173 \\
\hline B6304 & USS2 / Peer2 receive data, word 3, bit 4 & G171, G173 \\
\hline B6305 & USS2 / Peer2 receive data, word 3, bit 5 & G171, G173 \\
\hline B6306 & USS2 / Peer2 receive data, word 3, bit 6 & G171, G173 \\
\hline B6307 & USS2 / Peer2 receive data, word 3, bit 7 & G171, G173 \\
\hline B6308 & USS2 / Peer2 receive data, word 3, bit 8 & G171, G173 \\
\hline B6309 & USS2 / Peer2 receive data, word 3, bit 9 & G171, G173 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline B6310 & USS2 / Peer2 receive data, word 3, bit 10 & G171, G173 \\
\hline B6311 & USS2 / Peer2 receive data, word 3, bit 11 & G171, G173 \\
\hline B6312 & USS2 / Peer2 receive data, word 3, bit 12 & G171, G173 \\
\hline B6313 & USS2 / Peer2 receive data, word 3, bit 13 & G171, G173 \\
\hline B6314 & USS2 / Peer2 receive data, word 3, bit 14 & G171, G173 \\
\hline B6315 & USS2 / Peer2 receive data, word 3, bit 15 & G171, G173 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Paralleling interface } & \\
\hline B6320 & Word 1 from slave with address 3, bit 0 & G195 \\
\hline B6321 & Word 1 from slave with address 3, bit 1 & G195 \\
\hline B6322 & Word 1 from slave with address 3, bit 2 & G195 \\
\hline B6323 & Word 1 from slave with address 3, bit 3 & G195 \\
\hline B6324 & Word 1 from slave with address 3, bit 4 & G195 \\
\hline B6325 & Word 1 from slave with address 3, bit 5 & G195 \\
\hline B6326 & Word 1 from slave with address 3, bit 6 & G195 \\
\hline B6327 & Word 1 from slave with address 3, bit 7 & G195 \\
\hline B6328 & Word 1 from slave with address 3, bit 8 & G195 \\
\hline B6329 & Word 1 from slave with address 3, bit 9 & G195 \\
\hline B6330 & Word 1 from slave with address 3, bit 10 & G195 \\
\hline B6331 & Word 1 from slave with address 3, bit 11 & G195 \\
\hline B6332 & Word 1 from slave with address 3, bit 12 & G195 \\
\hline B6333 & Word 1 from slave with address 3, bit 13 & G195 \\
\hline B6334 & Word 1 from slave with address 3, bit 14 & G195 \\
\hline B6335 & Word 1 from slave with address 3, bit 15 & G195 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2) } \\
\hline B6400 & USS2 / Peer2 receive data, word 4, bit 0 & G171, G173 \\
\hline B6401 & USS2 / Peer2 receive data, word 4, bit 1 & G171, G173 \\
\hline B6402 & USS2 / Peer2 receive data, word 4, bit 2 & G171, G173 \\
\hline B6403 & USS2 / Peer2 receive data, word 4, bit 3 & G171, G173 \\
\hline B6404 & USS2 / Peer2 receive data, word 4, bit 4 & G171, G173 \\
\hline B6405 & USS2 / Peer2 receive data, word 4, bit 5 & G171, G173 \\
\hline B6406 & USS2 / Peer2 receive data, word 4, bit 6 & G171, G173 \\
\hline B6407 & USS2 / Peer2 receive data, word 4, bit 7 & G171, G173 \\
\hline B6408 & USS2 / Peer2 receive data, word 4, bit 8 & G171, G173 \\
\hline B6409 & USS2 / Peer2 receive data, word 4, bit 9 & G171, G173 \\
\hline B6410 & USS2 / Peer2 receive data, word 4, bit 10 & G171, G173 \\
\hline B6411 & USS2 / Peer2 receive data, word 4, bit 11 & G171, G173 \\
\hline B6412 & USS2 / Peer2 receive data, word 4, bit 12 & G171, G173 \\
\hline B6413 & USS2 / Peer2 receive data, word 4, bit 13 & G171, G173 \\
\hline B6414 & USS2 / Peer2 receive data, word 4, bit 14 & G171, G173 \\
\hline B6415 & USS2 / Peer2 receive data, word 4, bit 15 & G171, G173 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Paralleling interface & \\
\hline B6420 & Word 1 from slave with address 4, bit 0 & G195 \\
\hline B6421 & Word 1 from slave with address 4, bit 1 & G195 \\
\hline B6422 & Word 1 from slave with address 4, bit 2 & G195 \\
\hline B6423 & Word 1 from slave with address 4, bit 3 & G195 \\
\hline B6424 & Word 1 from slave with address 4, bit 4 & G195 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., \\
Sheet
\end{tabular} \\
\hline B6425 & Word 1 from slave with address 4, bit 5 & G195 \\
\hline B6426 & Word 1 from slave with address 4, bit 6 & G195 \\
\hline B6427 & Word 1 from slave with address 4, bit 7 & G195 \\
\hline B6428 & Word 1 from slave with address 4, bit 8 & G195 \\
\hline B6429 & Word 1 from slave with address 4, bit 9 & G195 \\
\hline B6430 & Word 1 from slave with address 4, bit 10 & G195 \\
\hline B6431 & Word 1 from slave with address 4, bit 11 & G195 \\
\hline B6432 & Word 1 from slave with address 4, bit 12 & G195 \\
\hline B6433 & Word 1 from slave with address 4, bit 13 & G195 \\
\hline B6434 & Word 1 from slave with address 4, bit 14 & G195 \\
\hline B6435 & Word 1 from slave with address 4, bit 15 & G195 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2) } \\
\hline B6500 & USS2 / Peer2 receive data, word 5, bit 0 & G171, G173 \\
\hline B6501 & USS2 / Peer2 receive data, word 5, bit 1 & G171, G173 \\
\hline B6502 & USS2 / Peer2 receive data, word 5, bit 2 & G171, G173 \\
\hline B6503 & USS2 / Peer2 receive data, word 5, bit 3 & G171, G173 \\
\hline B6504 & USS2 / Peer2 receive data, word 5, bit 4 & G171, G173 \\
\hline B6505 & USS2 / Peer2 receive data, word 5, bit 5 & G171, G173 \\
\hline B6506 & USS2 / Peer2 receive data, word 5, bit 6 & G171, G173 \\
\hline B6507 & USS2 / Peer2 receive data, word 5, bit 7 & G171, G173 \\
\hline B6508 & USS2 / Peer2 receive data, word 5, bit 8 & G171, G173 \\
\hline B6509 & USS2 / Peer2 receive data, word 5, bit 9 & G171, G173 \\
\hline B6510 & USS2 / Peer2 receive data, word 5, bit 10 & G171, G173 \\
\hline B6511 & USS2 / Peer2 receive data, word 5, bit 11 & G171, G173 \\
\hline B6512 & USS2 / Peer2 receive data, word 5, bit 12 & G171, G173 \\
\hline B6513 & USS2 / Peer2 receive data, word 5, bit 13 & G171, G173 \\
\hline B6514 & USS2 / Peer2 receive data, word 5, bit 14 & G171, G173 \\
\hline B6515 & USS2 / Peer2 receive data, word 5, bit 15 & G171, G173 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Paralleling interface } & \\
\hline B6520 & Word 1 from slave with address 5, bit 0 & G195 \\
\hline B6521 & Word 1 from slave with address 5, bit 1 & G195 \\
\hline B6522 & Word 1 from slave with address 5, bit 2 & G195 \\
\hline B6523 & Word 1 from slave with address 5, bit 3 & G195 \\
\hline B6524 & Word 1 from slave with address 5, bit 4 & G195 \\
\hline B6525 & Word 1 from slave with address 5, bit 5 & G195 \\
\hline B6526 & Word 1 from slave with address 5, bit 6 & G195 \\
\hline B6527 & Word 1 from slave with address 5, bit 7 & G195 \\
\hline B6528 & Word 1 from slave with address 5, bit 8 & G195 \\
\hline B6529 & Word 1 from slave with address 5, bit 9 & G195 \\
\hline B6530 & Word 1 from slave with address 5, bit 10 & G195 \\
\hline B6531 & Word 1 from slave with address 5, bit 11 & G195 \\
\hline B6532 & Word 1 from slave with address 5, bit 12 & G195 \\
\hline B6533 & Word 1 from slave with address 5, bit 13 & G195 \\
\hline B6534 & Word 1 from slave with address 5, bit 14 & G195 \\
\hline B6535 & Word 1 from slave with address 5, bit 15 & G195 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2) & \\
\hline B6600 & USS2 receive data, word 6, bit 0 & G171 \\
\hline B6601 & USS2 receive data, word 6, bit 1 & G171 \\
\hline B6602 & USS2 receive data, word 6, bit 2 & G171 \\
\hline B6603 & USS2 receive data, word 6, bit 3 & G171 \\
\hline B6604 & USS2 receive data, word 6, bit 4 & G171 \\
\hline B6605 & USS2 receive data, word 6, bit 5 & G171 \\
\hline B6606 & USS2 receive data, word 6, bit 6 & G171 \\
\hline B6607 & USS2 receive data, word 6, bit 7 & G171 \\
\hline B6608 & USS2 receive data, word 6, bit 8 & G171 \\
\hline B6609 & USS2 receive data, word 6, bit 9 & G171 \\
\hline B6610 & USS2 receive data, word 6, bit 10 & G171 \\
\hline B6611 & USS2 receive data, word 6, bit 11 & G171 \\
\hline B6612 & USS2 receive data, word 6, bit 12 & G171 \\
\hline B6613 & USS2 receive data, word 6, bit 13 & G171 \\
\hline B6614 & USS2 receive data, word 6, bit 14 & G171 \\
\hline B6615 & USS2 receive data, word 6, bit 15 & G171 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Paralleling interface} \\
\hline B6620 & Word 1 from slave with address 6, bit 0 & G195 \\
\hline B6621 & Word 1 from slave with address 6, bit 1 & G195 \\
\hline B6622 & Word 1 from slave with address 6, bit 2 & G195 \\
\hline B6623 & Word 1 from slave with address 6, bit 3 & G195 \\
\hline B6624 & Word 1 from slave with address 6, bit 4 & G195 \\
\hline B6625 & Word 1 from slave with address 6, bit 5 & G195 \\
\hline B6626 & Word 1 from slave with address 6, bit 6 & G195 \\
\hline B6627 & Word 1 from slave with address 6, bit 7 & G195 \\
\hline B6628 & Word 1 from slave with address 6, bit 8 & G195 \\
\hline B6629 & Word 1 from slave with address 6, bit 9 & G195 \\
\hline B6630 & Word 1 from slave with address 6, bit 10 & G195 \\
\hline B6631 & Word 1 from slave with address 6, bit 11 & G195 \\
\hline B6632 & Word 1 from slave with address 6, bit 12 & G195 \\
\hline B6633 & Word 1 from slave with address 6, bit 13 & G195 \\
\hline B6634 & Word 1 from slave with address 6, bit 14 & G195 \\
\hline B6635 & Word 1 from slave with address 6, bit 15 & G195 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2) & \\
\hline B6700 & USS2 receive data, word 7, bit 0 & G171 \\
\hline B6701 & USS2 receive data, word 7, bit 1 & G171 \\
\hline B6702 & USS2 receive data, word 7, bit 2 & G171 \\
\hline B6703 & USS2 receive data, word 7, bit 3 & G171 \\
\hline B6704 & USS2 receive data, word 7, bit 4 & G171 \\
\hline B6705 & USS2 receive data, word 7, bit 5 & G171 \\
\hline B6706 & USS2 receive data, word 7, bit 6 & G171 \\
\hline B6707 & USS2 receive data, word 7, bit 7 & G171 \\
\hline B6708 & USS2 receive data, word 7, bit 8 & G171 \\
\hline B6709 & USS2 receive data, word 7, bit 9 & G171 \\
\hline B6710 & USS2 receive data, word 7, bit 10 & G171 \\
\hline B6711 & USS2 receive data, word 7, bit 11 & G171 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Binector & Name, description & Function diag., Sheet \\
\hline B6712 & USS2 receive data, word 7, bit 12 & G171 \\
\hline B6713 & USS2 receive data, word 7, bit 13 & G171 \\
\hline B6714 & USS2 receive data, word 7, bit 14 & G171 \\
\hline B6715 & USS2 receive data, word 7, bit 15 & G171 \\
\hline B6800 & USS2 receive data, word 8, bit 0 & G171 \\
\hline B6801 & USS2 receive data, word 8, bit 1 & G171 \\
\hline B6802 & USS2 receive data, word 8, bit 2 & G171 \\
\hline B6803 & USS2 receive data, word 8, bit 3 & G171 \\
\hline B6804 & USS2 receive data, word 8, bit 4 & G171 \\
\hline B6805 & USS2 receive data, word 8, bit 5 & G171 \\
\hline B6806 & USS2 receive data, word 8, bit 6 & G171 \\
\hline B6807 & USS2 receive data, word 8, bit 7 & G171 \\
\hline B6808 & USS2 receive data, word 8, bit 8 & G171 \\
\hline B6809 & USS2 receive data, word 8, bit 9 & G171 \\
\hline B6810 & USS2 receive data, word 8, bit 10 & G171 \\
\hline B6811 & USS2 receive data, word 8, bit 11 & G171 \\
\hline B6812 & USS2 receive data, word 8, bit 12 & G171 \\
\hline B6813 & USS2 receive data, word 8, bit 13 & G171 \\
\hline B6814 & USS2 receive data, word 8, bit 14 & G171 \\
\hline B6815 & USS2 receive data, word 8, bit 15 & G171 \\
\hline B6900 & USS2 receive data, word 9, bit 0 & G171 \\
\hline B6901 & USS2 receive data, word 9, bit 1 & G171 \\
\hline B6902 & USS2 receive data, word 9, bit 2 & G171 \\
\hline B6903 & USS2 receive data, word 9, bit 3 & G171 \\
\hline B6904 & USS2 receive data, word 9, bit 4 & G171 \\
\hline B6905 & USS2 receive data, word 9, bit 5 & G171 \\
\hline B6906 & USS2 receive data, word 9, bit 6 & G171 \\
\hline B6907 & USS2 receive data, word 9, bit 7 & G171 \\
\hline B6908 & USS2 receive data, word 9, bit 8 & G171 \\
\hline B6909 & USS2 receive data, word 9, bit 9 & G171 \\
\hline B6910 & USS2 receive data, word 9, bit 10 & G171 \\
\hline B6911 & USS2 receive data, word 9, bit 11 & G171 \\
\hline B6912 & USS2 receive data, word 9, bit 12 & G171 \\
\hline B6913 & USS2 receive data, word 9, bit 13 & G171 \\
\hline B6914 & USS2 receive data, word 9, bit 14 & G171 \\
\hline B6915 & USS2 receive data, word 9, bit 15 & G171 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Optional supplementary boards: SBP pulse encoder evaluation } & [ SW 1.5 and later] \\
\hline B7000 & State terminal 74 / 75 (check track) & Z120 \\
\hline B7001 & State terminal 65 (coarse pulse 1) & Z120 \\
\hline B7002 & State terminal 66 (coarse pulse 2) & Z120 \\
\hline B7003 & State terminal 67 (fine pulse 2) & Z120 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Optional supplementary boards: SIMOLINK board & [ SW 1.5 and later] \\
\hline B7030 & \(1=\) Telegram failure & Z121 \\
\hline B7040 & \(1=\) Time out & Z121 \\
\hline B7050 & 1 = Alarm start-up & Z121 \\
\hline B7100 & Receive data from the SIMOLINK board, word 1 bit 0 & Z122 \\
\hline B7101 & Receive data from the SIMOLINK board, word 1 bit 1 & Z122 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Binector & Name, description & Function diag., Sheet \\
\hline B7102 & Receive data from the SIMOLINK board, word 1 bit 2 & Z122 \\
\hline B7103 & Receive data from the SIMOLINK board, word 1 bit 3 & Z122 \\
\hline B7104 & Receive data from the SIMOLINK board, word 1 bit 4 & Z122 \\
\hline B7105 & Receive data from the SIMOLINK board, word 1 bit 5 & Z122 \\
\hline B7106 & Receive data from the SIMOLINK board, word 1 bit 6 & Z122 \\
\hline B7107 & Receive data from the SIMOLINK board, word 1 bit 7 & Z122 \\
\hline B7108 & Receive data from the SIMOLINK board, word 1 bit 8 & Z122 \\
\hline B7109 & Receive data from the SIMOLINK board, word 1 bit 9 & Z122 \\
\hline B7110 & Receive data from the SIMOLINK board, word 1 bit 10 & Z122 \\
\hline B7111 & Receive data from the SIMOLINK board, word 1 bit 11 & Z122 \\
\hline B7112 & Receive data from the SIMOLINK board, word 1 bit 12 & Z122 \\
\hline B7113 & Receive data from the SIMOLINK board, word 1 bit 13 & Z122 \\
\hline B7114 & Receive data from the SIMOLINK board, word 1 bit 14 & Z122 \\
\hline B7115 & Receive data from the SIMOLINK board, word 1 bit 15 & Z122 \\
\hline B7200 & Receive data from the SIMOLINK board, word 2 bit 0 & Z122 \\
\hline B7201 & Receive data from the SIMOLINK board, word 2 bit 1 & Z122 \\
\hline B7202 & Receive data from the SIMOLINK board, word 2 bit 2 & Z122 \\
\hline B7203 & Receive data from the SIMOLINK board, word 2 bit 3 & Z122 \\
\hline B7204 & Receive data from the SIMOLINK board, word 2 bit 4 & Z122 \\
\hline B7205 & Receive data from the SIMOLINK board, word 2 bit 5 & Z122 \\
\hline B7206 & Receive data from the SIMOLINK board, word 2 bit 6 & Z122 \\
\hline B7207 & Receive data from the SIMOLINK board, word 2 bit 7 & Z122 \\
\hline B7208 & Receive data from the SIMOLINK board, word 2 bit 8 & Z122 \\
\hline B7209 & Receive data from the SIMOLINK board, word 2 bit 9 & Z122 \\
\hline B7210 & Receive data from the SIMOLINK board, word 2 bit 10 & Z122 \\
\hline B7211 & Receive data from the SIMOLINK board, word 2 bit 11 & Z122 \\
\hline B7212 & Receive data from the SIMOLINK board, word 2 bit 12 & Z122 \\
\hline B7213 & Receive data from the SIMOLINK board, word 2 bit 13 & Z122 \\
\hline B7214 & Receive data from the SIMOLINK board, word 2 bit 14 & Z122 \\
\hline B7215 & Receive data from the SIMOLINK board, word 2 bit 15 & Z122 \\
\hline B7300 & Receive data from the SIMOLINK board, word 3 bit 0 & Z122 \\
\hline B7301 & Receive data from the SIMOLINK board, word 3 bit 1 & Z122 \\
\hline B7302 & Receive data from the SIMOLINK board, word 3 bit 2 & Z122 \\
\hline B7303 & Receive data from the SIMOLINK board, word 3 bit 3 & Z122 \\
\hline B7304 & Receive data from the SIMOLINK board, word 3 bit 4 & Z122 \\
\hline B7305 & Receive data from the SIMOLINK board, word 3 bit 5 & Z122 \\
\hline B7306 & Receive data from the SIMOLINK board, word 3 bit 6 & Z122 \\
\hline B7307 & Receive data from the SIMOLINK board, word 3 bit 7 & Z122 \\
\hline B7308 & Receive data from the SIMOLINK board, word 3 bit 8 & Z122 \\
\hline B7309 & Receive data from the SIMOLINK board, word 3 bit 9 & Z122 \\
\hline B7310 & Receive data from the SIMOLINK board, word 3 bit 10 & Z122 \\
\hline B7311 & Receive data from the SIMOLINK board, word 3 bit 11 & Z122 \\
\hline B7312 & Receive data from the SIMOLINK board, word 3 bit 12 & Z122 \\
\hline B7313 & Receive data from the SIMOLINK board, word 3 bit 13 & Z122 \\
\hline B7314 & Receive data from the SIMOLINK board, word 3 bit 14 & Z122 \\
\hline B7315 & Receive data from the SIMOLINK board, word 3 bit 15 & Z122 \\
\hline B7400 & Receive data from the SIMOLINK board, word 4 bit 0 & Z122 \\
\hline B7401 & Receive data from the SIMOLINK board, word 4 bit 1 & Z122 \\
\hline B7402 & Receive data from the SIMOLINK board, word 4 bit 2 & Z122 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Binector & Name, description & Function diag., Sheet \\
\hline B7403 & Receive data from the SIMOLINK board, word 4 bit 3 & Z122 \\
\hline B7404 & Receive data from the SIMOLINK board, word 4 bit 4 & Z122 \\
\hline B7405 & Receive data from the SIMOLINK board, word 4 bit 5 & Z122 \\
\hline B7406 & Receive data from the SIMOLINK board, word 4 bit 6 & Z122 \\
\hline B7407 & Receive data from the SIMOLINK board, word 4 bit 7 & Z122 \\
\hline B7408 & Receive data from the SIMOLINK board, word 4 bit 8 & Z122 \\
\hline B7409 & Receive data from the SIMOLINK board, word 4 bit 9 & Z122 \\
\hline B7410 & Receive data from the SIMOLINK board, word 4 bit 10 & Z122 \\
\hline B7411 & Receive data from the SIMOLINK board, word 4 bit 11 & Z122 \\
\hline B7412 & Receive data from the SIMOLINK board, word 4 bit 12 & Z122 \\
\hline B7413 & Receive data from the SIMOLINK board, word 4 bit 13 & Z122 \\
\hline B7414 & Receive data from the SIMOLINK board, word 4 bit 14 & Z122 \\
\hline B7415 & Receive data from the SIMOLINK board, word 4 bit 15 & Z122 \\
\hline B7500 & Receive data from the SIMOLINK board, word 5 bit 0 & Z122 \\
\hline B7501 & Receive data from the SIMOLINK board, word 5 bit 1 & Z122 \\
\hline B7502 & Receive data from the SIMOLINK board, word 5 bit 2 & Z122 \\
\hline B7503 & Receive data from the SIMOLINK board, word 5 bit 3 & Z122 \\
\hline B7504 & Receive data from the SIMOLINK board, word 5 bit 4 & Z122 \\
\hline B7505 & Receive data from the SIMOLINK board, word 5 bit 5 & Z122 \\
\hline B7506 & Receive data from the SIMOLINK board, word 5 bit 6 & Z122 \\
\hline B7507 & Receive data from the SIMOLINK board, word 5 bit 7 & Z122 \\
\hline B7508 & Receive data from the SIMOLINK board, word 5 bit 8 & Z122 \\
\hline B7509 & Receive data from the SIMOLINK board, word 5 bit 9 & Z122 \\
\hline B7510 & Receive data from the SIMOLINK board, word 5 bit 10 & Z122 \\
\hline B7511 & Receive data from the SIMOLINK board, word 5 bit 11 & Z122 \\
\hline B7512 & Receive data from the SIMOLINK board, word 5 bit 12 & Z122 \\
\hline B7513 & Receive data from the SIMOLINK board, word 5 bit 13 & Z122 \\
\hline B7514 & Receive data from the SIMOLINK board, word 5 bit 14 & Z122 \\
\hline B7515 & Receive data from the SIMOLINK board, word 5 bit 15 & Z122 \\
\hline B7600 & Receive data from the SIMOLINK board, word 6 bit 0 & Z122 \\
\hline B7601 & Receive data from the SIMOLINK board, word 6 bit 1 & Z122 \\
\hline B7602 & Receive data from the SIMOLINK board, word 6 bit 2 & Z122 \\
\hline B7603 & Receive data from the SIMOLINK board, word 6 bit 3 & Z122 \\
\hline B7604 & Receive data from the SIMOLINK board, word 6 bit 4 & Z122 \\
\hline B7605 & Receive data from the SIMOLINK board, word 6 bit 5 & Z122 \\
\hline B7606 & Receive data from the SIMOLINK board, word 6 bit 6 & Z122 \\
\hline B7607 & Receive data from the SIMOLINK board, word 6 bit 7 & Z122 \\
\hline B7608 & Receive data from the SIMOLINK board, word 6 bit 8 & Z122 \\
\hline B7609 & Receive data from the SIMOLINK board, word 6 bit 9 & Z122 \\
\hline B7610 & Receive data from the SIMOLINK board, word 6 bit 10 & Z122 \\
\hline B7611 & Receive data from the SIMOLINK board, word 6 bit 11 & Z122 \\
\hline B7612 & Receive data from the SIMOLINK board, word 6 bit 12 & Z122 \\
\hline B7613 & Receive data from the SIMOLINK board, word 6 bit 13 & Z122 \\
\hline B7614 & Receive data from the SIMOLINK board, word 6 bit 14 & Z122 \\
\hline B7615 & Receive data from the SIMOLINK board, word 6 bit 15 & Z122 \\
\hline B7700 & Receive data from the SIMOLINK board, word 7 bit 0 & Z122 \\
\hline B7701 & Receive data from the SIMOLINK board, word 7 bit 1 & Z122 \\
\hline B7702 & Receive data from the SIMOLINK board, word 7 bit 2 & Z122 \\
\hline B7703 & Receive data from the SIMOLINK board, word 7 bit 3 & Z122 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Binector & Name, description & Function diag., Sheet \\
\hline B7704 & Receive data from the SIMOLINK board, word 7 bit 4 & Z122 \\
\hline B7705 & Receive data from the SIMOLINK board, word 7 bit 5 & Z122 \\
\hline B7706 & Receive data from the SIMOLINK board, word 7 bit 6 & Z122 \\
\hline B7707 & Receive data from the SIMOLINK board, word 7 bit 7 & Z122 \\
\hline B7708 & Receive data from the SIMOLINK board, word 7 bit 8 & Z122 \\
\hline B7709 & Receive data from the SIMOLINK board, word 7 bit 9 & Z122 \\
\hline B7710 & Receive data from the SIMOLINK board, word 7 bit 10 & Z122 \\
\hline B7711 & Receive data from the SIMOLINK board, word 7 bit 11 & Z122 \\
\hline B7712 & Receive data from the SIMOLINK board, word 7 bit 12 & Z122 \\
\hline B7713 & Receive data from the SIMOLINK board, word 7 bit 13 & Z122 \\
\hline B7714 & Receive data from the SIMOLINK board, word 7 bit 14 & Z122 \\
\hline B7715 & Receive data from the SIMOLINK board, word 7 bit 15 & Z122 \\
\hline B7800 & Receive data from the SIMOLINK board, word 8 bit 0 & Z122 \\
\hline B7801 & Receive data from the SIMOLINK board, word 8 bit 1 & Z122 \\
\hline B7802 & Receive data from the SIMOLINK board, word 8 bit 2 & Z122 \\
\hline B7803 & Receive data from the SIMOLINK board, word 8 bit 3 & Z122 \\
\hline B7804 & Receive data from the SIMOLINK board, word 8 bit 4 & Z122 \\
\hline B7805 & Receive data from the SIMOLINK board, word 8 bit 5 & Z122 \\
\hline B7806 & Receive data from the SIMOLINK board, word 8 bit 6 & Z122 \\
\hline B7807 & Receive data from the SIMOLINK board, word 8 bit 7 & Z122 \\
\hline B7808 & Receive data from the SIMOLINK board, word 8 bit 8 & Z122 \\
\hline B7809 & Receive data from the SIMOLINK board, word 8 bit 9 & Z122 \\
\hline B7810 & Receive data from the SIMOLINK board, word 8 bit 10 & Z122 \\
\hline B7811 & Receive data from the SIMOLINK board, word 8 bit 11 & Z122 \\
\hline B7812 & Receive data from the SIMOLINK board, word 8 bit 12 & Z122 \\
\hline B7813 & Receive data from the SIMOLINK board, word 8 bit 13 & Z122 \\
\hline B7814 & Receive data from the SIMOLINK board, word 8 bit 14 & Z122 \\
\hline B7815 & Receive data from the SIMOLINK board, word 8 bit 15 & Z122 \\
\hline B7900 & Receive data from the SIMOLINK board, word 9 bit 0 & Z122 \\
\hline B7901 & Receive data from the SIMOLINK board, word 9 bit 1 & Z122 \\
\hline B7902 & Receive data from the SIMOLINK board, word 9 bit 2 & Z122 \\
\hline B7903 & Receive data from the SIMOLINK board, word 9 bit 3 & Z122 \\
\hline B7904 & Receive data from the SIMOLINK board, word 9 bit 4 & Z122 \\
\hline B7905 & Receive data from the SIMOLINK board, word 9 bit 5 & Z122 \\
\hline B7906 & Receive data from the SIMOLINK board, word 9 bit 6 & Z122 \\
\hline B7907 & Receive data from the SIMOLINK board, word 9 bit 7 & Z122 \\
\hline B7908 & Receive data from the SIMOLINK board, word 9 bit 8 & Z122 \\
\hline B7909 & Receive data from the SIMOLINK board, word 9 bit 9 & Z122 \\
\hline B7910 & Receive data from the SIMOLINK board, word 9 bit 10 & Z122 \\
\hline B7911 & Receive data from the SIMOLINK board, word 9 bit 11 & Z122 \\
\hline B7912 & Receive data from the SIMOLINK board, word 9 bit 12 & Z122 \\
\hline B7913 & Receive data from the SIMOLINK board, word 9 bit 13 & Z122 \\
\hline B7914 & Receive data from the SIMOLINK board, word 9 bit 14 & Z122 \\
\hline B7915 & Receive data from the SIMOLINK board, word 9 bit 15 & Z122 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Process data exchange with \(\mathbf{2}^{\text {nd }} \mathbf{C B}\) & \multicolumn{1}{l|}{} \\
\hline B8030 & Fault delay timeout for 2 \({ }^{\text {nd }} \mathrm{CB}\) - maintained signal & Z111 \\
\hline B8031 & Fault delay timeout for 2 \({ }^{\text {nd }} \mathrm{CB}-1\) s pulse & Z111 \\
\hline B8035 & Telegram failure timeout for 2 \({ }^{\text {nd }} \mathrm{CB}\) & [ SW 1.9 and later] & Z111 \\
\hline
\end{tabular}

\section*{Process data exchange with \(2^{\text {nd }} \mathbf{C B}\)}
\begin{tabular}{|c|c|c|}
\hline B8100 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 0 & Z111 \\
\hline B8101 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 1 & Z111 \\
\hline B8102 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 2 & Z111 \\
\hline B8103 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 3 & Z111 \\
\hline B8104 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 4 & Z111 \\
\hline B8105 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 5 & Z111 \\
\hline B8106 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 6 & Z111 \\
\hline B8107 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 7 & Z111 \\
\hline B8108 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 8 & Z111 \\
\hline B8109 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 9 & Z111 \\
\hline B8110 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 10 & Z111 \\
\hline B8111 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 11 & Z111 \\
\hline B8112 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 12 & Z111 \\
\hline B8113 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 13 & Z111 \\
\hline B8114 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 14 & Z111 \\
\hline B8115 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 1, bit 15 & Z111 \\
\hline B8200 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 0 & Z111 \\
\hline B8201 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 1 & Z111 \\
\hline B8202 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 2 & Z111 \\
\hline B8203 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 3 & Z111 \\
\hline B8204 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 4 & Z111 \\
\hline B8205 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 5 & Z111 \\
\hline B8206 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 6 & Z111 \\
\hline B8207 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 7 & Z111 \\
\hline B8208 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 8 & Z111 \\
\hline B8209 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 9 & Z111 \\
\hline B8210 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 10 & Z111 \\
\hline B8211 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 11 & Z111 \\
\hline B8212 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 12 & Z111 \\
\hline B8213 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 13 & Z111 \\
\hline B8214 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 14 & Z111 \\
\hline B8215 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 2, bit 15 & Z111 \\
\hline B8300 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3 , bit 0 & Z111 \\
\hline B8301 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3, bit 1 & Z111 \\
\hline B8302 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3, bit 2 & Z111 \\
\hline B8303 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3, bit 3 & Z111 \\
\hline B8304 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3 , bit 4 & Z111 \\
\hline B8305 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3 , bit 5 & Z111 \\
\hline B8306 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3 , bit 6 & Z111 \\
\hline B8307 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3 , bit 7 & Z111 \\
\hline B8308 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3 , bit 8 & Z111 \\
\hline B8309 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3 , bit 9 & Z111 \\
\hline B8310 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3, bit 10 & Z111 \\
\hline B8311 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3, bit 11 & Z111 \\
\hline B8312 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3, bit 12 & Z111 \\
\hline B8313 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3, bit 13 & Z111 \\
\hline B8314 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3, bit 14 & Z111 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Binector & Name, description & Function diag., Sheet \\
\hline B8315 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 3, bit 15 & Z111 \\
\hline B8400 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 0 & Z111 \\
\hline B8401 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 1 & Z111 \\
\hline B8402 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 2 & Z111 \\
\hline B8403 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 3 & Z111 \\
\hline B8404 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 4 & Z111 \\
\hline B8405 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 5 & Z111 \\
\hline B8406 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 6 & Z111 \\
\hline B8407 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 7 & Z111 \\
\hline B8408 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 8 & Z111 \\
\hline B8409 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 9 & Z111 \\
\hline B8410 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 10 & Z111 \\
\hline B8411 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 11 & Z111 \\
\hline B8412 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 12 & Z111 \\
\hline B8413 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 13 & Z111 \\
\hline B8414 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 14 & Z111 \\
\hline B8415 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 4, bit 15 & Z111 \\
\hline B8500 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5 , bit 0 & Z111 \\
\hline B8501 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5 , bit 1 & Z111 \\
\hline B8502 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5, bit 2 & Z111 \\
\hline B8503 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5 , bit 3 & Z111 \\
\hline B8504 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5 , bit 4 & Z111 \\
\hline B8505 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5, bit 5 & Z111 \\
\hline B8506 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5 , bit 6 & Z111 \\
\hline B8507 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5 , bit 7 & Z111 \\
\hline B8508 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5 , bit 8 & Z111 \\
\hline B8509 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5 , bit 9 & Z111 \\
\hline B8510 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5, bit 10 & Z111 \\
\hline B8511 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5 , bit 11 & Z111 \\
\hline B8512 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5, bit 12 & Z111 \\
\hline B8513 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5, bit 13 & Z111 \\
\hline B8514 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5 , bit 14 & Z111 \\
\hline B8515 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 5 , bit 15 & Z111 \\
\hline B8600 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6, bit 0 & Z111 \\
\hline B8601 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6, bit 1 & Z111 \\
\hline B8602 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6, bit 2 & Z111 \\
\hline B8603 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6, bit 3 & Z111 \\
\hline B8604 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6, bit 4 & Z111 \\
\hline B8605 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6, bit 5 & Z111 \\
\hline B8606 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6, bit 6 & Z111 \\
\hline B8607 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6, bit 7 & Z111 \\
\hline B8608 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6 , bit 8 & Z111 \\
\hline B8609 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6, bit 9 & Z111 \\
\hline B8610 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6 , bit 10 & Z111 \\
\hline B8611 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6, bit 11 & Z111 \\
\hline B8612 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6, bit 12 & Z111 \\
\hline B8613 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6, bit 13 & Z111 \\
\hline B8614 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6 , bit 14 & Z111 \\
\hline B8615 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 6, bit 15 & Z111 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Binector & Name, description & Function diag., Sheet \\
\hline B8700 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 0 & Z111 \\
\hline B8701 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 1 & Z111 \\
\hline B8702 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 2 & Z111 \\
\hline B8703 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 3 & Z111 \\
\hline B8704 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 4 & Z111 \\
\hline B8705 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 5 & Z111 \\
\hline B8706 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 6 & Z111 \\
\hline B8707 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 7 & Z111 \\
\hline B8708 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 8 & Z111 \\
\hline B8709 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 9 & Z111 \\
\hline B8710 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 10 & Z111 \\
\hline B8711 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 11 & Z111 \\
\hline B8712 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 12 & Z111 \\
\hline B8713 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 13 & Z111 \\
\hline B8714 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 14 & Z111 \\
\hline B8715 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 7, bit 15 & Z111 \\
\hline B8800 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 0 & Z111 \\
\hline B8801 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 1 & Z111 \\
\hline B8802 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 2 & Z111 \\
\hline B8803 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 3 & Z111 \\
\hline B8804 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 4 & Z111 \\
\hline B8805 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 5 & Z111 \\
\hline B8806 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 6 & Z111 \\
\hline B8807 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 7 & Z111 \\
\hline B8808 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 8 & Z111 \\
\hline B8809 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 9 & Z111 \\
\hline B8810 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 10 & Z111 \\
\hline B8811 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 11 & Z111 \\
\hline B8812 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 12 & Z111 \\
\hline B8813 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 13 & Z111 \\
\hline B8814 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 14 & Z111 \\
\hline B8815 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 8, bit 15 & Z111 \\
\hline B8900 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 0 & Z111 \\
\hline B8901 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 1 & Z111 \\
\hline B8902 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 2 & Z111 \\
\hline B8903 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 3 & Z111 \\
\hline B8904 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 4 & Z111 \\
\hline B8905 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 5 & Z111 \\
\hline B8906 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 6 & Z111 \\
\hline B8907 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 7 & Z111 \\
\hline B8908 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 8 & Z111 \\
\hline B8909 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 9 & Z111 \\
\hline B8910 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 10 & Z111 \\
\hline B8911 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 11 & Z111 \\
\hline B8912 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 12 & Z111 \\
\hline B8913 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 13 & Z111 \\
\hline B8914 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 14 & Z111 \\
\hline B8915 & Receive data from \(2^{\text {nd }} \mathrm{CB}\), word 9, bit 15 & Z111 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3) & \\
\hline B9030 & USS3 / Peer3 - Telegram monitoring timeout - maintained signal & G172, G174 \\
\hline B9031 & USS3 / Peer3 - Telegram monitoring timeout - 1s pulse & G172, G174 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Technology software S00: Voltage monitor for electronics power supply } \\
\hline B9050 & Power ON (100ms pulse on connection of voltage) & B110 \\
\hline B9051 & Power OFF (10ms pulse on disconnection of voltage) & B110 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Technology software S00: Connector/binector converters} \\
\hline B9052 & Connector/binector converter 1, bit 0 & FB 10 & B120 \\
\hline B9053 & Connector/binector converter 1, bit 1 & FB 10 & B120 \\
\hline B9054 & Connector/binector converter 1, bit 2 & FB 10 & B120 \\
\hline B9055 & Connector/binector converter 1, bit 3 & FB 10 & B120 \\
\hline B9056 & Connector/binector converter 1, bit 4 & FB 10 & B120 \\
\hline B9057 & Connector/binector converter 1, bit 5 & FB 10 & B120 \\
\hline B9058 & Connector/binector converter 1, bit 6 & FB 10 & B120 \\
\hline B9059 & Connector/binector converter 1, bit 7 & FB 10 & B120 \\
\hline B9060 & Connector/binector converter 1, bit 8 & FB 10 & B120 \\
\hline B9061 & Connector/binector converter 1, bit 9 & FB 10 & B120 \\
\hline B9062 & Connector/binector converter 1, bit 10 & FB 10 & B120 \\
\hline B9063 & Connector/binector converter 1, bit 11 & FB 10 & B120 \\
\hline B9064 & Connector/binector converter 1, bit 12 & FB 10 & B120 \\
\hline B9065 & Connector/binector converter 1, bit 13 & FB 10 & B120 \\
\hline B9066 & Connector/binector converter 1, bit 14 & FB 10 & B120 \\
\hline B9067 & Connector/binector converter 1, bit 15 & FB 10 & B120 \\
\hline B9068 & Connector/binector converter 2, bit 0 & FB 11 & B120 \\
\hline B9069 & Connector/binector converter 2, bit 1 & FB 11 & B120 \\
\hline B9070 & Connector/binector converter 2, bit 2 & FB 11 & B120 \\
\hline B9071 & Connector/binector converter 2, bit 3 & FB 11 & B120 \\
\hline B9072 & Connector/binector converter 2, bit 4 & FB 11 & B120 \\
\hline B9073 & Connector/binector converter 2, bit 5 & FB 11 & B120 \\
\hline B9074 & Connector/binector converter 2, bit 6 & FB 11 & B120 \\
\hline B9075 & Connector/binector converter 2, bit 7 & FB 11 & B120 \\
\hline B9076 & Connector/binector converter 2, bit 8 & FB 11 & B120 \\
\hline B9077 & Connector/binector converter 2, bit 9 & FB 11 & B120 \\
\hline B9078 & Connector/binector converter 2, bit 10 & FB 11 & B120 \\
\hline B9079 & Connector/binector converter 2, bit 11 & FB 11 & B120 \\
\hline B9080 & Connector/binector converter 2, bit 12 & FB 11 & B120 \\
\hline B9081 & Connector/binector converter 2, bit 13 & FB 11 & B120 \\
\hline B9082 & Connector/binector converter 2, bit 14 & FB 11 & B120 \\
\hline B9083 & Connector/binector converter 2, bit 15 & FB 11 & B120 \\
\hline B9084 & Connector/binector converter 3, bit 0 & FB 12 & B120 \\
\hline B9085 & Connector/binector converter 3, bit 1 & FB 12 & B120 \\
\hline B9086 & Connector/binector converter 3, bit 2 & FB 12 & B120 \\
\hline B9087 & Connector/binector converter 3, bit 3 & FB 12 & B120 \\
\hline B9088 & Connector/binector converter 3, bit 4 & FB 12 & B120 \\
\hline B9089 & Connector/binector converter 3, bit 5 & FB 12 & B120 \\
\hline B9090 & Connector/binector converter 3, bit 6 & FB 12 & B120 \\
\hline B9091 & Connector/binector converter 3, bit 7 & FB 12 & B120 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline B9092 & Connector/binector converter 3, bit 8 & FB 12 \\
B120 \\
\hline B9093 & Connector/binector converter 3, bit 9 & FB 12 \\
\hline B120 \\
\hline B9094 & Connector/binector converter 3, bit 10 & FB 12 \\
\hline B120 \\
\hline B9095 & Connector/binector converter 3, bit 11 & FB 12 \\
B120 \\
\hline B9097 & Connector/binector converter 3, bit 12 & Connector/binector converter 3, bit 13 \\
\hline B9098 & Connector/binector converter 3, bit 14 & FB 12
\end{tabular} B120 \begin{tabular}{lll|}
\hline B9099 & Connector/binector converter 3, bit 15 & FB \\
\hline
\end{tabular}

\section*{Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3)}
\begin{tabular}{|l|l|l|}
\hline B9100 & USS3 / Peer3 receive data, word 1, bit 0 & G172, G174 \\
\hline B9101 & USS3 / Peer3 receive data, word 1, bit 1 & G172, G174 \\
\hline B9102 & USS3 / Peer3 receive data, word 1, bit 2 & G172, G174 \\
\hline B9103 & USS3 / Peer3 receive data, word 1, bit 3 & G172, G174 \\
\hline B9104 & USS3 / Peer3 receive data, word 1, bit 4 & G172, G174 \\
\hline B9105 & USS3 / Peer3 receive data, word 1, bit 5 & G172, G174 \\
\hline B9106 & USS3 / Peer3 receive data, word 1, bit 6 & G172, G174 \\
\hline B9107 & USS3 / Peer3 receive data, word 1, bit 7 & G172, G174 \\
\hline B9108 & USS3 / Peer3 receive data, word 1, bit 8 & G172, G174 \\
\hline B9109 & USS3 / Peer3 receive data, word 1, bit 9 & G172, G174 \\
\hline B9110 & USS3 / Peer3 receive data, word 1, bit 10 & G172, G174 \\
\hline B9111 & USS3 / Peer3 receive data, word 1, bit 11 & G172, G174 \\
\hline B9112 & USS3 / Peer3 receive data, word 1, bit 12 & G172, G174 \\
\hline B9113 & USS3 / Peer3 receive data, word 1, bit 13 & G172, G174 \\
\hline B9114 & USS3 / Peer3 receive data, word 1, bit 14 & G172, G174 \\
\hline B9115 & USS3 / Peer3 receive data, word 1, bit 15 & G172, G174 \\
\hline
\end{tabular}

\section*{Technology software S00: Limiters}
\begin{tabular}{|c|c|c|c|c|}
\hline B9150 & Limiter 1: Positive limitation has responded & & FB 65 & B135 \\
\hline B9151 & Limiter 1: Negative limitation has responded & & FB 65 & B135 \\
\hline B9152 & Limiter 2: Positive limitation has responded & & FB66 & B135 \\
\hline B9153 & Limiter 2: Negative limitation has responded & & FB66 & B135 \\
\hline B9154 & Limiter 3: Positive limitation has responded & & FB 67 & B135 \\
\hline B9155 & Limiter 3: Negative limitation has responded & & FB 67 & B135 \\
\hline B9156 & Limiter 4: Positive limitation has responded & [ SW 2.0 and later] & FB 212 & B134 \\
\hline B9157 & Limiter 4: Negative limitation has responded & [ SW 2.0 and later] & FB 212 & B134 \\
\hline B9158 & Limiter 5: Positive limitation has responded & [ SW 2.0 and later] & FB 213 & 3 B134 \\
\hline B9159 & Limiter 5: Negative limitation has responded & [ SW 2.0 and later] & FB 213 & B134 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Technology software S00: Limit-value monitor with filter} \\
\hline B9160 & Limit-value monitor with filter 1: \(\mathrm{A} \mid<\mathrm{B}\) has responded & FB & B136 \\
\hline B9161 & Limit-value monitor with filter 1: \(\mathrm{A}<\mathrm{B}\) has responded & FB 70 & B136 \\
\hline B9162 & Limit-value monitor with filter 1: \(\mathrm{A}=\mathrm{B}\) has responded & FB 70 & B136 \\
\hline B9163 & Limit-value monitor with filter 2: \(|\mathrm{A}|<\mathrm{B}\) has responded & FB & B136 \\
\hline B9164 & Limit-value monitor with filter 2: \(\mathrm{A}<\mathrm{B}\) has responded & FB 71 & B136 \\
\hline B9165 & Limit-value monitor with filter 2: \(\mathrm{A}=\mathrm{B}\) has responded & FB 71 & B136 \\
\hline B9166 & Limit-value monitor with filter 3: \(|A|<B\) has responded & & B136 \\
\hline B9167 & Limit-value monitor with filter 3: \(\mathrm{A}<\mathrm{B}\) has responded & FB 72 & B136 \\
\hline B9168 & Limit-value monitor with filter 3: \(\mathrm{A}=\mathrm{B}\) has responded & FB 72 & B136 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Technology software S00: Limit-value monitor without filter} \\
\hline B9169 & Limit-value monitor without filter 1:| \(\mathrm{A} \mid<\mathrm{B}\) has responded & FB & 3 B 137 \\
\hline B9170 & Limit-value monitor without filter 1: \(\mathrm{A}<\mathrm{B}\) has responded & FB 73 & B137 \\
\hline B9171 & Limit-value monitor without filter 1: \(\mathrm{A}=\mathrm{B}\) has responded & FB 73 & B137 \\
\hline B9172 & Limit-value monitor without filter 2: \(|\mathrm{A}|<\mathrm{B}\) has responded & FB & 4 B137 \\
\hline B9173 & Limit-value monitor without filter 2: A < B has responded & FB 74 & B137 \\
\hline B9174 & Limit-value monitor without filter 2: \(\mathrm{A}=\mathrm{B}\) has responded & FB 74 & B137 \\
\hline B9175 & Limit-value monitor without filter 3: \(|\mathrm{A}|<\mathrm{B}\) has responded & FB & 5 B137 \\
\hline B9176 & Limit-value monitor without filter 3: A < B has responded & FB 75 & B137 \\
\hline B9177 & Limit-value monitor without filter 3: \(\mathrm{A}=\mathrm{B}\) has responded & FB 75 & B137 \\
\hline B9178 & Limit-value monitor without filter 4: \(|A|<B\) has responded & FB & 6 B137 \\
\hline B9179 & Limit-value monitor without filter 4: A < B has responded & FB 76 & B137 \\
\hline B9180 & Limit-value monitor without filter 4: \(\mathrm{A}=\mathrm{B}\) has responded & FB 76 & B137 \\
\hline B9181 & Limit-value monitor without filter 5: \(|\mathrm{A}|<\mathrm{B}\) has responded & FB & 7 B 138 \\
\hline B9182 & Limit-value monitor without filter 5: A < B has responded & FB 77 & B138 \\
\hline B9183 & Limit-value monitor without filter 5: \(\mathrm{A}=\mathrm{B}\) has responded & FB 77 & B138 \\
\hline B9184 & Limit-value monitor without filter 6: \(\mathrm{A} \mid<\mathrm{B}\) has responded & FB & 8 B138 \\
\hline B9185 & Limit-value monitor without filter 6: A < B has responded & FB 78 & B138 \\
\hline B9186 & Limit-value monitor without filter 6: \(\mathrm{A}=\mathrm{B}\) has responded & FB 78 & B138 \\
\hline B9187 & Limit-value monitor without filter 7: \(|\mathrm{A}|<\mathrm{B}\) has responded & FB & 9 B138 \\
\hline B9188 & Limit-value monitor without filter 7: A < B has responded & FB 79 & B138 \\
\hline B9189 & Limit-value monitor without filter 7: \(\mathrm{A}=\mathrm{B}\) has responded & FB 79 & B138 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|}
\hline \multicolumn{8}{|l|}{ Technology software S00: Simple ramp-function generator } \\
\hline B9190 & Ramp-function generator output = ramp-function generator input \((y=x)\) & FB 113 & B165 \\
\hline B9191 & \(0=\) ramp-function generator initial run & FB 113 & B165 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|}
\hline \multicolumn{8}{|l|}{ Technology software S00: EXCLUSIVE OR elements with 2 inputs each } \\
\hline B9195 & Output of EXCLUSIVE OR element 1 & FB 170 & B206 \\
\hline B9196 & Output of EXCLUSIVE OR element 2 & FB 171 & B206 \\
\hline B9197 & Output of EXCLUSIVE OR element 3 & FB 172 & B206 \\
\hline B9198 & Output of EXCLUSIVE OR element 4 & FB 173 & B206 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3) & \\
\hline B9200 & USS3 / Peer3 receive data, word 2, bit 0 & G172, G174 \\
\hline B9201 & USS3 / Peer3 receive data, word 2, bit 1 & G172, G174 \\
\hline B9202 & USS3 / Peer3 receive data, word 2, bit 2 & G172, G174 \\
\hline B9203 & USS3 / Peer3 receive data, word 2, bit 3 & G172, G174 \\
\hline B9204 & USS3 / Peer3 receive data, word 2, bit 4 & G172, G174 \\
\hline B9205 & USS3 / Peer3 receive data, word 2, bit 5 & G172, G174 \\
\hline B9206 & USS3 / Peer3 receive data, word 2, bit 6 & G172, G174 \\
\hline B9207 & USS3 / Peer3 receive data, word 2, bit 7 & G172, G174 \\
\hline B9208 & USS3 / Peer3 receive data, word 2, bit 8 & G172, G174 \\
\hline B9209 & USS3 / Peer3 receive data, word 2, bit 9 & G172, G174 \\
\hline B9210 & USS3 / Peer3 receive data, word 2, bit 10 & G172, G174 \\
\hline B9211 & USS3 / Peer3 receive data, word 2, bit 11 & G172, G174 \\
\hline B9212 & USS3 / Peer3 receive data, word 2, bit 12 & G172, G174 \\
\hline B9213 & USS3 / Peer3 receive data, word 2, bit 13 & G172, G174 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline B9214 & USS3 / Peer3 receive data, word 2, bit 14 & G172, G174 \\
\hline B9215 & USS3 / Peer3 receive data, word 2, bit 15 & G172, G174 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{7}{|l|}{ Technology software S00: Decoders / demultiplexers, binary to 1 of 8 } & \\
\hline B9250 & Decoder / demultiplexer 1: Q0 & FB 118 & B200 \\
\hline B9251 & Decoder / demultiplexer 1: Q1 & FB 118 & B200 \\
\hline B9252 & Decoder / demultiplexer 1: Q2 & FB 118 & B200 \\
\hline B9253 & Decoder / demultiplexer 1: Q3 & FB 118 & B200 \\
\hline B9254 & Decoder / demultiplexer 1: Q4 & FB 118 & B200 \\
\hline B9255 & Decoder / demultiplexer 1: Q5 & FB 118 & B200 \\
\hline B9256 & Decoder / demultiplexer 1: Q6 & FB 118 & B200 \\
\hline B9257 & Decoder / demultiplexer 1: Q7 & FB 118 & B200 \\
\hline B9260 & Decoder / demultiplexer 1: /Q0 & FB 118 & B200 \\
\hline B9261 & Decoder / demultiplexer 1: /Q1 & FB 118 & B200 \\
\hline B9262 & Decoder / demultiplexer 1: /Q2 & FB 118 & B200 \\
\hline B9263 & Decoder / demultiplexer 1: /Q3 & FB 118 & B200 \\
\hline B9264 & Decoder / demultiplexer 1: /Q4 & FB 118 & B200 \\
\hline B9265 & Decoder / demultiplexer 1: /Q5 & FB 118 & B200 \\
\hline B9266 & Decoder / demultiplexer 1: /Q6 & FB 118 & B200 \\
\hline B9267 & Decoder / demultiplexer 1: /Q7 & FB 118 & B200 \\
\hline B9270 & Decoder / demultiplexer 2: Q0 & FB 119 & B200 \\
\hline B9271 & Decoder / demultiplexer 2: Q1 & FB 119 & B200 \\
\hline B9272 & Decoder / demultiplexer 2: Q2 & FB 119 & B200 \\
\hline B9273 & Decoder / demultiplexer 2: Q3 & FB 119 & B200 \\
\hline B9274 & Decoder / demultiplexer 2: Q4 & FB 119 & B200 \\
\hline B9275 & Decoder / demultiplexer 2: Q5 & FB 119 & B200 \\
\hline B9276 & Decoder / demultiplexer 2: Q6 & FB 119 & B200 \\
\hline B9277 & Decoder / demultiplexer 2: Q7 & FB 119 & B200 \\
\hline B9280 & Decoder / demultiplexer 2: /Q0 & FB 119 & B200 \\
\hline B9281 & Decoder / demultiplexer 2: /Q1 & FB 119 & B200 \\
\hline B9282 & Decoder / demultiplexer 2: /Q2 & FB 119 & B200 \\
\hline B9283 & Decoder / demultiplexer 2: /Q3 & FB 119 & B200 \\
\hline B9284 & Decoder / demultiplexer 2: /Q4 & FB 119 & B200 \\
\hline B9285 & Decoder / demultiplexer 2: /Q5 & FB 119 & B200 \\
\hline B9286 & Decoder / demultiplexer 2: /Q6 & FB 119 & B200 \\
\hline B9287 & Decoder / demultiplexer 2: /Q7 & FB 119 & B200 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{S00 technology software: Software counter} \\
\hline B9290 & Output overflow software counter & [ SW 1.9 and later] & FB 89 & B196 \\
\hline B9291 & Output underflow software counter & [ SW 1.9 and later] & FB 89 & B196 \\
\hline
\end{tabular}
\begin{tabular}{|l|lllll|}
\hline \multicolumn{8}{|l|}{ Technology software S00: Limiters } \\
\hline B9295 & Limiter 6: Positive limitation has responded & [ SW 2.0 and later] & FB 214 & B134 \\
\hline B9296 & Limiter 6: Negative limitation has responded & [ SW 2.0 and later] & FB 214 & B134 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3) } \\
\hline B9300 & USS3 / Peer3 receive data, word 3, bit 0 & G172, G174 \\
\hline B9301 & USS3 / Peer3 receive data, word 3, bit 1 & G172, G174 \\
\hline B9302 & USS3 / Peer3 receive data, word 3, bit 2 & G172, G174 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline B9303 & USS3 / Peer3 receive data, word 3, bit 3 & G172, G174 \\
\hline B9304 & USS3 / Peer3 receive data, word 3, bit 4 & G172, G174 \\
\hline B9305 & USS3 / Peer3 receive data, word 3, bit 5 & G172, G174 \\
\hline B9306 & USS3 / Peer3 receive data, word 3, bit 6 & G172, G174 \\
\hline B9307 & USS3 / Peer3 receive data, word 3, bit 7 & G172, G174 \\
\hline B9308 & USS3 / Peer3 receive data, word 3, bit 8 & G172, G174 \\
\hline B9309 & USS3 / Peer3 receive data, word 3, bit 9 & G172, G174 \\
\hline B9310 & USS3 / Peer3 receive data, word 3, bit 10 & G172, G174 \\
\hline B9311 & USS3 / Peer3 receive data, word 3, bit 11 & G172, G174 \\
\hline B9312 & USS3 / Peer3 receive data, word 3, bit 12 & G172, G174 \\
\hline B9313 & USS3 / Peer3 receive data, word 3, bit 13 & G172, G174 \\
\hline B9314 & USS3 / Peer3 receive data, word 3, bit 14 & G172, G174 \\
\hline B9315 & USS3 / Peer3 receive data, word 3, bit 15 & G172, G174 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Technology software S00: AND elements with 3 inputs each} \\
\hline B9350 & Output of AND element 1 & FB 120 & B205 \\
\hline B9351 & Output of AND element 2 & FB 121 & B205 \\
\hline B9352 & Output of AND element 3 & FB 122 & B205 \\
\hline B9353 & Output of AND element 4 & FB 123 & B205 \\
\hline B9354 & Output of AND element 5 & FB 124 & B205 \\
\hline B9355 & Output of AND element 6 & FB 125 & B205 \\
\hline B9356 & Output of AND element 7 & FB 126 & B205 \\
\hline B9357 & Output of AND element 8 & FB 127 & B205 \\
\hline B9358 & Output of AND element 9 & FB 128 & B205 \\
\hline B9359 & Output of AND element 10 & FB 129 & B205 \\
\hline B9360 & Output of AND element 11 & FB 130 & B205 \\
\hline B9361 & Output of AND element 12 & FB 131 & B205 \\
\hline B9362 & Output of AND element 13 & FB 132 & B205 \\
\hline B9363 & Output of AND element 14 & FB 133 & B205 \\
\hline B9364 & Output of AND element 15 & FB 134 & B205 \\
\hline B9365 & Output of AND element 16 & FB 135 & B205 \\
\hline B9366 & Output of AND element 17 & FB 136 & B205 \\
\hline B9367 & Output of AND element 18 & FB 137 & B205 \\
\hline B9368 & Output of AND element 19 & FB 138 & B205 \\
\hline B9369 & Output of AND element 20 & FB 139 & B205 \\
\hline B9370 & Output of AND element 21 & FB 140 & B205 \\
\hline B9371 & Output of AND element 22 & FB 141 & B205 \\
\hline B9372 & Output of AND element 23 & FB 142 & B205 \\
\hline B9373 & Output of AND element 24 & FB 143 & B205 \\
\hline B9374 & Output of AND element 25 & FB 144 & B205 \\
\hline B9375 & Output of AND element 26 & FB 145 & B205 \\
\hline B9376 & Output of AND element 27 & FB 146 & B205 \\
\hline B9377 & Output of AND element 28 & FB 147 & B205 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|l|}{ Technology software S00: OR elements with 3 inputs each } \\
\hline B9380 & Output of OR element 1 & FB 150 & B206 \\
\hline B9381 & Output of OR element 2 & FB 151 & B206 \\
\hline B9382 & Output of OR element 3 & FB 152 & B206 \\
\hline B9383 & Output of OR element 4 & FB 153 & B206 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Binector & Name, description & & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline B9384 & Output of OR element 5 & FB 154 & B206 \\
\hline B9385 & Output of OR element 6 & FB 155 & B206 \\
\hline B9386 & Output of OR element 7 & FB 156 & B206 \\
\hline B9387 & Output of OR element 8 & FB 157 & B206 \\
\hline B9388 & Output of OR element 9 & FB 158 & B206 \\
\hline B9389 & Output of OR element 10 & FB 159 & B206 \\
\hline B9390 & Output of OR element 11 & FB 160 & B206 \\
\hline B9391 & Output of OR element 12 & FB 161 & B206 \\
\hline B9392 & Output of OR element 13 & FB 162 & B206 \\
\hline B9393 & Output of OR element 14 & FB 163 & B206 \\
\hline B9394 & Output of OR element 15 & FB 164 & B206 \\
\hline B9395 & Output of OR element 16 & FB 165 & B206 \\
\hline B9396 & Output of OR element 17 & FB 166 & B206 \\
\hline B9397 & Output of OR element 18 & FB 167 & B206 \\
\hline B9398 & Output of OR element 19 & FB 168 & B206 \\
\hline B9399 & Output of OR element 20 & FB 169 & B206 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3) } \\
\hline B9400 & USS3 / Peer3 receive data, word 4, bit 0 & G172, G174 \\
\hline B9401 & USS3 / Peer3 receive data, word 4, bit 1 & G172, G174 \\
\hline B9402 & USS3 / Peer3 receive data, word 4, bit 2 & G172, G174 \\
\hline B9403 & USS3 / Peer3 receive data, word 4, bit 3 & G172, G174 \\
\hline B9404 & USS3 / Peer3 receive data, word 4, bit 4 & G172, G174 \\
\hline B9405 & USS3 / Peer3 receive data, word 4, bit 5 & G172, G174 \\
\hline B9406 & USS3 / Peer3 receive data, word 4, bit 6 & G172, G174 \\
\hline B9407 & USS3 / Peer3 receive data, word 4, bit 7 & G172, G174 \\
\hline B9408 & USS3 / Peer3 receive data, word 4, bit 8 & G172, G174 \\
\hline B9409 & USS3 / Peer3 receive data, word 4, bit 9 & G172, G174 \\
\hline B9410 & USS3 / Peer3 receive data, word 4, bit 10 & G172, G174 \\
\hline B9411 & USS3 / Peer3 receive data, word 4, bit 11 & G172, G174 \\
\hline B9412 & USS3 / Peer3 receive data, word 4, bit 12 & G172, G174 \\
\hline B9413 & USS3 / Peer3 receive data, word 4, bit 13 & G172, G174 \\
\hline B9414 & USS3 / Peer3 receive data, word 4, bit 14 & G172, G174 \\
\hline B9415 & USS3 / Peer3 receive data, word 4, bit 15 & G172, G174 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|}
\hline \multicolumn{7}{|l|}{ Technology software S00: Inverters } & \\
\hline B9450 & Output of inverter 1 & FB 180 & B207 \\
\hline B9451 & Output of inverter 2 & FB 181 & B207 \\
\hline B9452 & Output of inverter 3 & FB 182 & B207 \\
\hline B9453 & Output of inverter 4 & FB 183 & B207 \\
\hline B9454 & Output of inverter 5 & FB 184 & B207 \\
\hline B9455 & Output of inverter 6 & FB 185 & B207 \\
\hline B9456 & Output of inverter 7 & FB 186 & B207 \\
\hline B9457 & Output of inverter 8 & FB 187 & B207 \\
\hline B9458 & Output of inverter 9 & FB 188 & B207 \\
\hline B9459 & Output of inverter 10 & FB 189 & B207 \\
\hline B9460 & Output of inverter 11 & FB 190 & B207 \\
\hline B9461 & Output of inverter 12 & FB 191 & B207 \\
\hline B9462 & Output of inverter 13 & FB 192 & B207 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Binector & Name, description & FB 193 & B207 \\
diag., Sheet
\end{tabular}\(|\)\begin{tabular}{llll|}
\hline B9463 & Output of inverter 14 & FB 194 & B207 \\
\hline B9464 & Output of inverter 15 & FB 195 & B207 \\
\hline B9465 & Output of inverter 16 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{7}{|l|}{ Technology software S00: NAND elements with 3 inputs each } & \\
\hline B9470 & Output of NAND element 1 & FB 200 & B207 \\
\hline B9471 & Output of NAND element 2 & FB 201 & B207 \\
\hline B9472 & Output of NAND element 3 & FB 202 & B207 \\
\hline B9473 & Output of NAND element 4 & FB 203 & B207 \\
\hline B9474 & Output of NAND element 5 & FB 204 & B207 \\
\hline B9475 & Output of NAND element 6 & FB 205 & B207 \\
\hline B9476 & Output of NAND element 7 & FB 206 & B207 \\
\hline B9477 & Output of NAND element 8 & FB 207 & B207 \\
\hline B9478 & Output of NAND element 9 & FB 208 & B207 \\
\hline B9479 & Output of NAND element 10 & FB 209 & B207 \\
\hline B9480 & Output of NAND element 11 & FB 210 & B207 \\
\hline B9481 & Output of NAND element 12 & FB 211 & B207 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|}
\hline Technology software S00: Binary signal selector switches & \multicolumn{2}{l|}{} \\
\hline B9482 & Output of binary signal selector switch 1 & FB 250 & B216 \\
\hline B9483 & Output of binary signal selector switch 2 & FB 251 & B216 \\
\hline B9484 & Output of binary signal selector switch 3 & FB 252 & B216 \\
\hline B9485 & Output of binary signal selector switch 4 & FB 253 & B216 \\
\hline B9486 & Output of binary signal selector switch 5 & FB 254 & B216 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{7}{|l|}{ Technology software S00: D flipflops } & \\
\hline B9490 & D flipflop 1: Output Q & FB 230 & B211 \\
\hline B9491 & D flipflop 1: Output /Q & FB 230 & B211 \\
\hline B9492 & D flipflop 2: Output Q & FB 231 & B211 \\
\hline B9493 & D flipflop 2: Output /Q & FB 231 & B211 \\
\hline B9494 & D flipflop 3: Output Q & FB 232 & B211 \\
\hline B9495 & D flipflop 3: Output /Q & FB 232 & B211 \\
\hline B9496 & D flipflop 4: Output Q & FB 233 & B211 \\
\hline B9497 & D flipflop 4: Output /Q & FB 233 & B211 \\
\hline
\end{tabular}
\begin{tabular}{|l|llll|l|}
\hline Technology software S00: Technology controller & \\
\hline B9499 & Ramp-function generator output \(=\) ramp-function generator input \((y=x)\) & FB 113 & B170 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3) & \\
\hline B9500 & USS3 / Peer3 receive data, word 5, bit 0 & G172, G174 \\
\hline B9501 & USS3 / Peer3 receive data, word 5, bit 1 & G172, G174 \\
\hline B9502 & USS3 / Peer3 receive data, word 5, bit 2 & G172, G174 \\
\hline B9503 & USS3 / Peer3 receive data, word 5, bit 3 & G172, G174 \\
\hline B9504 & USS3 / Peer3 receive data, word 5, bit 4 & G172, G174 \\
\hline B9505 & USS3 / Peer3 receive data, word 5, bit 5 & G172, G174 \\
\hline B9506 & USS3 / Peer3 receive data, word 5, bit 6 & G172, G174 \\
\hline B9507 & USS3 / Peer3 receive data, word 5, bit 7 & G172, G174 \\
\hline B9508 & USS3 / Peer3 receive data, word 5, bit 8 & G172, G174 \\
\hline B9509 & USS3 / Peer3 receive data, word 5, bit 9 & G172, G174 \\
\hline B9510 & USS3 / Peer3 receive data, word 5, bit 10 & G172, G174 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline B9511 & USS3 / Peer3 receive data, word 5, bit 11 & G172, G174 \\
\hline B9512 & USS3 / Peer3 receive data, word 5, bit 12 & G172, G174 \\
\hline B9513 & USS3 / Peer3 receive data, word 5, bit 13 & G172, G174 \\
\hline B9514 & USS3 / Peer3 receive data, word 5, bit 14 & G172, G174 \\
\hline B9515 & USS3 / Peer3 receive data, word 5, bit 15 & G172, G174 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Technology software S00: RS flipflops} \\
\hline B9550 & RS flipflop 1: Output Q & FB 215 & B210 \\
\hline B9551 & RS flipflop 1: Output /Q & FB 215 & B210 \\
\hline B9552 & RS flipflop 2: Output Q & FB 216 & B210 \\
\hline B9553 & RS flipflop 2: Output /Q & FB 216 & B210 \\
\hline B9554 & RS flipflop 3: Output Q & FB 217 & B210 \\
\hline B9555 & RS flipflop 3: Output /Q & FB 217 & B210 \\
\hline B9556 & RS flipflop 4: Output Q & FB 218 & B210 \\
\hline B9557 & RS flipflop 4: Output /Q & FB 218 & B210 \\
\hline B9558 & RS flipflop 5: Output Q & FB 219 & B210 \\
\hline B9559 & RS flipflop 5: Output /Q & FB 219 & B210 \\
\hline B9560 & RS flipflop 6: Output Q & FB 220 & B210 \\
\hline B9561 & RS flipflop 6: Output /Q & FB 220 & B210 \\
\hline B9562 & RS flipflop 7: Output Q & FB 221 & B210 \\
\hline B9563 & RS flipflop 7: Output /Q & FB 221 & B210 \\
\hline B9564 & RS flipflop 8: Output Q & FB 222 & B210 \\
\hline B9565 & RS flipflop 8: Output /Q & FB 222 & B210 \\
\hline B9566 & RS flipflop 9: Output Q & FB 223 & B210 \\
\hline B9567 & RS flipflop 9: Output /Q & FB 223 & B210 \\
\hline B9568 & RS flipflop 10: Output Q & FB 224 & B210 \\
\hline B9569 & RS flipflop 10: Output /Q & FB 224 & B210 \\
\hline B9570 & RS flipflop 11: Output Q & FB 225 & B210 \\
\hline B9571 & RS flipflop 11: Output /Q & FB 225 & B210 \\
\hline B9572 & RS flipflop 12: Output Q & FB 226 & B210 \\
\hline B9573 & RS flipflop 12: Output /Q & FB 226 & B210 \\
\hline B9574 & RS flipflop 13: Output Q & FB 227 & B210 \\
\hline B9575 & RS flipflop 13: Output /Q & FB 227 & B210 \\
\hline B9576 & RS flipflop 14: Output Q & FB 228 & B210 \\
\hline B9577 & RS flipflop 14: Output /Q & FB 228 & B210 \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|}
\hline \multicolumn{3}{|l|}{ Technology software S00: Timers } & \\
\hline B9580 & Timer 1: Output & FB 240 & B215 \\
\hline B9581 & Timer 1: Output inverted & FB 240 & B215 \\
\hline B9582 & Timer 2: Output & FB 241 & B215 \\
\hline B9583 & Timer 2: Output inverted & FB 241 & B215 \\
\hline B9584 & Timer 3: Output & FB 242 & B215 \\
\hline B9585 & Timer 3: Output inverted & FB 242 & B215 \\
\hline B9586 & Timer 4: Output & FB 243 & B215 \\
\hline B9587 & Timer 4: Output inverted & FB 243 & B215 \\
\hline B9588 & Timer 5: Output & FB 244 & B215 \\
\hline B9589 & Timer 5: Output inverted & FB 244 & B215 \\
\hline B9590 & Timer 6: Output & FB 245 & B215 \\
\hline B9591 & Timer 6: Output inverted & FB 245 & B215 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Binector & Name, description & & Function diag., Sheet \\
\hline B9592 & Timer 7: Output & FB 246 & B216 \\
\hline B9593 & Timer 7: Output inverted & FB 246 & B216 \\
\hline B9594 & Timer 8: Output & FB 247 & B216 \\
\hline B9595 & Timer 8: Output inverted & FB 247 & B216 \\
\hline B9596 & Timer 9: Output & FB 248 & B216 \\
\hline B9597 & Timer 9: Output inverted & FB 248 & B216 \\
\hline B9598 & Timer 10: Output & FB 249 & B216 \\
\hline B9599 & Timer 10: Output inverted & FB 249 & B216 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|l|}{ Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3) } & \\
\hline B9600 & USS3 receive data, word 6, bit 0 & G172 \\
\hline B9601 & USS3 receive data, word 6, bit 1 & G172 \\
\hline B9602 & USS3 receive data, word 6, bit 2 & G172 \\
\hline B9603 & USS3 receive data, word 6, bit 3 & G172 \\
\hline B9604 & USS3 receive data, word 6, bit 4 & G172 \\
\hline B9605 & USS3 receive data, word 6, bit 5 & G172 \\
\hline B9606 & USS3 receive data, word 6, bit 6 & G172 \\
\hline B9607 & USS3 receive data, word 6, bit 7 & G172 \\
\hline B9608 & USS3 receive data, word 6, bit 8 & G172 \\
\hline B9609 & USS3 receive data, word 6, bit 9 & G172 \\
\hline B9610 & USS3 receive data, word 6, bit 10 & G172 \\
\hline B9611 & USS3 receive data, word 6, bit 11 & G172 \\
\hline B9612 & USS3 receive data, word 6, bit 12 & G172 \\
\hline B9613 & USS3 receive data, word 6, bit 13 & G172 \\
\hline B9614 & USS3 receive data, word 6, bit 14 & G172 \\
\hline B9615 & USS3 receive data, word 6, bit 15 & G172 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|l|}{ Technology software S00: PI controller } & [ SW 1.8 and later] \\
\hline B9650 & PI controller 1: Controller at output limitation & FB 260 & B180 \\
\hline B9652 & PI controller 3: Controller at output limitation & FB 262 & B182 \\
\hline B9653 & PI controller 4: Controller at output limitation & FB 263 & B183 \\
\hline B9654 & PI controller 5: Controller at output limitation & FB 264 & B184 \\
\hline B9655 & PI controller 6: Controller at output limitation & FB 265 & B185 \\
\hline B9656 & PI controller 7: Controller at output limitation & FB 266 & B186 \\
\hline B9657 & PI controller 8: Controller at output limitation & FB 267 & B187 \\
\hline B9658 & PI controller 9: Controller at output limitation & FB 268 & B188 \\
\hline B9659 & PI controller 10: Controller at output limitation & FB 269 & B189 \\
\hline B9660 & PI controller 1: Controller at positive output limitation & FB 260 & B180 \\
\hline B9661 & PI controller 2: Controller at positive output limitation & FB 261 & B181 \\
\hline B9662 & PI controller 3: Controller at positive output limitation & FB 262 & B182 \\
\hline B9663 & PI controller 4: Controller at positive output limitation & FB 263 & B183 \\
\hline B9664 & PI controller 5: Controller at positive output limitation & FB 264 & B184 \\
\hline B9665 & PI controller 6: Controller at positive output limitation & FB 265 & B185 \\
\hline B9666 & PI controller 7: Controller at positive output limitation & FB 266 & B186 \\
\hline B9667 & PI controller 8: Controller at positive output limitation & FB 267 & B187 \\
\hline B9668 & PI controller 9: Controller at positive output limitation & FB 268 & B188 \\
\hline B9669 & PI controller 10: Controller at positive output limitation & FB 269 & B189 \\
\hline B9670 & PI controller 1: Controller at negative output limitation & FB 260 & B180 \\
\hline B9671 & PI controller 2: Controller at negative output limitation & FB 261 & B181 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Binector & Name, description & & Function diag., Sheet \\
\hline B9672 & PI controller 3: Controller at negative output limitation & FB 262 & B182 \\
\hline B9673 & PI controller 4: Controller at negative output limitation & FB 263 & B183 \\
\hline B9674 & PI controller 5: Controller at negative output limitation & FB 264 & B184 \\
\hline B9675 & PI controller 6: Controller at negative output limitation & FB 265 & B185 \\
\hline B9676 & PI controller 7: Controller at negative output limitation & FB 266 & B186 \\
\hline B9677 & PI controller 8: Controller at negative output limitation & FB 267 & B187 \\
\hline B9678 & PI controller 9: Controller at negative output limitation & FB 268 & B188 \\
\hline B9679 & PI controller 10: Controller at negative output limitation & FB 269 & B189 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{S00 technology software: Limit-value monitors for double-word connectors} \\
\hline B9680 & Limit-value monitor 1: \(\mathrm{A} \mid<\mathrm{B}\) has responded & [ SW 1.9 and later] & FB 68 B151 \\
\hline B9681 & Limit-value monitor 1: A < B has responded & [ SW 1.9 and later] & FB 68 B151 \\
\hline B9682 & Limit-value monitor 1: \(\mathrm{A}=\mathrm{B}\) has responded & [ SW 1.9 and later] & FB 68 B151 \\
\hline B9683 & Limit-value monitor 2: \(|\mathrm{A}|<\mathrm{B}\) has responded & [ SW 1.9 and later] & FB69 B151 \\
\hline B9684 & Limit-value monitor 2: A < B has responded & [ SW 1.9 and later] & FB69 B151 \\
\hline B9685 & Limit-value monitor 2: \(\mathrm{A}=\mathrm{B}\) has responded & [ SW 1.9 and later] & FB69 B151 \\
\hline
\end{tabular}
\begin{tabular}{|l|lllll|}
\hline \multicolumn{9}{|l|}{ Technology software S00: root extractor } & \\
\hline B9686 & | root extractor input \(\mid\) < threshold responded & [ SW 2.0 and later] & FB 58 & B153 \\
\hline B9687 & | root extractor input \(\mid\) < threshold responded (inverted) & [ SW 2.0 and later] & FB 58 & B153 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3)} \\
\hline B9700 & USS3 receive data, word 7, bit 0 & G172 \\
\hline B9701 & USS3 receive data, word 7, bit 1 & G172 \\
\hline B9702 & USS3 receive data, word 7, bit 2 & G172 \\
\hline B9703 & USS3 receive data, word 7, bit 3 & G172 \\
\hline B9704 & USS3 receive data, word 7, bit 4 & G172 \\
\hline B9705 & USS3 receive data, word 7, bit 5 & G172 \\
\hline B9706 & USS3 receive data, word 7, bit 6 & G172 \\
\hline B9707 & USS3 receive data, word 7, bit 7 & G172 \\
\hline B9708 & USS3 receive data, word 7, bit 8 & G172 \\
\hline B9709 & USS3 receive data, word 7, bit 9 & G172 \\
\hline B9710 & USS3 receive data, word 7, bit 10 & G172 \\
\hline B9711 & USS3 receive data, word 7, bit 11 & G172 \\
\hline B9712 & USS3 receive data, word 7, bit 12 & G172 \\
\hline B9713 & USS3 receive data, word 7, bit 13 & G172 \\
\hline B9714 & USS3 receive data, word 7, bit 14 & G172 \\
\hline B9715 & USS3 receive data, word 7, bit 15 & G172 \\
\hline B9800 & USS3 receive data, word 8, bit 0 & G172 \\
\hline B9801 & USS3 receive data, word 8, bit 1 & G172 \\
\hline B9802 & USS3 receive data, word 8, bit 2 & G172 \\
\hline B9803 & USS3 receive data, word 8 , bit 3 & G172 \\
\hline B9804 & USS3 receive data, word 8, bit 4 & G172 \\
\hline B9805 & USS3 receive data, word 8, bit 5 & G172 \\
\hline B9806 & USS3 receive data, word 8, bit 6 & G172 \\
\hline B9807 & USS3 receive data, word 8, bit 7 & G172 \\
\hline B9808 & USS3 receive data, word 8, bit 8 & G172 \\
\hline B9809 & USS3 receive data, word 8, bit 9 & G172 \\
\hline B9810 & USS3 receive data, word 8, bit 10 & G172 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Binector & Name, description & \begin{tabular}{l} 
Function \\
diag., Sheet
\end{tabular} \\
\hline B9811 & USS3 receive data, word 8, bit 11 & G172 \\
\hline B9812 & USS3 receive data, word 8, bit 12 & G172 \\
\hline B9813 & USS3 receive data, word 8, bit 13 & G172 \\
\hline B9814 & USS3 receive data, word 8, bit 14 & G172 \\
\hline B9815 & USS3 receive data, word 8, bit 15 & G172 \\
\hline B9900 & USS3 receive data, word 9, bit 0 & G172 \\
\hline B9901 & USS3 receive data, word 9, bit 1 & G172 \\
\hline B9902 & USS3 receive data, word 9, bit 2 & G172 \\
\hline B9903 & USS3 receive data, word 9, bit 3 & G172 \\
\hline B9904 & USS3 receive data, word 9, bit 4 & G172 \\
\hline B9905 & USS3 receive data, word 9, bit 5 & G172 \\
\hline B9906 & USS3 receive data, word 9, bit 6 & G172 \\
\hline B9907 & USS3 receive data, word 9, bit 7 & G172 \\
\hline B9908 & USS3 receive data, word 9, bit 8 & G172 \\
\hline B9909 & USS3 receive data, word 9, bit 9 & G172 \\
\hline B9910 & USS3 receive data, word 9, bit 10 & G172 \\
\hline B9911 & USS3 receive data, word 9, bit 11 & G172 \\
\hline B9912 & USS3 receive data, word 9, bit 12 & G172 \\
\hline B9913 & USS3 receive data, word 9, bit 13 & G172 \\
\hline B9914 & USS3 receive data, word 9, bit 14 & \\
\hline B9915 & USS3 receive data, word 9, bit 15 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Trace function & \\
\hline B9999 & Trigger condition of trace function is fulfilled & [ SW 1.8 and later] & \\
\hline
\end{tabular}

\section*{13 Maintenance}

\section*{WARNING}

Hazardous voltage are present in this electrical equipment during operation.
A hazardous voltage may be present at the signaling relays in the customer installation.
Non-observance of the safety instructions can result in death, severe personal injury or substantial property damage.

When carrying out maintenance work on this converter, please read all safety instructions included in this section and attached to the product itself.
- Maintenance work on the converter may be carried out only by qualified personnel who are thoroughly familiar with all safety notices in this manual and with the installation, operating and maintenance instructions.
- Before carrying out visual checks and maintenance work, ensure that the AC power supply is disconnected and locked out and that the converter is grounded. Before the AC supply is disconnected, both converters and motors are at hazardous voltage levels. Even when the converter contactor is open, hazardous voltages are still present.
- The snubber capacitors might still be carrying hazardous voltage after isolation from the supply. For this reason, the converter must not be opened for at least two minutes after switch-off.

Only spare parts authorized by the manufacturer may be used.

The converter must be thoroughly protected against the ingress of dirt so as to prevent voltage flashovers and this irreparable damage. Dust and foreign bodies, and especially contamination drawn in through the cooling air flow, must be carefully removed at regular intervals depending on the degree of pollution, but at least once every 12 months. The converter must be cleaned with dry, compressed air, max. 1 bar, or with a vacuum cleaner.

Please note the following with respect to converters with forced air cooling:
The fan bearings are designed for a service lifetime of 30000 hours. The fans should be replaced in plenty of time in order to maintain the availability of the thyristor sets.

\subsection*{13.1 Procedure for updating software}

Read out and write down all parameter contents.
(also note software version in r060.001 and r065.001!)

Switch off electronics power supply

Connect one COM port on the PC to connector X300 on the converter

Switch on electronics power supply AND press down the UP key on the PMU of the SIMOREG converter at the same time

The SIMOREG converter switches to operating state 013.0

\section*{Note:}

The parameter set can be transferred to a PC or programming device by means of DriveMonitor (see also Section 15).

Cable order number: 6SX7005-0AB00 (see also Section 15.3)

\section*{Note:}

A software update can be started only from the PMU panel and not via an OP1S or the DriveMonitor system

Open a DOS window on the PC and enter program call:
HEXLOAD 7001Axxx. H86 7001Bxxx. H86 COMP
Start the program by pressing Return
The software update is performed automatically

When the software has been updated successfully, the SIMOREG switches to operating state 013.2 for approx. 1 s
The SIMOREG converter then switches to operating state 012.9 in many cases (depending on which SW version was previously installed in the converter) for approximately 15 s .

\section*{Note:}

HEXLOAD.EXE: Loading program
7001Axxx.H86 and 7001Bxxx.H86:
Data files which contain the SIMOREG software xxx is the SW release

COM: COM1 or COM2

\section*{Note:}

The currently programmed addressed is displayed on the PMU while the update is in progress
The current status of the update routine is displayed on the PC

Check the checksum:
Comparison of the value of parameter r062.001 with the checksum in the Internet under menu item "Info" (see the inside page of the cover sheet of the operation instructions).

Was the electronics supply disconnected while
Step 6 was in progress?

\(?\)


Acknowledge any fault message that may appear on the SIMOREG device

Restore default setting (see Section 7.4)

Start up the converter again (see Section 7.5)

\section*{Note:}

The parameter set stored in Step 1 above can be loaded from a PC or programming device by means of DriveMonitor.

\section*{End}

\subsection*{13.2 Replacement of components}

\subsection*{13.2.1 Replacement of fan}

\section*{\(\uparrow\) \\ WARNING}

The converter fan may be replaced only by properly qualified personnel.

\section*{4}

The snubber capacitors might still be carrying hazardous voltage after isolation from the supply. For this reason, the converter must not be opened for at least two minutes after switch-off.
Non-observance of the safety instructions can result in death, severe personal injury or substantial property damage.

\section*{Replacement of fan on 210A to 280A converters}


The two fans are mounted on the underside of the converter.
- Remove connector
- Release the two retaining clips on the fan and swing fan out downwards.

Installation:
- When mounting the fan make sure it is in the correct mounting position (blowing direction upward, see arrow (3) on the fan housing).
- Insert the fan into lugs (4) and push upwards until it engages in retaining clips
- Insert connector (1) again.

\section*{Replacement of fan on 400A to 850A converters}


The fan is mounted on the underside of the converter
- Remove connector (1).
- Use a T20 screwdriver to undo the two Torx screws
- Lift the fan using the fixing straps and pull out downwards.

Installation:
- Push fan box up along the rear panel right up over the fixing clips.
- Tighten the two Torx screws with 2.5 Nm .
- Insert connector (1).

\section*{Replacement of fan on 900A to 1200A converters}


The fan is mounted on top of the converter.
- Remove connector (1).
- Use a T20 screwdriver to undo the two Torx screws .
- Undo the M6 hexagonal nut (3).
- Pull fan upwards out of its guideway and then forwards to remove. Take care to protect the field module mounted on the left (risk of mechanical damage!).

Installation:
- Insert fan into guideway from above.
- Tighten the two Torx screws with 10 Nm .
- Tighten hexagonal nut M6 (3) with 10 Nm .
- Insert connector (1).

Replacement of fan on 1500A to 2200A converters

WARNING

\section*{4}

When dismantling the fan-mounting box, please remember that it weighs 12 kg .
Non-observance of this warning can result in severe personal injury or substantial property damage.


The fan is mounted on top of the converter.
- Remove connector (1).
- Undo the M6 hexagonal nut
- Swing fan upwards and pull it out towards you, taking care to protect the field module mounted on the left against any mechanical damage!

Installation:
- Tilting the fan from the front and upward (see Fig.), slot it into the two rear guide tabs and then tilt it downward as far as it will go.
- Tighten hexagonal nut M6 with 10 Nm .
- Insert connector (1).

\subsection*{13.2.2 Replacement of PCBs}


\section*{WARNING}

PCBs may be replaced only by properly qualified personnel.
PCBs must not be removed or inserted when the power supply is connected.
Non-observance of the safety instructions can result in death, severe personal injury or substantial property damage.

\section*{CAUTION}

PCBs contains electrostatically sensitive devices. Before touching a PCB, the person carrying out the work must himself be electrostatically discharged. The simplest way of doing this is to touch an electrically conductive earthed object, e.g. socket outlet earth contact.

\subsection*{13.2.3 Replacement of diodes and thyristor modules for devices up to 1200A}

The diodes and thyristor modules are mounted by means of self-tapping screws. When a module is replaced, the support surfaces on the heatsink must be cleaned and a new layer of thermo-lubricant applied to the thyristor module. To fix the modules always used screws with a metric thread of the same length as the original screws and fixing elements (washer and spring lock washer). When screwing the modules to the busbars and boards, also use screws with a metric thread and the same length as the original screws and fixing elements (washer and spring lock washer).

\section*{NOTICE}

The layer of thermo-lubricant (silicone-free, type H-T-C made by Electrolube) applied to the modules must be so thin and even that the baseplate is still clearly visible underneath!
lightening torque on module: \(3,5 \mathrm{Nm}\)

\subsection*{13.2.4 Replacement of fuses and thyristor assemblies on converters of 1500A and above}

- Undo the M6 hexagonal nut (1).
- Swing the fan upwards and hold in place with support rail (3).
- Remove the brace (4) with the attached protective cover by undoing the 2 M6 hexagon-head screws.
- Remove fuses (5) by undoing the 2 hexagon-head screws on each (M10 or M12 depending on converter model).
- Undo the M10 hexagon-head screw (6) and swing thyristor assembly (7) out towards you.
- Undo assembly locking mechanism (M6 hexagonal nut) (8) , and pull out thyristor assembly (7) upwards at an angle.
- Install the new components in the reverse order.

Caution: The fuse mounting screws are of different lengths!

\section*{14 Servicing}

Siemens supplies thoroughly tried and tested products and systems of the highest quality. To ensure maximum availability of our products and systems in your plant, we offer extensive aftersales services and support.

For further information about our services and your regional Siemens contacts, please go to our Internet website:

\section*{www.siemens.de/automation/csi en/service}

\subsection*{14.1 Technical Support}

You can obtain technical assistance with our products, systems and solutions from our Technical Support service. Whether you have a simple query, or need help in solving a more difficult, complex task, our Central Technical Support specialists will be pleased to advise you. Our Central Technical Support service is available in English and German.

\subsection*{14.1.1 Time zone Europe and Africa}

Tel.: +49 (0)180 5050-222
Fax: +49 (0)180 5050-223
Email: techsupport@ad.siemens.de
Mo.-Fr.: 7:00 to 17:00 (CET)

\subsection*{14.1.2 Time zone America}

24 Hour Hotline: +1 8003337421
Tel.: +1 4234612522
Fax: +1 4234612466
Email: drives.support@sea.siemens.com
Mo.-Fr.: 8:00 to 17:00 (local time: Eastern Time)

\subsection*{14.1.3 Time zone Asia / Australia}

Tel.: +65 (0)740-7000
Fax: +65 (0)740-7001
Email: drives.support@sae.siemens.com.sg
Mo.-Fr.: 8:30 to 17:30 (local time: Singapore)

\subsection*{14.2 Spare parts}

Information about spare parts can be found in Catalog DA 21.1 E. You will find this catalog on the CD-ROM (order separately under order number: 6RX1700-0AD64, or with product order by specifying Z option -Z-D64) and via Internet website:

\section*{http://www4.ad.siemens.de/view/cs/en/9260805}

\subsection*{14.3 Repairs}

If you wish to have a part or unit repaired, please call or write to your regional Siemens contact for repairs.

\subsection*{14.4 On-site servicing}

Qualified specialists can offer an on-site repair and maintenance service to increase the availability of your plant. Repair and/or maintenance support can be charged according to time and cost or provided within the scope of a service contract at a flat rate. Services charged on a time/cost basis will be available within the normal working hours of the relevant region subject to an appropriate call-out period.

For on-site servicing, please call your regional Siemens contact.

\section*{NOTE}

If you contact us with a query, please specify the following converter data:
- Converter order number and serial number
- Software version
- Hardware version of basic electronics board (screen printing on component side)
- Hardware version and software version of supplementary boards (if installed)

\section*{15 DriveMonitor}

The DriveMonitor software tool is available to assist the start-up, parameterization and diagnosis of SIMOREG 6RA70 units via a PC.

\subsection*{15.1 Scope of delivery}

DriveMonitor is supplied on a CD-ROM together with the operating manual and sample applications.

Order No. 6RX1700-0AD64
It can also be ordered as an option in conjunction 6RA70 units. The relevant short code for this option is D64.

\subsection*{15.2 Installing the software}

You can find a brief overview of the CD contents in START.HTM. If you have installed an HTML browser (e.g. Internet Explorer or Netscape Navigator) on your PC, you can open the overview by double clicking on START.HTM. If you do not have an HTML browser, you can find similar information in text format in file README.TXT.

After you have chosen an installation language by selecting links DriveMonitor - Installation of DriveMonitor- Start Installation, you can call the DriveMonitor installation routine.

Some Internet Browsers are not capable of starting programs directly. If this is the case on your PC, a "Setup.exe - Save as" dialog appears after you select Start Installation.

You can then start the Setup program manually in sub-catalog
DriveMonitor setup \(\backslash\) setup.exe
Then follow the instructions displayed by the installation routine.
The default installation path for DriveMonitor is \(\mathrm{C}: \backslash\) DriveMon\P7VRVISX\System. A "DriveMonitor" icon is also placed on your desktop.

\subsection*{15.3 Connecting the SIMOREG to the PC}

The simplest method is to link connector X300 in the front panel of the SIMOREG unit to a COM port on the PC using the connecting cable available under order no. 6SX7005-0AB00.


\subsection*{15.4 Setting up an online link to the SIMOREG}

DriveMonitor always starts in offline mode. For this reason, you must open or create an offline file which has been set up specifically for the device and software version:
To open an existing offline file:
- File - Open <select parameter file>
(if the parameter file has been created in SIMOVIS, the drive type SIMOREG DC Master and the software version used must then be set. If you want to set up an online link to the drive, you must click the ONLINE button and enter the bus address set in the device)
To create a new offline file:
- File - New - Based on Factory Setting < select drive type and software version>. (If you want to set up an online link to the drive, you must click the ONLINE button and enter the bus address set in the device)
<enter file name>
- File - New - Empty Parameter Set < select drive type and software version> (If you want to set up an online link to the drive, you must click the ONLINE button and enter the bus address set in the device) <enter file name>

The data regarding drive type and software version are stored in the DNL file. You can then start the program in future by the normal Windows method, i.e. by double clicking on a DNL file, without further system queries.
You can open the ONLINE Settings screen under Options to check, and if necessary change, the interface parameters such as COM port and baud rate.

You can set the bus address and number of transmitted process data under File - Drive Settings.
To switch to online mode, select View - Online or the appropriate button on the toolbar. If the message "Device is not networked" then appears, then "Offline mode" is currently selected. You can switch to online mode under File - Drive Settings.

\subsection*{15.5 Further information}

The engineering tool Drive ES is available for the diagnosis of complex installations containing several drives as well as Profibus-based drive communication.

Several different packages of Drive ES are available:
- Drive ES Basic
- Drive ES Graphic
- Drive ES Simatic

Data management in Step 7 projects, drive communications via Profibus or USS
Order No.:6SW1700-5JA00-1AA0
Interconnection of Option S00 free functions blocks using the CFC interconnection editor
Order No.:6SW1700-5JB00-1AA0
Provides function blocks for SIMATIC CPUs and sample projects for communication with the SIMOREG unit
Order No.:6SW1700-5JC00-1AA0

\section*{IMPORTANT}

DriveMonitor will run under Windows95/98/Me or Windows NT4 / Windows 2000, but not under Windows 3.x.

\section*{16 Environmental compatibility}

\section*{Environmental aspects of development}

The number of parts has been greatly reduced through the use of highly integrated components and a modular design of the entire converter series. As a consequence, the power consumed in the production process is significantly lower.

Particular importance has been attached to reducing the volume, mass and diversity of metal and plastic parts.
\begin{tabular}{llll} 
Front components: & PC + ABS & Cycoloy & GE-Plastics \\
& ABS & Novodur & Bayer \\
Plastic components in & PC & Lexan 141-R & \\
converter: & PA 6.6 & \\
& SE1-GFN1 & Noryl \\
Insulation: & PC (FR) fl & Makrolon or Lexan \\
Keyboard membrane: & Polyester membrane 0.15 mm \\
Rating plate: & \multicolumn{2}{l}{} \\
& Polyester membrane
\end{tabular}

Flame arresters containing halogen and insulating materials containing silicone have been replaced by pollutant-free materials on all major components.

Environmental compatibility was an important criterion in the selection of supplied parts.

\section*{Environmental aspects of production}

Most supplied parts are shipped in reusable packaging. The packaging material itself is recyclable, consisting mainly of cardboard.

With the exception of the converter housing, surface coating materials have not been applied.
The production process is free of emissions.

\section*{Environmental aspects of disposal}

The unit features screw and snap-on connections that can be separated easily to dismantle it into recyclable mechanical components

The printed circuit boards can be disposed of by thermal processing. The percentage of components containing dangerous substances is low.

\section*{17 Applications}

Descriptions of applications (e.g. Winder Application, 12-Pulse Operation, Master-Slave Operation, Operation of 6RA70 as Field Supply Unit and others) can be found on the CD-ROM (order separately under order number: 6RX1700-0AD64, or with product order by specifying Z option - ZD64) and via Internet website:
http://www4.ad.siemens.de/view/cs/en/8467615

\section*{18 Appendix}

\subsection*{18.1 Further documentation}
\begin{tabular}{ll} 
Catalog DA21 & Converters \\
Catalog DA21E & Spare parts \\
Catalog DA22 & Cabinet-mounted converters
\end{tabular}

\section*{Comments sheet}

We have made every effort to critically edit this Instruction Manual. However, if you still come across printing errors, we should be grateful if you would let us know.

We would also be grateful if you could let us have your opinion of this Instruction Manual and the converter itself!

Contact your local Siemens office for any comments - either negative or positive!
Many thanks!
SIEMENS AG Austria, Electronics Plant, Vienna

From: Name:
Date:
Company:
Address \(\qquad\)

Tel: \(\qquad\)

To: SIEMENS Office
Address: \(\qquad\)

Please pass on to SIEMENS AG Austria
Electronics Plant, Vienna

Concerns: Comments for the 6RA70 Instruction Manual, Edition \(\qquad\)

The following versions have appeared so far:
\begin{tabular}{|c|l|}
\hline Version & Internal Part No. \\
\hline 03 & C98130-A1256-A2-03-7619 \\
\hline 04 & C98130-A1256-A2-04-7619 \\
\hline 05 & C98130-A1256-A2-05-7619 \\
\hline 06 & C98130-A1256-A2-06-7619 \\
\hline 06.1 & C98130-A1256-A2-07-7619 \\
\hline 07 & C98130-A1256-A2-08-7619 \\
\hline 08 & C98130-A1256-A2-09-7619 \\
\hline 09 & C98130-A1256-A2-10-7619 \\
\hline
\end{tabular}

Version 09 consists of the following sections
\begin{tabular}{|ll|c|c|}
\hline Section & Pages & Date of edition \\
\hline 0 & Contents & 8 & 01.02 \\
\hline 1 & Safety information & 4 & 12.00 \\
\hline 2 & Type spectrum & 8 & 01.02 \\
\hline 3 & Description & 30 & 01.02 \\
\hline 4 & Shipment, unpacking & 2 & 01.02 \\
\hline 5 & Installation & 26 & 01.02 \\
\hline 6 & Connections & 66 & 01.02 \\
\hline 7 & Start-up & 60 & 01.02 \\
\hline 8 & Function diagrams & 138 & 01.02 \\
\hline 9 & Function descriptions & 76 & 01.02 \\
\hline 10 & Faults / Alarms & 28 & 01.02 \\
\hline 11 & Parameter list & 178 & 01.02 \\
\hline 12 & List of connectors and binectors & 62 & 01.02 \\
\hline 13 & Maintenance & 2 & 01.02 \\
\hline 14 & Servicing & 2 & 01.02 \\
\hline 15 & DriveMonitor & 2 & 01.02 \\
\hline 16 & Environmental compatibility & 2 & 12.00 \\
\hline 17 & Applications & 4 & 01.02 \\
\hline 18 & Appendix & & 02.00 \\
\hline
\end{tabular}

\section*{Siemens AG}

Elektronikwerk Wien
Postfach 83, A-1211 Wien
Siemens Aktiengesellschaft

Excellence in Automation \& Drives: Siemens```


[^0]:    Explanation at end of list of tables

[^1]:    1) Minimum clearance for air circulation
    An adequate cooling air supply must be provided
[^2]:    Max. conductor size for cables with cable eye
    in accordance with DIN 46234: $2 \times 95 \mathrm{~mm}^{2}$
    Tightening torque for customer connections:
    Tightening torque for customer conn
    1U1,1V1,1W1,1C1,1D1 $=13 \mathrm{Nm}$
    $\Theta=25 \mathrm{Nm}$

    1) Minimum clearance for air circulation
    An adequate cooling air supply must be provided
[^3]:    Max. conductor size for cables with cable eye
    in accordance with DIN $46234: 2 \times 95 \mathrm{~mm}^{2}$
    Tightening torque for customer connections:
    $\begin{aligned} 1 \mathrm{U1}, 1 \mathrm{~V} 1,1 \mathrm{~W} 1,1 \mathrm{C} 1,1 \mathrm{D} 1 & =13 \mathrm{Nm} \\ \Theta & =25 \mathrm{Nm}\end{aligned}$

    1) Minimum clearance for air circulation
    An adequate cooling air supply must be provided
[^4]:    Max. conductor size for cables with cable eye
    in accordance with DIN $46234: 4 \times 150 \mathrm{~mm}^{2}$
    -rons:
    TU1, 1V1, 1W1,1C1,1D1 $=44 \mathrm{Nm}$

[^5]:    Max. conductor size for cables with cable eye
    in accordance with DIN $46234: 2 \times 95 \mathrm{~mm}^{2}$
    Tightening torque for customer connections:
    1U1, 1V1, 1W1, 1C1, 1D1 $=13 \mathrm{Nm}$

    1) Minimum clearance for air circulation

    Mn adequate cooling air supply must be provided

[^6]:    Max. conductor size for cables with cable eye
    in accordance with DIN $46234: 2 \times 95 \mathrm{~mm}^{2}$
    Tightening torque for customer connections:
    $\begin{aligned} 1 \mathrm{U} 1,1 \mathrm{~V} 1,1 \mathrm{~W} 1,1 \mathrm{C} 1,1 \mathrm{D} 1 & =13 \mathrm{Nm} \\ 1 & =25 \mathrm{Nm}\end{aligned}$

    1) Minimum clearance for air circulation
    ) Minimum clearance for air circulation
    An adequate cooling air supply must be provided
[^7]:    Max. conductor size for cables with cable eye
    in accordance with DIN $46234: 4 \times 150 \mathrm{~mm}^{2}$
    Tightening torque for customer connections:
    1U1, 1V1, 1W1, 1C1, 1D1 $=44 \mathrm{Nm}$

[^8]:    Valid for the following configurations:
    TB only
    CB after TB (CB in slot G )
    2 CBs (for CB with the lower slot letter)

